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Entropic Optimal Transport
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Classical vs Multi-Marginal Optimal Transport

Let us consider two probability measures p, v € P(X) (with X € RY) and a
continuous function ¢ : X x X — R then the Monge-Kantorovich formulation
(MK) reads as

inf{/XXX c(x, y)B(x, y)dxdy| P e n(u,y)}

where M(p,v) = {P e P(X x X)| mP=p myP=uv}
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Classical vs Multi-Marginal Optimal Transport

Let us consider two probability measures p, v € P(X) (with X € RY) and a
continuous function ¢ : X x X — R then the Monge-Kantorovich formulation
(MK) reads as

inf{/XXX c(x, y)B(x, y)dxdy| P e n(u,y)}

where M(p,v) = {P e P(X x X)| mP=p myP=uv}
And its extension to the multi-marginal framework

inf {/ c(xt,  ,xn)P(xa, -+, xn)dx | P e Nny(pa, - - =MN)} (1)
where My(u1, -+, un) denotes the set of couplings P(xy, - -+, xy) having y; as
marginals.

Remark (Notation): Feel free to take P(xy, -, xy) = |V|?
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Some applications

@ The Wasserstein barycenter problem can be rewritten as a MMOT problem
(see (Agueh and G. Carlier 2011)): statistics, machine learning, image
processing;
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Some applications

@ The Wasserstein barycenter problem can be rewritten as a MMOT problem
(see (Agueh and G. Carlier 2011)): statistics, machine learning, image
processing;

@ Matching for teams problem (see (Guillaume Carlier and Ekeland 2010)):
economics. The transport plan P matches individuals from each team
minimizing a given cost;

@ In Density Functional Theory: the electron-electron repulsion (see
(Buttazzo, De Pascale, and Paola Gori-Giorgi 2012; C. Cotar,

G. Friesecke, and C. Kliippelberg 2013)). The plan P(xq,--- ,xy) returns
the probability of finding electrons at position xq,- - , xp;

@ Incompressible Euler Equations (Yann Brenier 1989) : P(w) gives “the mass
of fluid” which follows a path w. See also (Jean-David Benamou,
Guillaume Carlier, and Luca Nenna 2018).

@ Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and
L. Nenna 2018);

@ etc...
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The three universes of Numerical Optimal Transportation

Let’s consider the two marginal case then we can have the three following
numerical approach to Optimal Transport

Luca Nenna (LMO) MMOT 31/01/2019 5 /24



The three universes of Numerical Optimal Transportation

Let’s consider the two marginal case then we can have the three following
numerical approach to Optimal Transport
o Discrete-2-Discrete: the marginals p have an atomic form, i.e.
p(x) =>; pidy (and v as well). Remarks:
e The problem becomes a standard linear programming problem.
e Works for any kind of cost function.
o Can be easily generalized to the multi-marginal case.
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The three universes of Numerical Optimal Transportation

Let’s consider the two marginal case then we can have the three following
numerical approach to Optimal Transport
@ Discrete-2-Discrete: the marginals p have an atomic form, i.e.
p(x) = >, pidy (and v as well). Remarks:
e The problem becomes a standard linear programming problem.
e Works for any kind of cost function.
o Can be easily generalized to the multi-marginal case.
o Continous-2-Discrete: p = fidx and v(y) = >, vid,,. Remarks:

o The semi-discrete approach (Mérigot 2011).
o Used for generalized euler equations (kind of mmot problem) a la Brenier
(Mérigot and Mirebeau 2016).

@ Continous-2-Continous y = fidx (and v too). Remarks

e The Benamou-Brenier formulation fo Optimal Transport! (J.-D. Benamou
and Y. Brenier 2000)
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The discretized Monge-Kantorovich problem

Let's take ¢;j = c(x;,y;) € RM*M (M are the gridpoints used to discretize X)
then the discretized (MK), reads as

mln{Zc,J U|ZPU—NIV’ ZPU—VJVJ} (2)

ij=1

and the dual problem

M M
max{) i+ Y _ v | ¢+ < ¢z V(i,j) € {1, , M}*}. (3)

i=1 j=1
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The discretized Monge-Kantorovich problem

