## Temperature and the strong-interaction limit of density functional theory



Aurora Pribram-Jones University of California, Merced www.hypugaea.com



Optimal Transport Methods in Density Functional Theory Banff International Research Station January 28, 2019

## Warm Dense Matter



Planetary cores



Fusion capsules

R.A. Valenza et al., Phys. Rev. B 93, 115135 (2016); Promotional materials, SLAC, Stanford University (2015); LBL website.

### **Flagship Facilities**



LLNL, SNL, LBL websites



Basic Research Needs for HEDLP: Report of the Workshop on HEDLP Research, DOE (2009)



#### **Probing Planetary Conditions**



R.F. Smith et al., Nature 511 (2014) 330-333

### Inaccurate Transport Properties

**Challenge:** discrepancy between theoretical and measured electronic heat conductivities.



## Heating Things Up

Grand canonical potential operator

$$\hat{\Omega} = \hat{H} - \tau \hat{S} - \mu \hat{N}$$

**Electronic Hamiltonian** 

$$\hat{H} = \hat{T} + \hat{V}_{\rm ee} + \hat{V}$$

Mermin, N.D. *Phys. Rev. A*, 137: 1441 (1965). Pittalis, S. et al. *Phys. Rev. Lett.*, 107: 163001 (2011).

## **Entropy and Statistics**

Entropy operator:

$$\hat{S} = -k_B \ln \hat{\Gamma}$$

Statistical operator:

$$\hat{\Gamma} = \sum_{N,i} w_{N,i} |\Psi_{N,i}\rangle \langle \Psi_{N,i} |$$

**Observables:** 

$$O[\hat{\Gamma}] = \text{Tr } \{\hat{\Gamma}\hat{O}\} = \sum_{N} \sum_{i} w_{N,i} \langle \Psi_{N,i} | \hat{O} | \Psi_{N,i} \rangle$$

Pittalis, S. et al. Phys. Rev. Lett., 107: 163001 (2011).

APJ et al., "Thermal DFT in Context," Frontiers and Challenges in Warm Dense Matter, Springer Publishing (2014), p 25-60.

### Finite-Temperature Kohn-Sham

Map interacting system to non-interacting system with same density.

$$\left[-\frac{1}{2}\nabla^2 + v_{\rm s}^{\tau}(\mathbf{r})\right]\phi_i^{\tau}(\mathbf{r}) = \epsilon_i^{\tau}\phi_i^{\tau}(\mathbf{r})$$

$$n^{\tau}(\mathbf{r}) = \sum_{i} f_{i}^{\tau} |\phi_{i}(\mathbf{r})|^{2}$$

$$f_i^{\tau} = \left(1 + e^{(\epsilon_i^{\tau} - \mu)/\tau}\right)^{-1}$$

Kohn and Sham, 1965.

## Free Energies: Helmholtz and XC

Temperature-dependent free energy:

$$\begin{aligned} A^{\tau}[n] &= T[n] + V_{\text{ee}}[n] + V[n] - \tau S[n] \\ &= T_{\text{s}}[n] + U[n] + V[n] - \tau S_{\text{s}}[n] + A_{\text{xc}}[n] \end{aligned}$$

Kinetic, potential, entropic exchange-correlation:

$$A_{\mathbf{x}\mathbf{C}}^{\tau}[n] = T_{\mathbf{x}\mathbf{C}}[n] + U_{\mathbf{x}\mathbf{C}}[n] - \tau S_{\mathbf{x}\mathbf{C}}[n]$$

Pittalis, S. et al. Phys. Rev. Lett., 107: 163001 (2011).

APJ et al., "Thermal DFT in Context," Frontiers and Challenges in Warm Dense Matter, Springer Publishing (2014), p 25-60.

## Adiabatic Connection



# Exact Conditions for Thermal DFT

Combine finite-temperature ACF (Pittalis, et al., 2011)

$$A_{\rm C}^{\tau}[n] = \int_0^1 \frac{d\lambda}{\lambda} U_{\rm C}^{\tau,\lambda}[n]$$



with coupling constant-coordinate-temperature scaling (Pittalis, et al., 2011)

$$A_{\rm xc}^{\tau,\lambda}[n] = \lambda^2 A_{\rm xc}^{\tau/\lambda^2}[n_{1/\lambda}]$$

Change of variables yields thermal connection formula:

$$A_{\rm xc}^{\tau}[n] = \frac{\tau}{2} \lim_{\tau'' \to \infty} \int_{\tau}^{\tau''} \frac{d\tau'}{\tau'^2} U_{\rm xc}^{\tau'}[n_{\sqrt{\tau'/\tau}}]$$

APJ and K. Burke, Phys. Rev. B **93**, 205140 (2016)

- Tepid - Warm - Hot

# Adiabatic Connection: Heating



#### $\lambda$ , interaction strength

# Adiabatic Connection: Shifted



### Evidence: Hubbard Dimer





### Evidence: Hubbard Dimer





## The Upside Down with heating



Map interacting system to strictly correlated system with same density.

