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Ramsey theory for hypergraphs

Definition (Ramsey’s theorem)

Given k > 2 and k-uniform hypergraphs Hi, H>, the ramsey
number
r(Hl, H2)

is the minimum N such that every red/blue coloring of the k-sets
of [N] results in a red copy of H; or a blue copy of Hp. Write

(s, n) := r(KS, Ky)-
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Observation

Note that ri(s,n) < N is equivalent to saying that every N-vertex
KX-free k-uniform hypergraph H has a(H) > n.
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For fixed s > 3

n(s+1)/2+o(1) < r2(5’ n) < nsfl+o(1)




Pseudorandom Ramsey Graphs

Definition (Alon?)

An (n,d, \) graph is an n-vertex d-regular graph such that the
absolute value of every eigenvalue of its adjacency matrix, besides
the largest one, is at most .

Conjecture (Sudakov-Szabo-Vu 2005)

For each fixed s > 3, there exist “optimal” Ks-free (n,d, \)
graphs. l.e., graphs containing no Ks with

d=Q(n'"=3)  and A= O0(Wd).




Pseudorandom Ramsey Graphs

Theorem (M-Verstraéte 2019)

Let d, n, N be positive integers and n = [2N(log N)?/d]. If there
exists an F-free (N, d, \)-graph and N is large enough, then

H(F.n) = Q <I)\\I(Iog /v)2> .

Corollary (M-Verstraéte 2019)

|

If Ky-free (N, d, \)-graphs exist with d = Q(N*~%-3) and
A= O(V/d), then as n — oo,

ns—l

r(s,n) =Q (W) .




Hypergraphs - diagonal case

Definition (tower function)

twri(x) = x and twrii1(x) = otwr(x)

Theorem (Erdés-Hajnal-Rado 1952/1965)

P r3(n, n) < 2%

For fixed k > 3,

twri_1(cn?) < re(n, n) < twrg(c'n)

Conjecture (Erdés $500)

r3(n, n) > 227,




Hypergraphs - The off-diagonal conjecture

Conjecture (Erdés-Hajnal 1972)

For fixed s > k > 3 we have r(s, n) > twrk_1(cn). In particular,

re(k +1,n) > twrg_1(cn).

I’3(S, n) > I’3(4, n) > 2¢
I’4(5, n) > r4(57 n) > 2%"

r5(S, n) > r5(67 n) > 2226”



Hypergraphs - The off-diagonal conjecture

Theorem (Erdés-Hajnal 1972)
r3(4,n) > 2°". Consequently, the conjecture holds for k = 3.




Hypergraphs - The off-diagonal conjecture

Theorem (Erdés-Hajnal 1972)
r3(4,n) > 2°". Consequently, the conjecture holds for k = 3.

Proof. Let T be a random graph tournament on N vertices and
form a 3-uniform hypergraph H by making each cyclically oriented
triangle a hyperedge. Then

@ there is no KF) in H (even no K77), and yet
@ the independence number of H is n = O(log N). O



The off-diagonal conjecture - almost solved

Theorem (M-Suk 2017, Conlon-Fox-Sudakov unpublished)
The off-diagonal conjecture holds for all s > k + 3 :

re(k + 3, n) > twri_1(cn).

The open cases are r4(5,n) and r4(6, n) and their k-uniform
counterparts.



ACNIELCNACN)

Lower bounds for r4(5, n):

° 2" (implicit in Erd8s-Hajnal 1972)
o 2 (M-Suk 2017)
o 27" (M-Suk 2018)
e 27" (M-Suk 2018)

Lower bounds for r4(6, n):
® 2° (implicit in Erd6s-Hajnal 1972)
e 27" (M-Suk 2017)

2Cnl/s
2 (M-Suk 2018)



The off-diagonal conjecture - almost solved

Theorem (M-Suk 2018)
/5

clogn

cnl
r4(5, n) > 2" ra(6, n) > 22

and for fixed k > 4

re(k 4 1,n) > twry_o(nc'%8 ™)

re(k 42, n) > twry_1(cn/®)




The Erdés-Hajnal Hypergraph Ramsey Problem

Definition (Erdés-Hajnal 1972)

Forl<t< (f{) let ri(s, t; n) be the minimum N such that every
red/blue coloring of the k-sets of [N] results in an s-set that
contains at least t red k-subsets or an n-set all of whose k-subsets

are blue (i.e., a blue KX).




The Erdés-Hajnal Hypergraph Ramsey Problem

Problem (Erd8s-Hajnal 1972)

As t grows from 1 to (), there is a well-defined value t; = hgk)(s)
at which ri(s, t1 — 1; n) is polynomial in n while r(s, ti; n) is
exponential in a power of n, another well-defined value

th = hgk)(s) at which it changes from exponential to double
exponential in a power of n and so on, and finally a well-defined
value ty_» = hf{k_)z(s) < (i) at which it changes from twry_» to
twri_1 in a power of n.