Let's take ¢;j = c(x;,y;) € RM*M (M are the gridpoints used to discretize X)
then the discretized (MK), reads as

mln{Zc,J U|ZPU—NIV’ ZPU—VJVJ} (2)

ij=1

and the dual problem

M M
max{) i+ Y _ v | ¢+ < ¢z V(i,j) € {1, , M}*}. (3)

i=1 j=1

@ The primal has M? unknowns and M x 2 linear constraints.
@ The dual has M x 2 unknowns, but M2 constraints.
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The importance of being sparse

A multi-scale approach to reduce M (J.-D. Benamou, G. Carlier, and
L. Nenna 2016)

2 1 o 1 2

Figure: Support of the optimal P for 2 marginals and the Coulomb cost
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The discretized Monge-Kantorovich problem

Let's take cj, ... jy = c(Xjp,**+ ,X;y) € @NRM (M are the gridpoints used to
discretize RY) then the discretized (MKy), reads as

M
min{ > G Py | Y P ey = M} (4)
U1, in)=1 Jio ki

and the dual problem

N
max{zz J,:uj, ‘ Z UJI'Z < Claynin v(.jl" o ’jN) € {1’ T ’M}N}' (5)
k=1

i=1 ji=
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The discretized Monge-Kantorovich problem

Let's take cj, ... jy = c(Xjp,**+ ,X;y) € @NRM (M are the gridpoints used to
discretize RY) then the discretized (MKy), reads as

M
min{ > G Py | Y P ey = M} (4)
U1, in)=1 Jio ki

and the dual problem

N
max{zz _],ILLJ, ZUJI'Z < Claynin V(j1,"' ’jN) € {1"" ’M}N}' (5)
k=1

i=1 ji=

Drawbacks

@ The primal has M" unknowns and M x N linear constraints.
@ The dual has M x N unknowns, but M"N constraints.
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The entropic OT problem

We present a numerical method to solve the regularized ((Jean-David Benamou,
Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015;

M. Cuturi 2013; Galichon and Salanié 2009)) optimal transport problem (let
us consider, for simplicity, 2 marginals)

]P)..
) eZ,lP’,--Iog( J ) P>0
mind_ciPy+q 7T N (6)

ij +00 otherwise

where C is the matrix associated to the cost, P is the discrete transport plan and
C is the intersection between C1 = {P| >, Pj = pi;} and Co = {P | >, P = v}

Remark: Think at € as the temperature, then entropic OT is just OT at positive
temperature.
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The problem (6) can be re-written as

PmEiQH(P\@) (7)

where H(P|P) = > i P < log _U> (= KL(P|P) aka the Kullback-Leibler

U

i

Sii

divergence ) and Pj = e € 1.
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The problem (6) can be re-written as

PmeigH(P\@) (7)

where H(P|P) = 3. P;; Iog_—'j = KL(P|P) aka the Kullback-Leibler
=y y

U

i

_Si
divergence ) and Pjj = e € p;v;.
Remarks:
@ Unique and semi-explicit solution (we will see it in 2/3 minutes!)

@ Problem (7) dates back to Schradinger, see (Luca Nenna 2016) (or better
give a look at Christian Léonard’s web page).
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The problem (6) can be re-written as

@2%(1@\@) (7)

where H(P|P) = 3. P log -7 ) (= KL(P|P) aka the Kullback-Leibler
=y y

U

i

_Si
divergence ) and Pjj = e € p;v;.
Remarks:
@ Unique and semi-explicit solution (we will see it in 2/3 minutes!)

@ Problem (7) dates back to Schradinger, see (Luca Nenna 2016) (or better
give a look at Christian Léonard’s web page).

o H — MK as e — 0. (see (Guillaume Carlier, Duval, Gabriel Peyré, and
Bernhard Schmitzer 2017; Léonard 2012)).
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The problem (6) can be re-written as

@2%(1@\@) (7)

i

where H(P|P) = > i P < log _'J) (= KL(P|P) aka the Kullback-Leibler
Cij /
divergence ) and P = e € pu;.
Remarks:
@ Unique and semi-explicit solution (we will see it in 2/3 minutes!)
@ Problem (7) dates back to Schradinger, see (Luca Nenna 2016) (or better
give a look at Christian Léonard’s web page).
o H — MK as € — 0. (see (Guillaume Carlier, Duval, Gabriel Peyré, and
Bernhard Schmitzer 2017; Léonard 2012)).

