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Ramsey theory for hypergraphs

Definition (Ramsey’s theorem)

Given k ≥ 2 and k-uniform hypergraphs H1,H2, the ramsey
number

r(H1,H2)

is the minimum N such that every red/blue coloring of the k-sets
of [N] results in a red copy of H1 or a blue copy of H2. Write

rk(s, n) := r(K k
s ,K

k
n ).

Observation

Note that rk(s, n) ≤ N is equivalent to saying that every N-vertex
K k
s -free k-uniform hypergraph H has α(H) ≥ n.
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Graphs

Theorem (Spencer 1977, Conlon 2008)

(1 + o(1))

√
2

e
n2n/2 < r2(n, n) <

4n

nc log n/ log log n

Theorem (Ajtai-Komlós-Szemerédi 1980, Kim 1995, sharper results
by Shearer, Bohman-Keevash, Fiz Pontiveros-Griffiths-Morris)
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(
n2

log n

)

Theorem

For fixed s ≥ 3

n(s+1)/2+o(1) < r2(s, n) < ns−1+o(1)
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Pseudorandom Ramsey Graphs

Definition (Alon?)

An (n, d , λ) graph is an n-vertex d-regular graph such that the
absolute value of every eigenvalue of its adjacency matrix, besides
the largest one, is at most λ.

Conjecture (Sudakov-Szabo-Vu 2005)

For each fixed s ≥ 3, there exist “optimal” Ks -free (n, d , λ)
graphs. I.e., graphs containing no Ks with

d = Ω(n1−
1

2s−3 ) and λ = O(
√
d ).



Pseudorandom Ramsey Graphs

Theorem (M-Verstraëte 2019)

Let d , n,N be positive integers and n = d2N(logN)2/de. If there
exists an F -free (N, d , λ)-graph and N is large enough, then

r(F , n) = Ω

(
N

λ
(logN)2

)
.

Corollary (M-Verstraëte 2019)

If Ks -free (N, d , λ)-graphs exist with d = Ω(N1− 1
2s−3 ) and

λ = O(
√
d), then as n→∞,

r(s, n) = Ω
( ns−1

(log n)2s−4

)
.



Hypergraphs - diagonal case

Definition (tower function)

twr1(x) = x and twri+1(x) = 2twri (x).

Theorem (Erdős-Hajnal-Rado 1952/1965)

2cn
2
< r3(n, n) < 22

n

For fixed k ≥ 3,

twrk−1(cn2) < rk(n, n) < twrk(c ′n)

Conjecture (Erdős $500)

r3(n, n) > 22
cn
.



Hypergraphs - The off-diagonal conjecture

Conjecture (Erdős-Hajnal 1972)

For fixed s > k ≥ 3 we have rk(s, n) > twrk−1(cn). In particular,

rk(k + 1, n) > twrk−1(cn).

r3(s, n) ≥ r3(4, n) > 2cn

r4(s, n) ≥ r4(5, n) > 22
cn

r5(s, n) ≥ r5(6, n) > 22
2cn



Hypergraphs - The off-diagonal conjecture

Theorem (Erdős-Hajnal 1972)

r3(4, n) > 2cn. Consequently, the conjecture holds for k = 3.

Proof. Let T be a random graph tournament on N vertices and
form a 3-uniform hypergraph H by making each cyclically oriented
triangle a hyperedge. Then

there is no K
(3)
4 in H (even no K 3−

4 ), and yet

the independence number of H is n = O(logN).
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The off-diagonal conjecture - almost solved

Theorem (M-Suk 2017, Conlon-Fox-Sudakov unpublished)

The off-diagonal conjecture holds for all s ≥ k + 3 :

rk(k + 3, n) > twrk−1(cn).

The open cases are r4(5, n) and r4(6, n) and their k-uniform
counterparts.



r4(5, n) and r4(6, n)

Lower bounds for r4(5, n):

• 2cn (implicit in Erdős-Hajnal 1972)

• 2cn
2

(M-Suk 2017)

• 2n
c log log n

(M-Suk 2018)

• 2n
c log n

(M-Suk 2018)

Lower bounds for r4(6, n):

• 2cn (implicit in Erdős-Hajnal 1972)

• 2n
c log n

(M-Suk 2017)

• 22
cn1/5

(M-Suk 2018)



The off-diagonal conjecture - almost solved

Theorem (M-Suk 2018)

r4(5, n) > 2n
c log n

r4(6, n) > 22
cn1/5

and for fixed k ≥ 4

rk(k + 1, n) > twrk−2(nc log n)

rk(k + 2, n) > twrk−1(cn1/5)



The Erdős-Hajnal Hypergraph Ramsey Problem

Definition (Erdős-Hajnal 1972)

For 1 ≤ t ≤
(s
k

)
, let rk(s, t; n) be the minimum N such that every

red/blue coloring of the k-sets of [N] results in an s-set that
contains at least t red k-subsets or an n-set all of whose k-subsets
are blue (i.e., a blue K k

n ).

