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Abstract

We will try to show that closed manifolds of negative curvature do not admit complete special

affine structures whose linear parts are partially hyperbolic in the dynamical sense.

Furthermore, a closed complete special affine manifold is not P-Anosov for some parabolic

group P with index J depending on its linear holonomy. (corrected after the talk)

We will present an attempt to show that closed affine manifolds cannot have partially

hyperbolic linear holonomy (without negative curvature condition). However, the fundamental

group is now hyperbolic by the condition, and so is the universal cover.

Partially a joint work with Kapovich.
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Introduction

Affine manifolds

Let An be a complete affine space. Let Aff(An) denote the group of affine transformations of

An whose elements are of form:

x 7→ Ax + v

for a vector v ∈ Rn and A ∈ GL(n,R).

Let L : Aff(An)→ GL(n,R) denote map sending elements of Aff(An) to its linear part in

GL(n,R).

An affine n-manifold is an n-manifold equipped with an atlas of charts to An with affine
transition maps.

I There is a homomophism ρ′ : π1(M)→ Γ ⊂ Aff(An) called a holonomy homomorphism.
I There is an immersion dev : M̃ → An , called a developing map, so that

dev ◦ γ = ρ
′(γ) ◦ dev for each deck transformation γ ∈ π1(M).

An affine n-manifold is special if L(Γ) ⊂ SL±(n,R).

A complete affine n-manifold is an n-manifold M of form An/Γ. dev is a diffeomorphism if and

only if the affine n-manifold M is complete.
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Introduction

Denote by M̃ the universal cover of M with the covering map pM with the deck transformation

group π1(M).

Let πM : UM → M denote the fibration and π̃M : UM̃ → M̃ the induced fibration.

There is a covering UpM : UM̃ → UM from the unit tangent bundle UM̃ of M̃. The deck

transformation group of UpM is π1(M).

(Affine bundle): For an affine representation ρ′ : π1(M)→ Aff(An), define

An
ρ′ := (UM̃ ×An)/π1(M) with the diagonal action.

(Vector bundle): We define Rn
ρ := (UM̃ × Rn)/π1(M) for ρ = L ◦ ρ′.
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Introduction

Flows lifted to the bundle

φ̂t : UM → UM denote the geodesic flow. and let φt : UM̃ → UM̃ denote the flow lifted from

φ̂t .

There exists a flow Φt , t ∈ R, on Aρ′ acting as the geodesic flow φt on UM and acting trivially

on An lifted.

Also, there is a flow DΦt , t ∈ R, on Rn
ρ taking the linear part of Φt fiberwise acting as the

geodesic flow on UM and acting trivially on Rn lifted.

We have fiber-wise norm ||·||An
ρ′

on An
ρ′ and a norm ||·||Rn

ρ
on Rn

ρ using partition of unity.
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Introduction Main result

Partial hyperbolicity in the bundle sense.

A representation ρ : π1(M)→ GL(n,R) is partially hyperbolic in a bundle sense if the
following hold:

(i) There exist nontrivial C0-subbundles V+,V0, and V− in Rn
ρ invariant under the flow DΦt .

(ii) V+,V0 and V− are independent and their bundle sum equals V.

(iii) For any fiber-wise metric on Rn
ρ over UM, the lifted action of DΦt on V+ (resp. V−) is dilating (resp.

contracting): i.e., there are coefficients A > 0, a > 0, A′ > 0:

1
∣∣∣∣DΦ−t (v)

∣∣∣∣
Rn
ρ,Φ−t (m)

≤ A exp(−at) ||v||Rn
ρ,m

for v ∈ V+(m) as t →∞.

2 ||DΦt (v)||Rn
ρ,Φt (m) ≤ A exp(−at) ||v||Rn

ρ,m
for v ∈ V−(m)) as t →∞.

3 (A dominance property)

||DΦt (w)||Rn
ρ,φt (m)

||DΦt (v)||Rn
ρ,φt (m)

≤ A′ exp(−a′t)
||w||Rn

ρ,m

||v||Rn
ρ,m

 for v ∈ V+(m),w ∈ V0(m) as t →∞,

or for v ∈ V0(m),w ∈ V−(m) as t →∞.
(1)
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Introduction Main result

Here dimV+ is a partial hyperbolicity index of ρ.