@ The dual problem is an unconstrained optimization problem.
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The “bridge” between quadratic Monge-Kantorovich and

Schrodinger

From deterministic to stochastic matching (Léonard 2012)

./’//X /' /
\
e=0

Figure: G. Peyre's twitter account
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The “bridge” between quadratic Monge-Kantorovich and

Schrodinger

From deterministic to stochastic matching (Léonard 2012)

/

= v
¢ N —e

e =.05

Figure: G. Peyre's twitter account
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The “bridge” between quadratic Monge-Kantorovich and

Schrodinger

From deterministic to stochastic matching (Léonard 2012)

e =0.2

Figure: G. Peyre's twitter account
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The “bridge” between quadratic Monge-Kantorovich and

Schrodinger

From deterministic to stochastic matching (Léonard 2012)

e=1

Figure: G. Peyre's twitter account
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The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan P* has the form P}, = a,*bf[?’,-j. Moreover a* and b* can be

g
uniquely determined (up to a multiplicative constant) as follows

pr = Y g M
DT 1 D DY -
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g
uniquely determined (up to a multiplicative constant) as follows

b* — Vj = a’f == Mli =
a3 by
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The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan P* has the form P}, = a,*bf[?’,-j. Moreover a* and b* can be

g
uniquely determined (up to a multiplicative constant) as follows

pr— M e Hi
o 1
LY arPy > bl

The Sinkhorn algorithm (aka IPFP)

prtl — Vj ntl _ i
J

> afPy; Zj bjﬁlﬁ)ij

Theorem ((ibid.))

a” and b" converge to a* and b*
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The Sinkhorn algorithm

Theorem ((Franklin and Lorenz 1989))

The optimal plan P* has the form P}, = a,*bf[?’,-j. Moreover a* and b* can be

g
uniquely determined (up to a multiplicative constant) as follows

pr— M e Hi
o 1
LY arPy > bl

The Sinkhorn algorithm (aka IPFP)

prtl — Vj ntl _ i
J

> afPy; Zj bjﬁlﬁ)ij

Theorem ((ibid.))

a” and b" converge to a* and b*

Remark:¢; = elog(a;) and v; = elog(b;) are the (regularized) Kantorovich
potentials.
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@ In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using
the Hilbert metric.
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@ In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using
the Hilbert metric.

@ The entropic regularization spreads the support and this helps to stabilize: it
defines a strongly convex program with a unique solution.
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@ In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using
the Hilbert metric.
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defines a strongly convex program with a unique solution.

@ The solution can be obtained through elementary operations (trivially
parallelizable).
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@ In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using
the Hilbert metric.

@ The entropic regularization spreads the support and this helps to stabilize: it
defines a strongly convex program with a unique solution.

@ The solution can be obtained through elementary operations (trivially
parallelizable).

@ The regularized solution P¢ converges to the solution P° of MK pb. with
minimal entropy as ¢ — 0 (in (Cominetti and San Martin 1994) the
authors proved that the convergence is exponential).
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@ In (Franklin and Lorenz 1989) proved the convergence of Sinkhorn by using
the Hilbert metric.

@ The entropic regularization spreads the support and this helps to stabilize: it
defines a strongly convex program with a unique solution.

@ The solution can be obtained through elementary operations (trivially
parallelizable).

@ The regularized solution P¢ converges to the solution P° of MK pb. with
minimal entropy as ¢ — 0 (in (Cominetti and San Martin 1994) the
authors proved that the convergence is exponential).

