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Geometry

A geometric invariant

Systole = length of a shortest non-contractible closed geodesic in M.

Denoted by sys1(M).
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A topological result

A topological result

Copyright: MFO

Theorem (Belolipetsky 2013)

Let M be a compact hyperbolic
n-manifold with π1(Sg ) ⊂ π1(M).

Then, for any ε > 0

g ≥ e( 1
2
−ε)sys1(M)

whenever sys1(M) is large enough

.

How to construct M with large systole?
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Systole of congruence coverings

The first event

P. Buser and P. Sarnak (1994):
Let Γ ⊂ SL2(R) be a cocompact arithmetic
subgroup defined over Q, and let Γ(p) be a
principal congruence subgroup.

For Sp = Γ(p)\H2 we have

sys1(Sp) ≥4

3
log(area(Sp))− c ,

where c is some constant
independent of p.
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Systole of congruence coverings

Systole of congruence coverings

Mikhail Katz, Mary Schaps e Uzi Vishne (2007): Principal congruence
subgroups Γ(I ) of any cocompact arithmetic group Γ ⊂ SL2(C)

sys1(MI ) ≥
2

3
log(vol(MI ))− c1.

MI = Γ(I )\H3 and c1 is a constant.

S. Makisumi (2013): 4
3 is sharp in dimension 2.
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Number Theory

Congruence coverings

Let k be a totally real number field (e.g k = Q(
√

2)).

Let f be a quadratic form defined over k , with signature (n, 1) over
R, and f σ is positive definite for any non-trivial embedding σ : k → R
(e.g f = −

√
2x2

1 + x2
2 + · · ·+ x2

n+1).

Spinf → SOf simply-connected cover as linear algebraic k-groups.

Spinf (R)/{1,−1} ' SOo
f (R) ' Isom+(Hn)

Γ = Spinf (Ok)

Let I < Ok be an ideal.

Γ(I ) =

{
A ∈ Γ | A ≡ Id mod I

}
Ef .i Γ.

MI = Γ(I )\Hn −→ M = Γ\Hn

vol(MI ) ≈ N(I )
n(n+1)

2 , N(I ) := |Ok/I |.

MI is the congruence covering of M associated to I .
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Systole of congruence coverings

Systole of congruence coverings

Theorem (M. 2019)

Let M be a compact arithmetic hyperbolic n-orbifold as before, and MI its
congruence coverings. Then

sys1(MI ) ≥
8

n(n + 1)
log(vol(MI ))− c2,

where c2 is a constant.

Theorem (With C. Dória. 2019)

The constant 8
n(n+1) is sharp.
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Applications

A topological result

Copyright: MFO

Theorem (Belolipetsky 2013)

Let M be a compact hyperbolic
n-manifold with π1(Sg ) ⊂ π1(M).
Then, for any ε > 0

g ≥ e( 1
2
−ε)sys1(M)

whenever sys1(M) is large enough.

Proposition (Bel. 2013

, M. 2019

)

Let M be a compact arithmetic hyperbolic n-orbifold as before, and MI its
congruence coverings. If π1(Sgmin) ⊂ π1(MI ), then

vol(MI )
4

n(n+1)
−ε ≤

gmin ≤ vol(MI )
6

n(n+1) .
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Applications

Other applications

Limitation of parameters of error correcting codes constructed by L. Guth
and A. Lubotzky in 2013.
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Applications

Other applications

Construction of a special type of Einstein manifolds by J. Fine and B.
Premoselli (2018).
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Systole of congruence coverings

Systole of congruence coverings (Rank > 1)

Sara Lapan, Benjamin Linowitz and Jeffrey Meyer (2018): Congruence
subgroups Γ(I ) of non-cocompact arithmetic subgroups Γ ⊂ SLn(R) such
that

sys1(MI ) ≥
2
√

2

n(n2 − 1)
log(vol(MI ))− c3.

MI = Γ(I )\X , X = SLn(R)/SO(n) and c3 is a constant.
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Systole of congruence coverings

Systole of congruence coverings (Rank = 1)

sys1(MI ) ≥ C log(vol(MI ))− d ,

d is a constant.

C =


2
√

2
n(n+1)2 M real hyperbolic

1
n(n+1)(n+2) M complex hyperbolic

1
2
√

2(n+1)2(2n+3)
M quaternionic hyperbolic
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Systole of congruence coverings

Theorem (With V. Emery and I. Kim)

Let M be a compact quaternionic hyperbolic n-orbifold, and MI its
congruence coverings. Then

sys1(MI ) ≥
4

(n + 1)(2n + 3)
log(vol(MI ))− c,

where c is a constant. Also, 4
(n+1)(2n+3) is sharp.
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”A rare photo of Long and Reid”.
Taken from Reid’s homepage.

Theorem (Long and Reid, 2019)

There exists a sequence of congruence subgroups in SL3(R) all containing
a genus 3 surface group.
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Thank you very much!
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