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The word and conjugacy problems in Coxeter groups
e Throughout this talk, (W, S) denotes a Coxeter system:

W={(seS|s?>=1=(st)™ forall s,t €S with s # t)

for some mg € N>p U {o0};
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The word and conjugacy problems in Coxeter groups
e Throughout this talk, (W, S) denotes a Coxeter system:
W={(seS|s?>=1=(st)™ forall s,t €S with s # t)

for some mg € N> U {o0};
© W =UJ,enyS" is the monoid of words on the alphabet S;
o / ={s: W — Nis the word length on W.

Assume that w, w’ € W represent the same element of W, and that w' is
reduced. Then w' can be obtained from w by a (finite) sequence of
elementary operations of the form

@ Braid relations: stst... — tsts... for distinct s,t € S with ms < oc.
—— —
ms: letters ms: letters

@ ss-cancellations: ss — @ for s € S.

v
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The word and conjugacy problems in Coxeter groups

There is a polynomial time algorithm determining whether two words
w,w’ € W represent conjugate elements of W.
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Is there a “nicer” algorithm for the conjugacy problem in W, with
“natural” elementary operations as in Matsumoto’s Theorem?
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w,w’' € W represent conjugate elements of W.

v
Is there a “nicer” algorithm for the conjugacy problem in W, with
“natural” elementary operations as in Matsumoto’s Theorem?

e Call w/ € W a cyclic shift of w € W if there is a reduced expression
W =51...5 of wsuch that w/ = sy...5s,51 or W = 551 ...5¢_1.
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The word and conjugacy problems in Coxeter groups

There is a polynomial time algorithm determining whether two words
w,w’' € W represent conjugate elements of W.

v

Is there a “nicer” algorithm for the conjugacy problem in W, with
“natural” elementary operations as in Matsumoto’s Theorem?

e Call w/ € W a cyclic shift of w € W if there is a reduced expression
W =51...5, of wsuch that w/ =s...5,5; or w = s,51...5,_1.

e w' cyclic shift of w < w/ = sws for some s € S with £(sws) < ¢(w).
In that case, we write w = w'.

. . S: S|
o Writew = w if w=wp > wy--- =5 wx = w for some w;j, s;.
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The word and conjugacy problems in Coxeter groups

There is a polynomial time algorithm determining whether two words
w,w’' € W represent conjugate elements of W.

v
Is there a “nicer” algorithm for the conjugacy problem in W, with
“natural” elementary operations as in Matsumoto’s Theorem?

e Call w/ € W a cyclic shift of w € W if there is a reduced expression
W =51...5, of wsuch that w/ =s...5,5; or w = s,51...5,_1.

e w' cyclic shift of w < w/ = sws for some s € S with £(sws) < ¢(w).
In that case, we write w = w'.

o Write w > w/ if w =wp > wq - 5 wy = w for some w;, s;.
e Call w € W cyclically reduced if ¢(w') = ¢(w) for every w — w'.
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The word and conjugacy problems in Coxeter groups

A first step towards a better algorithm might be found by use of reductions of w

of the form

w— sws whenever £(sws) < £(w). (2)

We shall call w conjugacy-reduced if each series of reductions as in (2) starting
with w leads to an element w’ of W with £(w') = é(w).

Conjecture 2.18 Let C be a conjugacy class of W nd put o = min{f(w) | w €
C}. Then, for any w € C, we have £(w) = Lo if and only if w is conjugacy-reduced.

By Geck and Pfeiffer [1992], the conjecture holds for Weyl groups. The authors

use the result for Hecke algebra representations.

A. Cohen, Recent results on Coxeter groups (1994)
in NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
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The word and conjugacy problems in Coxeter groups

e Call w' € W a cyclic shift of w € W if there is a reduced expression
W =51...5 of wsuch that w/ =sy...s,5 or W = 5,51 ...5¢_1.

e w' cyclic shift of w < w' = sws for some s € S with /(sws) < {(w).
In that case, we write w = w'.

. . S S,
o Write w —» w if w=wp = wy - =% wy = w for some w;, s;.

e Call w € W cyclically reduced if ¢(w’) = ¢(w) for every w — w'.

An element w € W is cyclically reduced if and only if it is of minimal
length in its conjugacy class.
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The word and conjugacy problems in Coxeter groups

e Call w' € W a cyclic shift of w € W if there is a reduced expression
W =51...5 of wsuch that w/ =sy...s,5 or W = 5,51 ...5¢_1.

e w' cyclic shift of w < w' = sws for some s € S with /(sws) < {(w).
In that case, we write w > w'.