We assume that dimV+ = dimV− ≥ 1. Also, V0 is said to be the neutral subbundle of V.

Often we will be in cases dimV0 > 0.

A related dynamical system is “partially hyperbolic system" as in Bonatti, Diaz, Viana [1] or

Crovisier and Potrie [2]. (Related to Bochi-Sambarino and see Definition 1.5 of [2].)

Theorem 1 (Negative curvature case)

Let M be a closed complete special affine n-manifold. Suppose that M admits a negatively curved

Riemannian metric. Then the linear part of a holonomy homomorphism ρ is not an partially

hyperbolic representation in a bundle sense.

Closed complete affine n-manifolds have virtually solvable groups. (Auslander conjecture:

Fried-Goldman 83 (n = 3), Abels-Margulis-Soifer for n ≤ 6)

Linear holonomy in SO(p, q) implies the virtually solvable fundamental group.

(Goldman-Kamishima 84 (p = n − 1), Abels-Margulis-Soifer other cases.)
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Introduction Main result

Corollaries for P-Anosov.

We list the singular values of g a1(g), . . . , an(g) in a non-increasing order.

Corollary 1 (P-Anosov(corrected after the talk))

Let M be a closed complete special affine n-manifold with a fundamental group π1(M). Suppose

that M admits a negatively curved Riemannian metric. Let ρ : π1(M)→ SL(n,R) is a linear part of

the holonomy homomorphism. Then the linear part of the holonomy homomorphism ρ is not

P-Anosov for any parabolic group P of index ≤ J − 1 for J = min{i|ai (g) = 1, g ∈ ρ(π1(M))}.

Corollary 2 (Special Lie groups)

Let M be a closed complete special affine n-manifold with a fundamental group π1(M) with linear

holonomy in SO(k , n − k) for each integer k, 0 ≤ k ≤ n or in SP(m,R) for n = 2m. Suppose that

M admits a negatively curved Riemannian metric. Then the linear part of the holonomy

homomorphism ρ is not P-Anosov for any parabolic group P of SO(k , n − k).
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Introduction Main result

Related work

Existence of actions
Margulis, Drumm

Danciger,Kassel, Gueritaud for large n for many hyperbolic groups.

Nonexistence of actions
Danciger and Zhang [3] showed that when M is a surface, there is no proper action on Rn by

an affine representation with linear part in a Hitchin component.

Ghosh [4] obtained some generalization to hyperbolic groups with affine representations with

Anosov representation.

Tsouvalas: some cases must virtually be free or be a surface group.

However, these work do not have our dimension conditions.
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I: Proof for Partial hyperbolic actions

Developing sections

We begin the proof Theorem 1.

There is a projection Π̃An : UM̃ ×An → An inducing a bundle map

ΠAn : An
ρ′ := (UM̃ ×An)/π1(M)→ An/Γ

and π̃UM : UM̃ ×An → UM̃ inducing a bundle map

πUM : (UM̃ ×An)/π1(M)→ UM.

We define a section s̃ : UM̃ → UM̃ ×An where

s̃((x , ~v)) = ((x , ~v),dev(x)), x ∈ M̃. (2)

s̃ induces a section s : UM → An
ρ′ , called the developing section. (See Goldman [5])

Since M = An/Γ has a complete affine structure, dev induces the map

I := ΠAn ◦ s : UM → An/Γ.
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I: Proof for Partial hyperbolic actions

Neutralizing the sections

Proposition 2

There is a section s∞ homotopic to the developing section s in the C0-topology with the following

conditions:

∇φs∞ is in V0(x) for each x ∈ UM.

I∞ := ΠAn ◦ s∞ is onto.

dAn
ρ′

(s(x), s∞(x)) is uniformly bounded for x ∈ UM.

Proof.
We project to flat connections ∇+,∇−,∇0 respectively on V+,V0,V− respectively.

We define s∞ := s +
∫∞

0 (DΦt )∗(∇−φ s)dt −
∫∞

0 (DΦ−t )∗(∇+
φs)dt . Then it is homotopic to s since

we can replace∞ by T ,T > 0 and let T →∞. (See Section 8 of Goldman-Labourie-Margulis [6].)