@ The complexity depends on the cost function: with Euler's cost
O((N — 1)M?37)__still exponential in N for the Coulomb cost :( .
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How the regularization works: from spread to deterministic

plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as e — 0
(N =512), we have

Figure: Marginals p and v

Figure: e = 60/N
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How the regularization works: from spread to deterministic

plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as e — 0
(N =512), we have

Figure: Marginals p and v

Figure: e = 40/N
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How the regularization works: from spread to deterministic

plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as e — 0
(N =512), we have

Figure: Marginals p and v
Figure: e = 20/N
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How the regularization works: from spread to deterministic

plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as e — 0
(N =512), we have

Figure: Marginals p and v
Figure: e = 10/N
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How the regularization works: from spread to deterministic

plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as e — 0
(N =512), we have

Figure: Marginals p and v
Figure: e = 6/N
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How the regularization works: from spread to deterministic

plan (quadratic cost)

Take the quadratic cost and solve the regularized problem. Then as e — 0
(N =512), we have

Figure: Marginals p and v
Figure: e = 4/N
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The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

min 74 (IP|FF) (8)

_ P
where H(P[P) =37, ; |, Pi(log P'Jk — 1) is the relative entropy, and C = ﬂ?zl Ci
Js ik

(ile. Co={P | Zj,kpijk = i })-
The optimal plan P* becomes Py, = a}‘bfc,fﬂ”,-jk ar, by and ¢ can be

determined by the marginal constraints.

2
b* — N
J * XTD..
ik ai;kPUk
* kTP ..
Zij ay by Piji
1
i
a? - Z b*l *]TD..
Jjk Of € ijk
Luca Nenna (LMO) MMOT
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The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

min 74 (IP|FF) (8)

_ P
where H(P[P) =37, ; |, Pi(log P'Jk — 1) is the relative entropy, and C = ﬂ?zl Ci
Js ik

(ie. CL={P | X P =pi})

H * * ok ok ~XTD.. * * *
The optimal plan P* becomes Py, = arbrc; Py | a7, bf and ¢ can be

determined by the marginal constraints.

2 =

b = — =
D ik ai;kPUk =

= 7@( = =
>y ar b By N

- K =

i * ~KTD ..
ij bj i P
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The extension to the Multi-Marginal problem

The entropic multi-marginal problem becomes

QWG'QH(MP) (8)

_ Piix
where H(P|P) = 37, ; , Pju(log =* 5 1) is the relative entropy, and C =, C;
ijk

(ie. Co ={P | Zj,kpijk = 11} })-

H * * ok ok ~XTD.. * * *
The optimal plan P* becomes Py, = arbrc; Py | a7, bf and ¢ can be

determined by the marginal constraints.

D ai;kPUk = >k 3?3C£Pijk
o = K = CI'(H'I M —

> 2 b B N >, ,"b"+ P
v >k by i P K N b"“ Py
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Sinkhornizing the world!!

Wasserstein Barycenter (Jean-David Benamou, Guillaume Carlier,

Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);

Matching for teams (Luca Nenna 2016);

Optimal transport with capacity constraint (Jean-David Benamou,
Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);
Partial Optimal Transport (Jean-David Benamou, Guillaume Carlier,
Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015; Chizat, G. Peyré,
B. Schmitzer, and Vialard 2016);

Multi-Marginal Optimal Transport (Luca Nenna 2016; J.-D. Benamou,

G. Carlier, and L. Nenna 2016; Jean-David Benamou, Guillaume Carlier,
and Luca Nenna 2018; Jean-David Benamou, Guillaume Carlier,

Marco Cuturi, Luca Nenna, and Gabriel Peyré 2015);

Wasserstein Gradient Flows (JKO) (Gabriel Peyré 2015);

Unbalanced Optimal Transport (Chizat, G. Peyré, B. Schmitzer, and Vialard

2016);

Cournot-Nash equilibria (Blanchet, Guillaume Carlier, and Luca Nenna
2017)

Mean Field Games (J.-D. Benamou, G. Carlier, Di Marino, and L. Nenna
2018);

And more is coming...
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MMOT with Coulomb cost
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The Levy-Lieb functional

Consider the Levy-Lieb functional F;;[p]

Fiilp] = “rp_'[;) eTIV] 4 Vee[V] (9)
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The Levy-Lieb functional

Consider the Levy-Lieb functional F;;[p]
Fii[p] = min eT[V] + Ve [V] (9)
V—p

Remark (super rough'”) Let's take P = |W|?, then

VP2 _— :
VY2 = |[VVP]? = L }P’| and the kinetic energy can be re-written as

2
T[\U] = / 1|VP| dX1~'~dXN.
Rrav 4

P
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The Levy-Lieb functional

Consider the Levy-Lieb functional F;;[p]

Fiilp] = “rp_lg) eTIV] 4 Vee[V] (9)

Remark (super rough'”) Let's take P = |W|?, then

VP2 L .
|VV|2 = |[VVP]? = ‘ | and the kinetic energy can be re-written as

1|VP?
TV] = - dxy -+ - dxp.
[ ] /RdN4 P o v

Then we have (Bindini and De Pascale 2017; Codina Cotar, Gero Friesecke,
and Claudia Kliippelberg 2018; Lewin 2018)...