. . S S,
o Write w —» w if w=wp = wy - =% wy = w for some w;, s;.

e Call w € W cyclically reduced if ¢(w’) = ¢(w) for every w — w'.

An element w € W is cyclically reduced if and only if it is of minimal
length in its conjugacy class.

Example: W = (s,t | s2 =t> = (st)>* =1) = Ds

The elements s and t are conjugate but s /4 t.
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Previous works

@ Two elements w, w’ € W are elementarily strongly conjugate if
» {(w') =L(w) and
> there exists x € W with w’/ = x~Iwx such that either

(x7tw) = £(x) + £(w) or £(wx) = L(w) + £(x).
We then write w <~ w'.
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Previous works

@ Two elements w, w’ € W are elementarily strongly conjugate if
» {(w') =L(w) and
> there exists x € W with w’ = x~Lwx such that either
(x7tw) = £(x) + £(w) or £(wx) = L(w) + £(x).
We then write w ~ w'.
e Call w,w' € W strongly conjugate if w = wp ~ wy -+ & we = w/
for some w;, x; € W.

Example: W = (s, t | s> =t? = (st)} = 1) = Ds

s &t because t = st - s- ts and (st - s) = {(ts) + £(s).

v

Assume that W is finite. Let O be a conjugacy class in W. Then:

Q For every w € O there exists w’ of minimal length in O with w — w'.

Q If w,w' are of minimal length in O, they are strongly conjugate.
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Assume that W is finite. Let O be a twisted conjugacy class in W. Then:
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Previous works

@ Two elements w, w’ € W are elementarily strongly conjugate if
» {(w') ={(w) and
» there exists x € W with w’ = x7*wx such that either
(x7w) = £(x) + €(w) or £(wx) = £(w) + £(x).

We then write w ~ w’.

1

e Call w,w' € W strongly conjugate if w = wp ~ wy -+ & wye = w/
for some w;, x; € W.

o Let § € Aut(W,S) be a diagram automorphism. Define the
S-twisted conjugation by x € W as W — W : w — xTwd(x).
~~ twisted conjugacy classes, twisted relations =, ~, etc.

Assume that W is finite. Let O be a twisted conjugacy class in W. Then:

Q@ For every w € O there exists w’ of minimal length in O with w — w/’.

@ If w,w’ are of minimal length in O, they are strongly conjugate.
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@ Two elements w, w’ € W are elementarily strongly conjugate if
» {(w') ={(w) and
» there exists x € W with w’ = x7*wx such that either
(x7w) = £(x) + €(w) or £(wx) = £(w) + £(x).

We then write w ~ w’.

1

e Call w,w' € W strongly conjugate if w = wp ~ wy -+ & wye = w/
for some w;, x; € W.

o Let § € Aut(W,S) be a diagram automorphism. Define the
S-twisted conjugation by x € W as W — W : w — xTwd(x).
~~ twisted conjugacy classes, twisted relations =, ~, etc.

Assume that W is affine. Let O be a twisted conjugacy class in W. Then:

Q@ For every w € O there exists w’ of minimal length in O with w — w/’.

@ If w,w’ are of minimal length in O, they are strongly conjugate.
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Main result

Let (W, S) be a Coxeter system. Let O be a conjugacy class in W. Then:

Q For every w € O there exists w’ of minimal length in O with w — w/’.

Q If w,w' are of minimal length in O, they are tightly conjugate.
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Main result

Let (W, S) be a Coxeter system. Let O be a conjugacy class in W. Then:
Q For every w € O there exists w’ of minimal length in O with w — w/’.

Q If w,w' are of minimal length in O, they are tightly conjugate.

An element w € W is cyclically reduced if and only if it is of minimal
length in its conjugacy class.

e Call w,w’ € W elem. tightly conjugate if /(w’) = ¢(w) and either
» w' is a cyclic shift of w, or
> there exist | C S spherical (i.e. W) := () C W is finite) such that
w € Nw(W,), and some x € W, such that w & w’.
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Main result

Let (W, S) be a Coxeter system. Let O be a conjugacy class in W. Then:
Q For every w € O there exists w’ of minimal length in O with w — w/’.
Q If w,w' are of minimal length in O, they are tightly conjugate.

