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Historical Remarks

@ 1947 - Bogoliubov approximation (boson): ap/v/V — ¢ € C in many-boson
Hamiltonians at equilibrium.  Dynamics 7

@ 1957-1984 — BCS theory (fermion): similar kind of approximation at equilibirum.
See Bogliubov (1958), Haag (1962), Approx. Hamilt. Method (Bogoliubov Jr.,
Brankov, Zagrebnov, Kurbatov, Tonchev, 1966-1984). Dynamics ?
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@ 1967 & 1978 — BCS theory, dynamics: Thirring and Wehrl on a simple BCS-type
model (1967), generalization for a general class of models by van Hemmen (1978),
at the cost of technical assumptions that are difficult to verify in practice.

@ 1973-1992 - Classical effective dynamics from permutation invariant
quantum-spin systems with mean-field interactions: Hepp and Lieb (1973), Béna
(1988-1990, “extended quantum mechanics” 2000, 2012).

@ 2003-2017 — Dynamics of fermion systems in the continuum with mean-field
interactions, by many authors: Bach, Bardos, Benedikter, Breteaux, Elgart, Erdos,
Frohlich, Golse, Gottlieb, Jaksi¢, Knowles, Mauser, Petrat, Pickl, Porta,
Rademacher, Saffirio, Schlein, Yau.
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Example of long-range terms: a BCS interaction

Definition

AL ={ZN[-L, L]} is a cubic box (d-dimensional crystal) of volume |A.| for L € N.
AN C[—m, 7r)d is the corresponding reciprocal lattice of quasi-momenta.

ay s (resp. axs) creates (resp. annihilates) a fermion with spin s € {f,]} and x € A..
i s (resp. i) creates (resp. annihilates) a fermion with spin's € {t,]} and k € A].

@ Long-range term:
1 ~k ~k ~ ~ 1
— Ak 4+d_y 18, d—q1 = —
|AL| Z k,t9—k,}9q,ld—q, T A

* *
7‘ | E Ax,19x,1 9y, dy,1 -
k,gEA}

X, yENL

@ Mean-field term:
1

1
TIA Z %1313yl 3yt = — Z Z axtaxy | aylayt -

AL
X, yENL = xeN,

@ This is an important, albeit elementary, example of the far more general case we
study in a series of papers (B. and de Siqueira Pedra, 2019)
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Example of the Strong-Coupling BCS-Hubbard Model

Definition (Strong-coupling BCS-Hubbard model)

He = ) (2An1m0s — 1 (Mt + 1)) _V\LL D araaniays
X, YEN,

XENL

Hshort —range Hiong —range

for L € No, u € R and A,y > 0, acting on the fermion Fock space

5 Apx{t,4}
Fa, = \CDT =2

Here, d € N, AL = {Z N[-L, L]}¥ and nxs = a} .axs is the particle number operator.
v

@ The first term with A > 0 is the (screened) Coulomb repulsion as in the Hubbard

model.

@ The second with chemical potential 1 € R represents the strong-coupling limit of
the kinetic energy.

© The third with v > 0 is the BCS interaction, written in the x-space.
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Cooper Pair Condensate Density (B-Pedra, 2010)

At fixed L € Ny and inverse temperature 8 > 0, the Gibbs states w(" is defined by

—BHL
(L) - €
w'” (A) = Tracez,, <ATrace}-A(e—5HL)> ) Ac B(Fn,) -
L

For p € Rand A,y >0, let rg > 0 be such that sup,- f(r) = f(rg) with

f(r)=—~yr+8""In (1 + e cosh (ﬁm)) .

Theorem (Cooper pair condensate density)

Outside any critical point, the Cooper pair condensate density equals

L—oo

lim {ﬁw(“ (c;;co)} =rs < max{0,1/4}

with

o =

1 .
daxt = k4 8-k,
\/| o ; T A e
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Existence of a Superconducting Phase (B-Pedra, 2010)

L
6

Figure: On the left, we have three illustrations of the Cooper pair condensate
density rg as a function of the inverse temperature 8 for A = 0 (blue line),
A =0.45 (red line) and A = 0.575 (green line).

On the right, the Cooper pair condensate density 13 is given as a function of A
and S.

