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Goal of Talk 
Modest:  
Ø  Solve Kohn-Sham equations using  
     spectral renormalization method; 
 
Ø  Use time-dependent spectral renormalization to 
     simulate time-dependent DFT. 
 
Ambitious:  
Use the machinery developed above to study  
 
Ø  Many-body (strongly interacting) Anderson localization; 
 
Ø  PT symmetric DFT or DFT with complex potentials. 

Ø  Topological physics in the presence of strong interaction. 
 



Spectral renormalization method 



A toy model: Gross-Pitaevskii equation 
 

Models Bose-Einstein condensation at zero temperature 
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Time dependent spectral renormalization 

Ø Bridge between theory and numerics 
Ø  The same method is used to solve linear/nonlinear eigenvalues problems 
     as well as time dependent problems, 
Ø Used to detect singularities for ODEs and PDEs, 
Ø Allows inclusion of physics on demand in the form of conservation laws. 
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Semigroup operator: 
 

Time dependent renormalization: 
 

Duhamel’s principle: 
 

Renormalized Picard iteration: 
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Evaluate the time integral 
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Snapshot of iteration 





Dissipative PDE: Burgers’ equation 
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Burgers’ Renormalization 
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Detecting singularities for ODEs 
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Anderson localization of strongly interacting systems? 
  

Anderson localization of non interacting systems  

  

Consider the linear Schrödinger equation governing the  
motion of an electron in a periodic crystal  
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Floquet-Bloch theory and band-gap structure 

The spectrum of 
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is real, bounded from below, tends to positive infinity,  
is absolutely continuous, and consists of the union of closed intervals  
called spectral bands separated by spectral gaps. 
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A wave propagates freely through the medium 
 Ballistic Transport/Diffraction 



  

Transport in random lattices 
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−∂x
2φ + [V (x) +Vω (x)]φ = Eφ
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V (x) =V (x + a)

is a collection of random potentials chosen 
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{Vω}ω∈Ω
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Ω with probability measure  
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P(ω)

The transmission probability of a propagating wave through a disordered medium decays 
when the strength of the disorder potential reaches a critical value and leads to Anderson localization.

-localization length   

€ 

ξℓ

Classical behavior 
Random impurities in the crystalline structure 
scatter the electron and give rise to a random  
walk motion of the electron as if they were  
classical billiard balls. This is the mechanism  
behind diffusion and Ohm’s law. 

Quantum behavior 

The wave is coherently scattered by defects, 
Constructive interference of multiple scatterings 

from the set 



Experimental difficulties? 

Anderson localization in disordered atomic lattices  
is difficult to observed 

Reasons: Anderson localization requires 
  

Ø  a disordered potential which is time independent; 

Ø  No many body interactions 



units of P=inverse area 
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Ratio between the average kinetic and  
interaction energies 



Pikovsky,  Shepelyansky 2log x< >

red slop=0.344, disorder strength=2 
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β =1
blue slop=0.306, disorder strength=4 

full straight line slop=0.4 



Anderson localization for NLS equation 

Mathematical formulation: 
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Vw(x) is a random potential

Assume that the initial condition u(x, 0) is well localized
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Random and dynamic optimal transport approach? 



PT symmetric DFT?  

Hamiltonian H:  

Motivation: quantum 
mechanics  

Physical observables Self-adjoint (Hermitian) linear  
operators in Hilbert space 

Real energy levels, unitary evolution 

     What about non Hermitian ``Hamiltonians”,  
            do they describe physical reality? 
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Introduction to PT symmetry 

Parity operator:  
Pf(x) = f(�x)

Time reversal operator: 
Tf(x) = f

⇤(x)

PT operator: 
PTf(x) = f
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Definition of PT symmetric operators: Let A be a linear operator. We say that 
A is PT symmetric if  
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                       Definition of unbroken PT symmetry  
Let A be a linear operator. We say that A has unbroken PT symmetry  
if A and PT share the same eigenfunctions.  
 

Theorem: If a PT symmetric linear operator A has an  
                   unbroken PT symmetry, then its spectrum is real. 

Proof: PTu = ↵u Au = �u
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Can PT symmetric Hamiltonians (with exact PT symmetry) be considered as an 
Extension of quantum mechanics? 
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It gives positive definite norm and 
Unitary evolution 



 PT symmetry in Optics 

Normalized 
Paraxial Wave 

Equation of Diffraction 
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Before phase transition 

Bandstucture of a PT optical lattice* 
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Observation of  
PT-breaking   
in an active coupler 

Experimental 
 realization of PT-lattice 

Observation of  
PT-breaking   
in a passive coupler 

Parity–time synthetic photonic lattices,  
A. Regensburger, C. Bersch, 
 A. Miri, G. Onishchukov,  
D. N. Christodoulides , and U. Peschel  
Nature, 488, 167–171 (09 August 2012) 











Topological DFT? 
 



Topological DFT? 