Since M is compact and the norms of the integrand decreases exponentially, the integral is

uniformly bounded above.
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I: Proof for Partial hyperbolic actions

Corollary 3

˜I∞ := Π̃An ◦ s̃∞ restricted to each oriented geodesic~l on UM̃ lies on a neutral affine subspace

parallel to V0(~l).

Let ly := {φt (y)|t ≥ 0} for y ∈ K .

The image ˜I∞(ly ) is in a neutral affine subspace denoted it by A0
y or A0

ly
.

We choose ly so that an infinite-order deck-transformation γ acts on the axis containing ly .

s̃∞ ◦ γ = ρ′(γ) ◦ s̃∞, γ ∈ π1(M) implies (3)

ρ′(γ)(A0
y ) = A0

γ(y) = ρ′(γ)(A0
ly ) = A0

γ(lz ). (4)

In particular, γ acts on the axis containing ly and on Ao
y .

Finally since s∞ is continuous, x 7→ A0
x is a continuous function. Hence,

A0
zi
→ A0

z if zi → z ∈ UM̃. (5)

12/30
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I: Proof for Partial hyperbolic actions

Denote by V±(y) be the vector subspace parallel to the lift of V± at y . The

C0-decomposition property also implies

V±(zi )→ V±(z) if zi → z ∈ UM̃. (6)

Let p ∈ ∂∞M̃ be a point of the Gromov boundary of M̃. We define Rp as the set

{~u ∈ Ux M̃|~u is tangent to a complete geodesic ending at p}.

Proposition 3

˜I∞(Rp) equals An.

Definition 4

A0−
p : the affine subspace containing A0

p and all points in directions of V−(p) from points of A0
p .

13/30
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I: Proof for Partial hyperbolic actions

dev

yi+1
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yi−1

zi+1 zi zi−1

γi

ρ′(γi )

F

Figure: The proof of Theorem 1. Here γi is multiplied by an element to make the figure look better.
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I: Proof for Partial hyperbolic actions

We can choose two leaves ly and lz in Rp y , z ∈ UM̃, so that ˜I∞(ly ) and ˜I∞(lz ) are in

distinct subspaces A0−
ly

and A0−
lz

by Proposition 3.

The following contradiction proves Theorem 1.

Proposition 5

There are no two leaves ly and lz in Rp for y , z ∈ UM̃ so that so that ˜I∞(ly ) and ˜I∞(lz ) are in

distinct subspaces A0−
ly

and A0−
lz

Proof begins
Suppose not. Also, under π̃M , ly and lz respectively go to geodesics ending at p. We assume that

an infinite order deck transformation γ acts on the axis containing ly and fixes p.

A0−
φt (y)

is a fixed affine subspace independent of t , and ρ′(γ) acts on A0−
φt (y)

.

15/30



I: Proof for Partial hyperbolic actions

We can choose two leaves ly and lz in Rp y , z ∈ UM̃, so that ˜I∞(ly ) and ˜I∞(lz ) are in

distinct subspaces A0−
ly

and A0−
lz

by Proposition 3.

The following contradiction proves Theorem 1.

Proposition 5

There are no two leaves ly and lz in Rp for y , z ∈ UM̃ so that so that ˜I∞(ly ) and ˜I∞(lz ) are in

distinct subspaces A0−
ly

and A0−
lz

Proof begins
Suppose not. Also, under π̃M , ly and lz respectively go to geodesics ending at p. We assume that

an infinite order deck transformation γ acts on the axis containing ly and fixes p.

A0−
φt (y)

is a fixed affine subspace independent of t , and ρ′(γ) acts on A0−
φt (y)

.

15/30



I: Proof for Partial hyperbolic actions

Pulling-back argument

A0
φt (z)

contains lz and V−(φt (z)) is independent of t since they are parallel under the flat

connection.

Choose yi ∈ ly so that yi = φti (y), and zi ∈ lz so that zi = φti (z) where ti →∞ as i →∞.

Denote by

y ′i := ˜I∞(yi ) and z′i := ˜I∞(zi ) in An.