In all figures, 4 =1 and v = 2.6.
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Approximating Hamiltonians

H(e) = Z (2Anc e,y — pu (et + nxy) = (caxras,, + Caxiaxt))
xEA,
F(c) = *’Y|C‘2 + ngr;<> {ﬁ In Trace}-AL (e*ﬁHL(C))}

2
for ¢ € C. Heuristically, v |Ar||c|* + Hy (¢) —H, =~ ’co — VAL c‘ > 0.
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Approximating Hamiltonians

Hi(c) = D (2Aneing — p(ner + mey) — v (caxran, + Caiat))
xXENL
F(c) = —~lcl®>+ I|m { In Tracer, (efﬁHL(C))}

2
for ¢ € C. Heuristically, v |Ar||c|* + Hy (¢) —H, =~ ’co — VAL c‘ > 0.
@ Pressure in the thermodynamic limit (cf. Approx. Hamilt. Method):

lim In Trace e PHL) —sup F(c) =B In2+ pu +sup f(r
Jim g Tracer, () = supF ()= 5 wtsup flr)
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lim In Trace e PH) —sup F(c) = B In2+ pu+sup F(r
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@ Gibbs state in the thermodynamic limit (B-Pedra, 2010): The Gibbs state w()
(weak™) converges to a convex combination of the limit of the Gibbs state Wt
associated with H; (), where @ = rge’?, 6 € [0,2) and sup ¢ F (c) = F ().

Recall that the Cooper pair condensate density equals

. 1 2 .
lim {4 —w® (e } =r3 =10 with ¢ E ax. ax
PRabivg { |AL‘ ( 0 0) B | ‘ 0= \/V\T ax,

XENL
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Dynamical Problem in the Thermodynamic Limit

Finite-volume dynamics (Heisenberg picture of QM).
T (A) = exp (it1) (A) = ™ML Ae™ ™ A€ B(Fa,), LeNg, teR.
The generator is the linear operator d, defined on B(F,) by
6. (A) = i[H, Al =i(HA—AH,) , A€B(Fr,).
Infinite-volume dynamics (L — o).

@ No long-range part (v = 0): the (strong) limit L — oo of {r{"”},cr exist as a
Co-group {7t }tcr of x-automorphisms of the CAR C*-algebra of the infinite lattice.

@ With long-range part (v > 0): One may approximate {Tt(L)}teR by
b (A) = D pe =) - Ac B(Fp,), tER.

A natural choice for ¢ € C would be a solution d to sup.c¢ F (c) = F (9), but
what about if the solution is not unique ?
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@ No long-range part (7 = 0): the (strong) limit L — oo of {Tt(L)}te]R exist as a
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@ With long-range part (v > 0):

Dynamical Problem

As a matter of fact, the finite-volume dynamics {Tt(L)}teR does not converge within the
CAR C*-algebra of the infinite lattice for v > 0, even if 9 = 0 would be the unique
solution to the variational problem!
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Self-Consistency Equations

@ One-site Fermion Fock space: Figy = \ CO* {14 = ¢*,
@ A state p : B(Fyoy) — C is a positive normalized linear functional.

@ For any continuous family w = (w):cr of states acting on B (F(oy) and s, t € R,
t t te_1 ¥ »
Trs = “exp (/ 66"“du> " =1, t Z/ dt; - / dtxdy * o--- 08"
s keN s s
where, for any state p acting on B (Fjo}) and ¢, = p(ao,1a0,,),
3 (A) = i[Ho(c,), Al , A€ B(Foy)-

Theorem (Self-consistency equations)

For any fixed initial (even) state p on B (F(o}) at t =0, there is a unique family
(w@(t; p))ter of on-site states acting on B (Fyo}) such that

w(t; p) = pOTz)(';p) 5 teR.
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Infinite-Volume Dynamics of Product States

@ Recall that ) )
T (A) = ™ pe L A B(Fa,), teR.

@ For any continuous family w = (wt):cr of states acting on B (F(oy) and s, t € R,
t t te_1 o o
= “exp (/ 6f“du> "= g +Z/ dt1~~~/ dt8°% 0. 050

s keN s s

(can be defined for L = o0) where, for any state p and ¢, = p(ao,+40,,),

6f = i[Hu(co), -1= D iHo(c,), -]

xeN,

Theorem (Infinite-volume dynamics of product states)

For any even state p on B (]-"{0}) and t € R, in the weak*-topology,

. L w(:p) -
Jim_(@n,p) 0 ) = (@zip) oty Zpi.  PS. pilsry) = @(t:p).
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Dynamics of Cooper-Field Densities

In the thermodynamic limit L — oo, (®a,p) © 71 converges to pr = (®4p) 0 T,_f%(';p)

Lemma (Electron and Cooper-field densities)

Fix any even state p on B (f{o}). Then the electron density is constant:

d(p) = p(no,+ + no,y) = pr=o (no,+ + no,y) = pr (no,+ + no,y) € [0,2],

while, for any t € R,

pe (a0,420,1) = |p (a0,020.1) | € OH00)  with v (p) = 2(u— A) + (1 —d(p)) -
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Dynamics of Cooper-Field Densities

(L)

In the thermodynamic limit L — oo, (®a,p) o ¢ ’ converges to p: = (®z4p) 0 Tf(';p).