Semiclassical limit
lime_o0 Fri[p] = MK[p]
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The entropic inequality

One can prove the following inequality

The Entropic Inequality (Seidl, Di Marino, Gerolin, L. Nenna,

Giesbertz, and P. Gori-Giorgi 2017)

. 1|VP]? 1 . / 1
- P> CPlog(IP —— P =H(PP)
]g]_l}l’,l) /RdN 64 P +§ |X,' = XJ| - Igl—I)r:J RdN € og( )+§ |X, - XJ| ( |
(10)
IVHDI2

where f
mformatlon) and the entropic functional #(PP|P) corresponds to minimize the
1 1

Kullback-Leibler distance between P and P = e~ 2= Ti-51 < |

> C [ Plog(P) is the log-sobolev inequality (or Fisher
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The limit as e — 0

Take the Coulomb cost and solve the regularized problem. Then as ¢ — 0
(N =512), we have

Figure: Marginals p (and p)

Figure: e =10
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The limit as e — 0

Take the Coulomb cost and solve the regularized problem. Then as ¢ — 0
(N =512), we have

Figure: Marginals p (and p)

Figure: e =5
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The limit as e — 0

Take the Coulomb cost and solve the regularized problem. Then as ¢ — 0
(N =512), we have

Figure: Marginals p (and p)

Figure: e =1
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The limit as e — 0

Take the Coulomb cost and solve the regularized problem. Then as ¢ — 0
(N =512), we have

Figure: Marginals p (and p)

Figure: e =0.1
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The limit as e — 0

Take the Coulomb cost and solve the regularized problem. Then as ¢ — 0
(N =512), we have

Figure: Marginals p (and p)

Figure: e = 0.01
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The limit as e — 0

Take the Coulomb cost and solve the regularized problem. Then as ¢ — 0
(N =512), we have

Figure: Marginals p (and p)

Figure: € = 0.002
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Some simulations for N = 3,4,5 in 1D

We take the density p(x) = 7&(1 + cos(Zx)) and...

Figure: Support of the projected plan m12(P)
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SGS vs Entropic: the uniform density on the ball (N = 3)

0 0.2 04 06 08 10 0.2 0.4 0.6 0.8 1

Figure: SGS maps (left) MKsgs = 2.32682 and entropic plan (right) MK, = 2.31721
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: a =0
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: a = 0.1429
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: a = 0.2857
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: a = 0.4286
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: « = 0.5714
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: a = 0.7143
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: a = 0.8571
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The transition from spread to deterministic plans for N = 3

and d =3

Take pa(r) = apri(r) + (1 — &) pexp(r) and « € [0, 1] then...

Figure: a =1
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If you are interested in OT, Entropic regularization and more:
o My web page (just google me) or contact me luca.nenna@math.u-psud.fr;
o Mokaplan team https://team.inria.fr/mokaplan/;

Some references:

Benamou, J.-D., G. Carlier, & L. Nenna (2016). “A Numerical Method to solve
Multi-Marginal Optimal Transport Problems with Coulomb Cost”. In: Splitting
Methods in Communication, Imaging, Science, and Engineering. Springer
International Publishing, pp. 577-601.

Benamou, Jean-David, Guillaume Carlier, Marco Cuturi, Luca Nenna, & Gabriel Peyré
(2015). “Iterative Bregman projections for regularized transportation problems”. In:
SIAM J. Sci. Comput. 37.2, A1111-A1138. ISSN: 1064-8275. DOI:
10.1137/141000439. URL: http://dx.doi.org/10.1137/141000439.

Nenna, Luca (2016). “Numerical methods for multi-marginal optimal transportation”.
PhD thesis. PSL Research University.

Peyré, Gabriel & Marco Cuturi (2017). Computational optimal transport. Tech. rep.
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