Since 〈γ〉 acts on the axis containing ly , γi (yi ) is in a compact subset F of UM̃ for a sequence

γi = γ−ji with ji going to infinity. ρ′(γi )(y ′i ) is in a compact subset of An for y ′i = Π̃M (yi ).

Choose a subsequence so that

ρ′(γi )(y ′i )→ y ′∞ for a point y ′∞ ∈ An. (7)
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I: Proof for Partial hyperbolic actions

Since s∞ is continuous by Proposition 2, we obtain

dAn/Γ( ˜I∞(yi ), ˜I∞(zi ))→ 0. (8)

Since γi is an isometry of dAn ,

dAn (ρ′(γi )(y ′i ), ρ′(γi )(z′i ))→ 0 (9)

as i →∞.

We claim that A0−
lz

is affinely parallel to A0−
ly

: Otherwise, we can show ρ(γi )(A0−
lz

) = A0−
γi (zi )

does not converge to A0
ly

. But dM (γi (zi ), γi (yi ))→ 0.

Also the sequence of the Hausdorff distance between

A0−
γi (zi )

= ρ′(γi )(A0−
lz

) and A0−
γi (yi )

= ρ′(γi )(A0−
ly

)

is going to 0.
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I: Proof for Partial hyperbolic actions

Let ~v denote the vector in the direction of V+(yi ) going from yi to A0−
lz

, independent of yi .

Then for the linear part Aγi of the affine transformation γi ,∣∣∣∣v ′i := Aγi (~v)
∣∣∣∣E

n →∞.

Hence affine subspaces

A0−
γi (zi )

= ρ′(γi )(A0−
lz

) and A0−
γi (yi )

= ρ′(γi )(A0−
ly

)

are not getting close to each other. This is a contradiction to the third paragraph above.

See following diagram as a proof.
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I: Proof for Partial hyperbolic actions

y ′i+1 y ′i
y ′i−1

z′i+1
z′i z′i−1

ρ′(γi )

A0−
ly

A0−
lz

A+,iA+,i+1 A+,i−1

F

Figure: The proof of Theorem 1
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II: P-Anosov part

II: P-Anosov corollaries

P-Anosov property
We can characterize the P-Anosov property of the linear holonomy group in SL(n,R) in a few

different way:

Guichard-Weinhard: Every point of the limit set Λ is attached a flag associated with a

parabolic subgroup P. There is a flow action where the tangent spaces of the flag in the flag

space is exponentially decreasing or increasing.

Kapovich-Leeb-Porti: the singular-value direction vectors ((a1(g), a2(g), . . . , an(g))) are

bounded away from the union of faces not containing a side τ of the Weyl chamber ∆.

Bochi-Sambarino: There exists k such that log
∣∣∣ ak (g)

ak+1(g)

∣∣∣→∞ uniformly for g ∈ Γ.

Linear bundle dominance condition: The domination part of the partial hyperbolicity.

(Bochi-Gourmelon and Kapovich-Leeb-Porti)
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II: P-Anosov part

Hirsch-Kostant-Sullivan condition

Theorem 6 (HKS)
Let M be a complete affine manifold. Let ρ be the linear part of the affine holonomy group ρ′. Then

ρ(g) has an eigenvalue equal to 1 for each g ∈ Γ.

Note
The following is incorrect as pointed out by Danciger after the talk

Theorem 7
Suppose ρ is semi-simple. Then there is an index i for 1 ≤ i < n/2 so that the following holds for

singular values:

ai (g) = ai+1(g) = · · · = an−i+1(g) = 1 for every g ∈ ρ(π1(M)).
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II: P-Anosov part

From the equivalences, we obtain the linear bundle dominance condition.

Since the neutral bundle V0 contains the subspaces corresponding to singular values 1, we

obtain partially hyperbolic decomposition.

This proves Corollary 1 by Theorem 1.

For Proof of Corollary 2: When ρ has images in the specified groups in the premises, the

singular values satisfies the same conditions.
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III: Generalization without negative curvature conditions.

III: Generalization without negative curvature conditions

Assume that M̃ is Gromov hyperbolic.

A complete isometric geodesic in M̃ is a geodesic that is an isometry of R into M̃ equipped

with a Riemannian metric. A complete isometric geodesic in M is a geodesic that lifts to a

complete isometric geodesic in M̃.

