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1. Coxeter group: G = 〈s1, . . . , sn | s2i = (sisj)
mij = e〉.

2. Quiver mutation: kk

p pq q

r r′ = pq − r

Plan:

aa Quiver Q −→
aa Quiver Q −→ (Quotient of) Coxeter group G −→

aa Quiver Q −→ Action of G on X −→
aa Quiver Q −→ Action of G on X −→ Hyperbolic manifold X/G

aa Quiver Q −→ Action of G on X −→ with symmetry group G
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3. Construction by Barot - Marsh: quiver Q −→ group G(Q).

Let Q be a quiver of finite type,

i.e. mutation-equivalent to an orientation of An, Dn or E6, E7, E8.

• Generators of G – nodes of Q.

• Relations of G – (R1) s2i = e

Relations of G – (R2) (sisj)
mij = e,

• Relations of G – (sisj)
mij = e mij =


2,

3,

∞, otherwise.

Relations of G – (R3) Cycle relation:

Relations of G – (R3) for each chordless cycle 1→ 2→ · · · → n→ 1

Relations of G – (R3) (s1 s2s3 . . . sn . . . s3s2)
2 = e.
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3. Construction by Barot - Marsh: quiver Q −→ group G(Q).

Let Q be a quiver of finite type,

i.e. mutation-equivalent to an orientation of An, Dn or E6, E7, E8.

Theorem 1. [Barot-Marsh’2011]. Given a quiver Q of finite type,

G(Q) is invariant under mutations of Q, i.e. G(Q) = G(µk(Q)).

• In particular, G(Q) is a finite Coxeter group.

• If Q2 = µk(Q1), si - generators of G(Q1), ti generators of G(Q2),

then

then, ti =

{
sksisk,

i k in Q1

si, otherwise
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4. Geometric interpretation.

Example: Q1 = A3 =
1 32 µ2−→ Q2 = 1 3

2

G(Q1) = 〈s1, s2, s3 | s2i = (s1s2)
3 = (s2s3)

3 = (s1s2)
2 = e〉

asdasdads finite Coxeter group A3, acts on S2 by reflections, 24 elements.

G(Q2) = 〈 t1, t2, t3 | t2i = (titj)
3︸ ︷︷ ︸ = (t1 t2t3t2)

2 = e〉
G0 – affine Coxeter group Ã2, acts on E2 by reflections.

t1

t2 t3

t2t3t2

(t1 t2t3t2)
2 = e = transl. by 4 levels – Identify!

G = G0/NCl((t1 t2t3t2)
2) – Identify! Identify!

G = G(Q2) acts on a torus T 2.
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5. More generally:

• G0 = a Coxeter group defined by (R1) and (R2).

• Each Coxeter group G0 acts on its Davis complex Σ(G0)

• asdasd (contractible, piecewise Euclidean, with CAT (0) metric).

• Take its quotient by cycle relations:

• asdasd Denote Grel := NCl(R3),

• asdasd consider X = Σ(G0)/Grel,

• asdasd asdasdasdsadsadsadsadsas then G : X.

Theorem 2 [F-Tumarkin’14] (Manifold property)

The group Grel is torsion free,

aaasdasdassadsad i.e. if Σ(G0) is a manifold then X is a manifold.

Taking the quotient, we are not introducing any new singularities!
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5. More generally:

Corollary from Manifold Property: can cook hyperbolic manifolds

with large symmetry groups.

Example: A4 =
1 2 3 4 µ3−→

asdsasdsadsadsadsadsadsadsadsadsadsad diagram of hyperbolic simplex

asdsadsad ⇒ Hyperbolic 3-manifold with action of the group A4.



5. More generally:

Corollary from Manifold Property: can cook hyperbolic manifolds

with large symmetry groups.

asdasdsad

Another example:

Dn : Sn Ãn−1 : En−1

µ−→

Grel = NCl( (s1 s2s3 . . . sn . . . s3s2)
2)

En−1/(n translations) = Tn−1

tiled by simplices



asdasdsadadsa

More hyperbolic examples:

5. More generally:
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Classification [F, P.Tumarkin, M.Shapiro’2008]:

Connected quiver is of finite mutation type iff

aaaa (a) Q has 2 vertices, or

aaaa (b) Q arises from a triangulated surface, or

aaaa (c) Q is mutation-equivalent to one of 11 exceptional quivers:

2
2

2

2
2

2

2

2



6. Beyond finite type:

• Q is of finite mutation type if ]|Q′ ∼µ Q| <∞.

Classification [F, P.Tumarkin, M.Shapiro’2008]:

Connected quiver is of finite mutation type iff

aaaa (a) Q has 2 vertices, or

aaaa (b) Q arises from a triangulated surface, or

aaaa (c) Q is mutation-equivalent to one of 11 exceptional quivers.

Groups G(Q) for them:

aaaa (a) trivial

aaaa (b) ?????

aaaa (c) can construct (with some additional relations).
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7. Quivers from triangulated surfaces

Fact. Quivers from triangulations of the same surface are

Fact. mutation-equivalent (and form the whole mutation class).

Want: Group G for every mut. class Q(T ), i.e. G for every surface.

Construction of G(Q) for unpunctured surfaces:

• Generators of G ↔ arcs of the triangulation of Q.

• Relations of G:

(R1) si = e

(R2) (sisj)
mij = e

(R3) Cycle relations

(R4) Ã2-relations:
2

3
1

4

(s1 s2s3s4s3s2)
2 = e

(R5) Handle relations:

3
1

2

4

5

(s1 s2s3s4s5s4s3s2)
2 = e

(s1 s4s3s2s5s2s3s4)
2 = e
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Q = Q(T ), G = G(Q), then G is mutation invariant,

i.e. G does not depend on the choice of triangulation T .

In other words, G is an invariant of a surface.
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7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT’13]

If S is an unpunctured surface, T triangulation of S,

Q = Q(T ), G = G(Q), then G is mutation invariant,

i.e. G does not depend on the choice of triangulation T .

In other words, G is an invariant of a surface.

Remark. • Now, G may be not a Coxeter group, but a quotient.

Remark. • Now, we do not know manifold property.

Remark. • We do not know much about this group!

Proposition. • G does not depend on the distribution

Proposition. • of marked points along boundary components.

Proposition. • There is a surjective homomorphism of G

Proposition. • to an extended affine Weyl group of type A.



a