$$A^{\tau}[n] = U_{SC}[n] + \int d^3r \ v_{\text{ext}}(\vec{r})n(\vec{r}) + K_S^{\tau}[n] + A_{DC}^{\tau}[n]$$

where

$$\begin{split} K_{S}^{\tau}[n] &= T_{S}^{\tau}[n] - \tau S_{S}[n] \\ U_{SC}^{\tau}[n] &= \sum_{i} \mathbf{w}_{i}^{\tau} \langle \Psi_{i}^{\infty} | \hat{V}_{ee} | \Psi_{i}^{\infty} \rangle \\ A_{DC}^{\tau}[n] &= E_{DC}^{\tau}[n] - \tau S_{DC}^{\tau}[n] \\ &= K_{DC}^{\tau}[n] + U_{DC}^{\tau}[n]. \end{split}$$

# Upside-down thermal ACF

Traditional adiabatic connection formula at finite temperature (Pittalis, 2011):

$$A_C^{\tau}[n] = \int_0^1 \frac{d\lambda}{\lambda} U_C^{\tau,\lambda}[n]$$

Upside-down adiabatic connection formula at finite temperature:

$$A_{DC}^{\tau}[n] = \int_0^1 d\mu \ 2\mu \ K_C^{\frac{\tau}{\mu^2},\mu}[n]$$

Different integrand temperature due to quadratic kentropic scaling.

### Exact Conditions for SCE

Can use tied coordinate-temperature-interaction scaling to show:

$$\begin{split} \mathbf{M}_{\mu}^{\frac{\tau}{\mu^{2}}}[n] &= 2\mu \ K_{C}^{\frac{\tau}{\mu^{2}},\mu}[n] \\ &= \frac{2}{\mu^{3}} \ K_{C}^{\mu^{2}\tau,\mu^{3}}[n_{\mu^{2}}] \end{split}$$

Can use scaled expression to examine limits:

As 
$$\mu \to \infty$$
,  
 $\mathbb{M}_{\mu}^{\frac{\tau}{\mu^{2}}}[n] \to 0$   
As  $\mu \to 0$ ,  
 $\mathbb{M}_{\mu}^{\frac{\tau}{\mu^{2}}}[n] \to \text{ZT SC system}$   
www.hypugaea.com

## Connecting SCE to KS ACF

Since we can write the correlation kentropy in terms of the ACF integrand,

$$K_c^{\tau,\mu}[n] = \int_0^{1/\mu^2} W_{\lambda}^{\tau}[n] d\lambda - \frac{1}{\mu^2} W_{1/\mu^2}^{\tau}[n]$$

we can also write the upside-down ACF integrand in terms of original:

$$M^{\tau}_{\mu}[n] = 2\mu \int_{0}^{1/\mu^{2}} W^{\tau}_{\lambda}[n] - W^{\tau}_{1/\mu^{2}}[n] \ d\lambda$$

Now we can use Hubbard adiabatic connection (or any other exact or approximate one) to plot upside-down connection.

## Odd Preliminary Results, check ZT





### Something's off... zoom in



# Future Work & Open Questions

- Numerical demonstrations: asymmetric Hubbard model, various uniform electron gas parametrizations, more exact conditions
- Zero-point oscillations with temperature effects: what is the effect of quadratic temperature scaling, kentropy expansion
- Interpolated approach for WDM? Helpful with WDM ionization processes? Should we interpolate between low-temperature/stronginteraction and high-temperature/weak-interaction regimes? Or another scheme?
- FT KS SCE: SCE as functional for FT KS DFT
  - What is the effect of choice of Hartree definition?
  - Will FT be more or less accurate for intermediate interaction strengths/densities?
  - Will ZTA be more accurate for FT KS SCE than MKS?

# Acknowledgments

#### **Collaborators and Students**

Liam Stanton (SJSU), Brittany Harding (UCM), Zachary Mauri (UCM), Justin Smith (US Census), Kieron Burke (UCI)



#### Funding Sources

- Grant No. DE-NA0003865: Consortium for High Energy Density Science, FAMU/UC Merced/Morehouse College/LLNL
- Grant No. DE-SC0019053: Center for Chemical Computation and Theory, University of California, Merced
- LLNL LDRD 18-ERD-050, Lawrence Fellowship

# Looking for Postdocs



Contact: apj@ucmerced.edu

#### More information:

www.hypugaea.com www.cccat.ucmerced.edu 1. Thermal DFT:

collaborations with national laboratories and academic partners, professional development through CfHEDS

- 2. Ensemble DFT: formal and implementation projects available
- 3. Nonlinear Conductivities of WDM: collaboration with Alfredo Correa and Xavier Andrade (LLNL)

# Looking for Postdocs



Contact: apj@ucmerced.edu

#### More information:

www.hypugaea.com www.cccat.ucmerced.edu 1. Thermal DFT:

collaborations with national laboratories and academic partners, professional development through CfHEDS

- 2. Ensemble DFT: formal and implementation projects available
- 3. Nonlinear Conductivities of WDM: collaboration with Alfredo Correa and Xavier Andrade (LLNL)