We consider the subset of UM where complete isometric geodesics pass. We denote this set

by UCM, and call it the complete-isometric-geodesic unit-tangent bundle.

The inverse image in UM̃ is denoted by UCM̃. Clearly, UCM is compact and UCM̃ is locally

compact. However, π̃M (UCM̃) may be a proper subset of M̃.

Now we define partial hyperbolicity over UCM only.
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III: Generalization without negative curvature conditions.

Generalization of Theorem 1

Theorem 8

Let M be a closed complete special affine n-manifold. Then the linear part of a holonomy

homomorphism ρ is not a partially hyperbolic representation in a bundle sense.

Partial hyperbolicity −→ P-Anosov for k = dimV+.

Now, by Kapovich-Lee-Porti, π1(M) is hyperbolic.

Hence, M̃ is Gromov hyperbolic by Svarc-Milnor.
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III: Generalization without negative curvature conditions.

Let p be a point of the Gromv boundary ∂M̃. Let Rp denote the union of complete isometric

geodesics in UCM̃ mapping to complete isometric geodesic in M̃ ending at p.

Proposition 9

Let M be a closed manifold with a Riemannian metric. Suppose that π1(M) is hyperbolic. Let

p ∈ ∂M̃. Then πM̃ (Rp) is C-dense in M̃.
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III: Generalization without negative curvature conditions.

Proposition 10 (Modification)

There is a section s∞ homotopic to the developing section s in the C0-topology with the following

conditions:

∇φs∞ is in V0(x) for each x ∈ UCM.

dAn
ρ′

(s(x), s∞(x)) is uniformly bounded for every x ∈ UCM.

dAn (Ĩ(x), ˜I∞(x)) is uniformly bounded for x ∈ UCM̃.

˜I∞ : UCM̃ → An is properly homotopic to Ĩ and is coarsely Lipschitz.

Now, the proof of Theorem 8 proceeds similar to that of Theorem 1. However, we need some

rough geometry ideas.
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III: Generalization without negative curvature conditions.

Theorem 11 (Choi-Kapovich)

Suppose that M is a closed complete affine manifold covered by an affine space M̃ = An with the

Riemannain metric dM induced from that of M. Let L be an affine subspace of lower-dimension of

M̃. Then M̃ is not a C-neighborhood NC(L) of L.

Proof.
Follows from the following two theorems.

Proposition 12 (Choi-Kapovich)

Let M and L be as above. Then L with induced path-metric dL is uniformly properly embedded in

M̃ = An.

Proof.
Just need to show if two points are of bounded distance under dM , the path-distance in L cannot

go to infinity. Here, we may asume one point is in a fundamental domain using deck

transformations.
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III: Generalization without negative curvature conditions.

Theorem 13

Let M and L be as above. Then L is uniformly contractible with respect to the path metric on L

induced from dM .

Proof.
Any sphere map f : Si → L with a dM -diameter C may be moved by a deck transformation γ to a

one passing a fundamental domain F of An. Hence, a Euclidean ball BR of some radius contains

the image of γ ◦ f . Here R depends only on C. Now, BR ⊂ BM
R′ for a dM -ball BM

R′ for a radius R′

depending only on R. Hence, f is homotopic to a point inside γ−1(BM
R′ ) for R′ depending only on

C.
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III: Generalization without negative curvature conditions.

Recall Hn
C(X) := lim−→Hn(X ,X − K ) for K a compact subset of X . For X = Rn, Hn

C(X) = Z.

Theorem 14 (Kapovich)

Let X be an open n-manifold that is a contractible δ-hyperbolic complete Riemannian metric space

with the path metric dX . Let U be a uniformly properly embedded open cell with the induced

path-metric so that U is uniformly contractible and coarsely equivalent to X. Then U must have the

topological dimension n.

Proof.
There is an inclusion map f : U → X and its rough inverse map g : X → U. We may assume that

both are continuous. Then f ◦ g is homotopic to identity by a bounded continuous homotopy. Then

g∗ ◦ f∗ : Hn
C(X)→ Hn

C(X) is an isomorphism. Since Hn
C(U) has to be nonzero, dim U = dim X .
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