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2. Quiver mutation:

e Quiver is an oriented graph without loops and 2-cycles.
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e Mutation ug of quivers:

- reverse all arrows incident to £;
- for every oriented path through k& do

e

r'=pqg—r



1. Coxeter group: G =(81,...,8n | 57 = (si8;)™ = e).
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2. Quiver mutation:

r'=pg—r

Plan:

Quiver () —
— (Quotient of) Coxeter group G —

—— Action of G on X —
Hyperbolic manifold X /G
with symmetry group G
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3. Construction by Barot - Marsh: quiver () — group G(Q).

Let () be a quiver of finite type,

I.e. mutation-equivalent to an orientation of A,,, D,, or Eg, E7, Fxs.

e Generators of G — nodes of ().

&

e Relations of G — (R1) 57 =
sis;)™ii = e,

(R2) (

My =

(R3) Cycle relation:

for each chordless cycle 1 -2 — ...

(81 5283 ...8n

.. 8352)% = e.

o0, otherwise.

—n —1
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3. Construction by Barot - Marsh: quiver () — group G(Q).

Let () be a quiver of finite type,
I.e. mutation-equivalent to an orientation of A,,, D,, or Eg, E7, Fxs.

Theorem 1. [Barot-Marsh’2011]. Given a quiver @ of finite type,
G(Q) is invariant under mutations of @, i.e. G(Q) = G(ux(Q)).

e In particular, G(Q) is a finite Coxeter group.

o If Qs = ur(Q1), s; - generators of G(Q)1), t; generators of G(Q)2),
then |
L {Sksisk, i % in

Si, otherwise
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4. Geometric interpretation.

Example: ()1 = A3 = e——=e J 2, ng% N

G(Ql) — <51782,S3 | 522 — (8182)3 = (8283)3 = (8182)2 = €>

finite Coxeter group As, acts on S? by reflections, 24 elements.

G(Q2) = ( t1,1t2,13 | t; = (titj)?j = (t1 tatsta)” =e)

Go — affine Coxeter group gg, acts on [E? by reflections.

(t1 tatsty)? = e = transl. by 4 levels — Identify!

G = Go/NCl((tl t2t3t2)2) — Identify! Identify!

G = G(Q3) acts on a torus T2
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5. More generally:
e Gy = a Coxeter group defined by (R1) and (R2).

e Each Coxeter group Gg acts on its Davis complex X(Gy)
(contractible, piecewise Euclidean, with C'AT'(0) metric).

e Take its quotient by cycle relations:
Denote G,..; := NCI(R3),
consider X = X(Gy)/Grel,
then G : X.

Theorem 2 [F-Tumarkin'14]| (Manifold property)
The group G Is torsion free,
i.e. if X(Gg) is a manifold then X is a manifold.

Taking the quotient, we are not introducing any new singularities!
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Corollary from Manifold Property: can cook hyperbolic manifolds
with large symmetry groups.

Example: Aj = e =¢ =+ = 3, %

diagram of hyperbolic simplex

= Hyperbolic 3-manifold with action of the group Aj,.



5. More generally:

Corollary from Manifold Property: can cook hyperbolic manifolds
with large symmetry groups.

Another example:

——

CI/QXH%O,U,

D, : 8" A,_1: Er—1

G'rel = NCZ( (81 5283 ...8n ... 8382)2)

E™~1/(n translations) = T" 1

tiled by simplices




5. More generally:

More hyperbolic examples:

TABLE 5.1. Actions on hyperbolic manifolds.

5J'M/J [ices

W Q o Wi |amx| | B 00
Ag PE—— »-<I 5! 3 [W| - 0.084578 5
Dy ._< Z 2341 3 |W| - 0.422802 16
Ds ._._.< .—<> 24. 51 4 |W]| - 0.013707 10 2
E| T -—<:I 27.31.5 5 [W| - 0.002074 27
B| T .—O 210.38.5.7) 6 ||W|-2962002x10~| 126 | -52
B |7 -—<::1 214.35.52. 71 7 ||w]-4110677x10~%| 2160
lly fiopesciacmes I>-—<I 8! 5 70
Dy | D—.—<> 27. 81 6 |W/| - 0.002665 1120 | -832

pyramlds

evenr

a product of 2 simplicts

TABLE 7.1. Actions on hyperbolic manifolds, non-simply-laced case.

wioo | e | mamen| geX | e 00
Byl elisca f& 2.3 2 8 compact -4
Bi|le2e—eo—s -—24 24. 41 3 |W| - 0.211446 16

Fy PR ey 21:12 9782 3 |W|-0.222228 | compact
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Classification [F, P.Tumarkin, M.Shapiro'2008]:
Connected quiver is of finite mutation type iff
(a) @ has 2 vertices, or
(b) @ arises from a triangulated surface, or
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6. Beyond finite type:
e () is of finite mutation type if 1]Q" ~, Q| < 0.

Classification [F, P.Tumarkin, M.Shapiro'2008]:
Connected quiver is of finite mutation type iff
(a) @ has 2 vertices, or
(b) @ arises from a triangulated surface, or
(c) @ is mutation-equivalent to one of 11 exceptional quivers.

Groups G(Q) for them:
(a) trivial

(c) can construct (with some additional relations).
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7. Quivers from triangulated surfaces

Triangulated surface —  Quiver

edge of triangulation vertex of quiver
two edges of one triangle arrow of quiver
flip of triangulation [ ] mutation of quiver

Fact. Quivers from triangulations of the same surface are
mutation-equivalent (and form the whole mutation class).
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7. Quivers from triangulated surfaces

Fact. Quivers from triangulations of the same surface are
mutation-equivalent (and form the whole mutation class).

Want: Group G for every mut. class Q(T), i.e. G for every surface.

Construction of G(()) for unpunctured surfaces:

e Generators of G <> arcs of the triangulation of ().
e Relations of G-

(R1) s; =e R4) Ag—relatlon (R5) Handle relations:
(R2) (ss;)™is = |

(R3) Cycle relations ) %)

(81 5253545382)% = e (51 52535455548382)° = e

2 _
(S1 5458352555258354)° = €



7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT'13]
If S is an unpunctured surface, 1" triangulation of 5,

Q =Q(T), G=G(Q), then G is mutation invariant,

I.e. G does not depend on the choice of triangulation T'.

In other words, (G is an invariant of a surface.
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7. Quivers from triangulated surfaces: unpunctured case

Theorem [FT'13]
If S is an unpunctured surface, 1" triangulation of 5,

Q=Q(T), G=G(Q), then G is mutation invariant,

I.e. G does not depend on the choice of triangulation T'.

In other words, (G is an invariant of a surface.

Remark. e Now, G may be not a Coxeter group, but a quotient.
e Now, we do not know manifold property.
e We do not know much about this group!

Proposition. ¢ G does not depend on the distribution
of marked points along boundary components.

e There is a surjective homomorphism of GG
to an extended affine Weyl group of type A.



bk | =it (s ittt L) B8

P Y