Example

rk

(
s,

(
s

k

)
; n

)
= rk(s, n)



The Erdős-Hajnal Hypergraph Ramsey Problem

Problem (Erdős-Hajnal 1972)

As t grows from 1 to
(s
k

)
, there is a well-defined value t1 = h

(k)
1 (s)

at which rk(s, t1 − 1; n) is polynomial in n while rk(s, t1; n) is
exponential in a power of n, another well-defined value

t2 = h
(k)
2 (s) at which it changes from exponential to double

exponential in a power of n and so on, and finally a well-defined

value tk−2 = h
(k)
k−2(s) <

(s
k

)
at which it changes from twrk−2 to

twrk−1 in a power of n.



A Recursive Definition

Definition

Let gk(s) = 0 for s < k, gk(k) = 1, and for s > k, let gk(s) be the
maximum of

k∑
i=1

gk(si ) +
k∏

i=1

si

where we maximize over all partitions s = s1 + · · ·+ sk with si < s
for all i .

gk(s) = (1 + o(1))
k!

kk − k

(
s

k

)
(k is fixed, s →∞).



Recursion and Fractals1

g4(s) ∼ 2

21

(
s

4

)
g 5(s) ∼ 1

26

(
s

5

)
1Thanks to Bernard Lidický for pictures!



Polynomial to Exponential Transition

Theorem (Erdős-Hajnal)

h
(k)
1 (s) ≥ gk(s) + 1 (s ≥ k ≥ 3).

In other words: every N-vertex k-uniform hypergraph H in which
every s vertices span at most gk(s)− 1 edges has

α(H) > Nε (ε = ε(s, k) > 0).



Polynomial to Exponential Transition

Conjecture (Erdős-Hajnal 1972 $500)

h
(k)
1 (s) = gk(s) + 1 (s ≥ k ≥ 3).

In other words: there exists C = C (k) > 0 and, for all N > k , an
N-vertex k-uniform hypergraph H in which every s vertices span at
most gk(s) edges and

α(H) ≤ C logN.



The smallest nontrivial case

k = 3, s = 4

Theorem (Phelps-Rödl 1986)

r3(4, 2; n) < cn2/ log n

Theorem (Erdős-Hajnal 1972)

r3(4, 3; n) > 2c
′n

h
(3)
1 (4) = 3 = g3(4) + 1



Polynomial to Exponential Transition

Theorem (Conlon-Fox-Sudakov 2010)

h
(3)
1 (s) = g3(s) + 1 for many s values including powers of 3; also

h
(3)
1 (s) =

1

4

(
s

3

)
+ O(s log s).

Proof Idea: T (s) is the maximum number of directed triangles in
all s-vertex tournaments. Then, if s is a power of 3,

h
(3)
1 (s)− 1 ≤ T (s) =

1

4

(
s + 1

3

)
= g3(s).

Lucky: the maximizers for T (s) are out regular tournaments, and
the “recursive” tournament is just one example.



Polynomial to Exponential Transition

Theorem (M-Razborov 2019)

h
(k)
1 (s) = gk(s) + 1 (s ≥ k ≥ 4).

i.e., there exists C = C (k) > 0 and, for all N > k , an N-vertex
k-uniform hypergraph H in which every s vertices span at most
gk(s) edges and

α(H) ≤ C logN.

Main Hurdle: The recursive definition of gk(s) – seems impossible
to avoid it!!



Inducibility

Definition

Given a k-vertex graph R, the inducibility i(R) is

i(R)
def
= lim

s→∞
max
|V (H)|=s

i(R;H)(s
k

) ,

where i(R;H) is the number of induced copies of R in an s-vertex
graph H.



Golumbic-Pippenger

Conjecture (Golumbic-Pippenger 1975)

i(Ck) =
k!

kk − k
(k ≥ 5).

Theorem (Kral-Norin-Volec 2018)

i(Ck) ≤ 2k!

kk
(k ≥ 5).
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Golumbic-Pippenger

Theorem (Balogh-Hu-Lidický-Pfender 2016)

i(C5) =
1

26

(
=

5!

55 − 5

)
.



Rich Structures

Theorem (M-Razborov 2019)

Let s ≥ k ≥ 4, R be a k-vertex rainbow tournament. For any
s-vertex tournament H with edges colored by the same

(k
2

)
colors,

i(R;H) ≤ gk(s)
(

=⇒ i(R) = k!
kk−k

)
.



Proof of Erdős-Hajnal conjecture

Conjecture (Erdős-Hajnal 1972)

h
(k)
1 (s) = gk(s) + 1 (s ≥ k ≥ 4).

I.e. there exists C = C (k) > 0 and, for all N > k, an N-vertex
k-uniform hypergraph H in which every s vertices span at most
gk(s) edges and α(H) ≤ C logN.

Proof.

Fix a k-vertex rainbow tournament R. Randomly
(k
2

)
-color and

orient KN (with the same colors from R). Form a k-uniform
hypergraph H comprising copies of R. Then

• Every s vertices have at most gk(s) (hyper)edges

• With positive probability α(H) = O(logN).
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Intuition

Question

Why might it be easier to prove inducibility results for
rainbow/directed structures R than for usual graphs?

Because of the lack of symmetries

Research on inducibility is/was hampered by the fact that a
vertex can play different roles in a copy of R. E.g. if R = Ck

Previous results of inducibility of random graphs (Yuster,
Fox-Huang-Lee) required trivial automorphism group and in
fact even stronger “asymmetry” properties

The rainbow tournament has the (strongest possible)
asymmetry properties “for free”. E.g. specifying a colored
oriented edge identifies its endpoints



Thank You!!!