A Recursive Definition

Definition
Let gi(s) =0 for s < k, gk(k) =1, and for s > k, let gi(s) be the

maximum of
k

K
Z gk(si) + H S;
i=1

i=1
where we maximize over all partitions s = sy + - -+ + s, with s; < s
for all i.

V.

gi(s) = (1 + o(1))kkk_! p (Z) (k is fixed, s — 00).



—
&2
[}
i}
O
[0}
—
LL
R o)
=
(g0]
c
.0
w0
“
>
O
Q
o

!Thanks to Bernard Lidicky for pictures!



Polynomial to Exponential Transition

Theorem (Erd3s-Hajnal)

W) > gu(s) +1 (s> k>3).

In other words: every N-vertex k-uniform hypergraph H in which
every s vertices span at most gk(s) — 1 edges has

a(H) > N°¢ (e =€(s, k) > 0).



Polynomial to Exponential Transition

Conjecture (Erd8s-Hajnal 1972 $500)

() =a(s)+1 (s> k>3)

In other words: there exists C = C(k) > 0 and, for all N > k, an
N-vertex k-uniform hypergraph H in which every s vertices span at
most gx(s) edges and

a(H) < Clog N.



The smallest nontrivial case

k=3,s=4
Theorem (Phelps-Rodl 1986)

r3(4,2; n) < cn?/logn

Theorem (Erdés-Hajnal 1972)

r3(4,3;n) > 2°"

h3(4) =3 = g3(4) + 1



Polynomial to Exponential Transition

Theorem (Conlon-Fox-Sudakov 2010)

h§3)(s) = g3(s) + 1 for many s values including powers of 3; also

H(s) = i(;) AT

Proof Idea: T(s) is the maximum number of directed triangles in
all s-vertex tournaments. Then, if s is a power of 3,

61276 =4 (5 1) — o)

Lucky: the maximizers for T(s) are out regular tournaments, and
the “recursive” tournament is just one example.



Polynomial to Exponential Transition

Theorem (M-Razborov 2019)

WO(s)=gu(s)+1 (s> k>4).

i.e., there exists C = C(k) > 0 and, for all N > k, an N-vertex
k-uniform hypergraph H in which every s vertices span at most
gk(s) edges and

a(H) < Clog N.

Main Hurdle: The recursive definition of gi(s) — seems impossible
to avoid it!!



Inducibility

Given a k-vertex graph R, the inducibility i(R) is

(R 4f im  max I(R;H),
s—o|V(H)=s  (})

where i(R; H) is the number of induced copies of R in an s-vertex
graph H.




Golumbic-Pippenger

Conjecture (Golumbic-Pippenger 1975)
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Rich Structures

Theorem (M-Razborov 2019)

Let s > k > 4, R be a k-vertex rainbow tournament. For any
s-vertex tournament H with edges colored by the same (%) colors,

i(R; H) < gk(s) (=> )= ﬁ)

N




Proof of Erdds-Hajnal conjecture

Conjecture (Erd8s-Hajnal 1972)

W) =gls) +1 (s> k>4)

l.e. there exists C = C(k) > 0 and, for all N > k, an N-vertex
k-uniform hypergraph H in which every s vertices span at most
gk(s) edges and a(H) < Clog N.




Proof of Erdds-Hajnal conjecture

Conjecture (Erd8s-Hajnal 1972)

W) =gls) +1 (s> k>4)

l.e. there exists C = C(k) > 0 and, for all N > k, an N-vertex
k-uniform hypergraph H in which every s vertices span at most
gk(s) edges and a(H) < Clog N.

Proof.

Fix a k-vertex rainbow tournament R. Randomly (g)—color and
orient K (with the same colors from R). Form a k-uniform
hypergraph H comprising copies of R. Then

e Every s vertices have at most gk(s) (hyper)edges

e With positive probability a(H) = O(log ). O




Intuition

Why might it be easier to prove inducibility results for
rainbow/directed structures R than for usual graphs?

@ Because of the lack of symmetries

@ Research on inducibility is/was hampered by the fact that a
vertex can play different roles in a copy of R. E.g. if R = C

@ Previous results of inducibility of random graphs (Yuster,
Fox-Huang-Lee) required trivial automorphism group and in
fact even stronger “asymmetry” properties

@ The rainbow tournament has the (strongest possible)
asymmetry properties “for free”. E.g. specifying a colored
oriented edge identifies its endpoints



Thank Youl!!!