Lemma (Electron and Cooper-field densities)

Fix any even state p on B (.F{o}). Then the electron density is constant:
d(p) = p(no,s + no,.) = pe=o (no,+ + no,1) = pt (no,+ + no,,) € [0,2],

while, for any t € R,

pe (a0,420,1) = |p (a0,020.1) | € OH00)  with v (p) = 2(u— A) + (1 —d(p)) -

Define the 3D vector (Q1(t), Q2(t), Q23(t)) by pt (a0,180,1+) = Q1(t) + iQ2(t) and
Q3 (t) =2(u—A)+~v(1—p:(no,r + no,y)). Then, for any time t € R,

O (1) = - () (1) ,
Qo (t) = Q3 (t) () ,
Qs (t) =0,

= time evolution of the angular momentum of a symmetric rotor in classical mechanics.
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From Quantum to Classical Mechanics

@ In the thermodynamic limit, (®a, p) o ") converges to p; = (®44p) o Tﬁ(';p)

@ The 3D vector (Ql(t), Qz(t),ﬂ3(t)) defined by Pt (ao,¢ao,T) = Ql(t) + in(t) and
Q3 (t) =2(p—A)+~v(1 = pe(no,+ + no,;)) describes the time evolution of the
angular momentum of a symmetric rotor in classical mechanics.
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I

Not an accident: One can define a Poisson bracket on the state space and derive
Liouville’s equation.
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Q3 (t) =2(p—A)+~v(1 = pe(no,+ + no,;)) describes the time evolution of the
angular momentum of a symmetric rotor in classical mechanics.

I

Not an accident: One can define a Poisson bracket on the state space and derive
Liouville’s equation.

I

Macroscopic long-range dynamics are, in general, equivalent to an intricate
combinations of classical and quantum short-range dynamics.
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Our contribution with de Siqueira Pedra (2019)

In a series of papers we mathematically study the macroscopic long-range, or mean-field,
dynamics of lattice-fermion or quantum-spin systems. Results beyond previous ones:

@ The short-range part Hshort—range Of the corresponding Hamiltonian
H= Hshort—range + Hlong—range

is very general since only a sufficiently strong polynomial decay of its interactions
and a translation invariance are necessary.

@ The long-range part Hiong_range is also very general, being an infinite sum (over n)
of mean-field terms of order n € N constructed from translation-invariant
interactions. Even for permutation-invariant systems, the class of long-range
interactions we are able to handle is much larger than what was previously studied.

@ The initial state is only required to be periodic. The set of all such initial states is
(weak™) dense within the set of all even states, the physically relevant ones.
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From Product to Permutation-Invariant Initial States

@ Any permutation-invariant state can be written (or approximated to be more
precise) as a convex combination of product states.

@ If pM ... p are n € N product states and u1, ..., u, € [0, 1] such that
u1 + -+ + up, =1, then, in the weak™ topology,

(5p9)
I|m <Zujp )ort Zujp orto’p )Zpt,

where, by a slight abuse of notation, w(-;p) = (" plB(F0p):

@ For instance, for any t € R,

n

(pV)+6
pe (a0, 20,1) = Z uj|p¥ (a0,ya0,1) |e’ i(evt o)

j=1
. R ()
with 6 ) = arg p"’ (a0, 20,1) and

() = 2(u =N +7 (107 (r0 + m,))

= The Cooper pair condensate density is not anymore necessarly constant.
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Long-Range Dynamics for Periodic Initial States

@ Fix 7' e N? and let E; be the weak®-compact convex set of Z—periodic states on the
CAR C*-algebra of the infinite lattice Z°.

@ Let £(Ej) be the (non-empty) set of extreme point of Ej, by the Krein-Milman
theorem. For any p € Ej, there is a unique probability measure j1, on E; such that
b EE) =1 and o= [ pau(p) |
£(Ep)
by the Choquet theorem.
@ For any p € £(Ep), there is a unique family (w(t; p)):cr of states such that
w(t;p)=po T;:T(,)(';p) , teR,
by ergodicity of extreme states.
@ For any p € E, in the weak™-topology,
. L A A -
im pord = [ @™ (t:p) du, (p) = pr,
— 00 &

by using the theory of direct integrals and Lieb-Robinson bounds.
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