An element w € W is cyclically reduced if and only if it is of minimal
length in its conjugacy class.

e Call w,w’ € W elem. tightly conjugate if /(w’) = ¢(w) and either
» w' is a cyclic shift of w, or
> there exist | C S spherical (i.e. W) := () C W is finite) such that
w € Nw(W,), and some x € W, such that w & w’.

e Call w,w’ € W tightly conjugate if w’ can be obtained from w by a
sequence of elem. tight conjugations. We then write w ~ w’.
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Proof idea — The Coxeter complex X of (W, 5)
Ex: W= (s,t,u|s?=1t2=u?=(st)3 = (su)d = (tu) =1) = A,

W ~ X simplicial complex
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Proof idea — The Coxeter complex ¥ of (W, 5)
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W ~ X simplicial complex

chambers = max simplices
Ch(X) ={wG | w € W}
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Ex: W= (s t,u|s?=1t2=u?=(st)3=(su)d=(tu)®=1)=A;

\ ,’I W ~ X simplicial complex
K chambers = max simplices
Ch(X) = {wG | w € W}

\\ // walls = reflection hyperplanes
\ /
\\ II WCO
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\ ,’I W ~ X simplicial complex
K chambers = max simplices
Ch(X) = {wG | w € W}
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dcn(Co, wlo) = £(w)
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W ~ X simplicial complex

chambers = max simplices
Ch(X) = {wG | w € W}
walls = reflection hyperplanes
dch chamber distance on Ch(X)
dcn(Co, w(o) = £(w)
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Proof idea — The Coxeter complex X of (W, 5)
Ex: W=(s,t,u|s?=1t>=u?=(st)3 = (su)® = (tu)® =1) = A

W ~ X simplicial complex

chambers = max simplices
Ch(X) = {wG | w € W}
walls = reflection hyperplanes

dch chamber distance on Ch(X)
den(Co, wGo) = £(w)

galleries from Cy <+ W
r=(Co,...,wC) — type(l)

(IZ|car(), d) Davis complex

I + ' r g
v s oy
/\&é\’ ‘)\ez ype(l) =\ustuts

u t w= utsu
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Proof idea — The Coxeter complex X of (W, 5)
Ex: W= (s t,u|s?=1t2=u?=(st)3=(su)d=(tu)®=1)=A;

\F{abe/?/) ;\WW{S\/‘I W ~ X simplicial complex
X

chambers = max simplices
Ch(X) = {wG | w € W}

walls = reflection hyperplanes

dch chamber distance on Ch(X)
den(Co, wlo) = €(w)
galleries from Cy <+ W
r=(Co,...,wC) — type(l)

" . ) - (IZ|car(0),d) Davis complex
/\ PN ype(l) =\ustuts residue R, = {chambers > x}
it w = ustutsu \ Staby/(Ry) spherical parabolic

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 7/11

~



Proof idea — The Coxeter complex X of (W, 5)
Ex: W= (s t,u|s?=1t2=u?=(st)3=(su)d=(tu)®=1)=A;

\/S/ta\\«/(/éx)%ww{\\ 1 W ~ X simplicial complex
chambers = max simplices
W W Ch(z) = {wCo | w & W}
walls = reflection hyperplanes
/\\/\ WdCh chamber distance on Ch(X)
dcn(Co, w(o) = £(w)
galleries from Cy <+ W

[ = (Co, RN WCO) = type(r)

" . ) - (IZ|car(0),d) Davis complex
/\ AN ype(r)y =\ustuts residue R, = {chambers > x}
it w = ustutsu \ Staby/(Ry) spherical parabolic

Timothée Marquis (UCLouvain) CR elements in Coxeter groups August 26, 2019 7/11

~



Proof idea — The Coxeter complex ¥ of (W, 5)

Ex W= (s tul|s®=1t>=u?=(st)* = (su)* = (tu)* =1)
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Proof idea — A geometric solution to the word problem

w = sutstus

= ustutsu
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Proof idea — A geometric solution to the word problem

w = sutsututs
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Proof idea — A geometric solution to the word problem

w = sutsututs
= sutstutts

Timothée Marquis (UCLouvain) CR elements in Coxeter groups



Proof idea — A geometric solution to the word problem

w = sutsututs
= sutstutts
= sutstus

Timothée Marquis (UCLouvain) CR elements in Coxeter groups



Proof idea — A geometric solution to the word problem

w = sutsututs
= sutstutts
= sutstus

= ustutsu

Timothée Marquis (UCLouvain) CR elements in Coxeter groups



Proof idea — Minimal displacement sets
Fix w € W, and let

Op={viw|veW} and O7"={uc O, | {(u) minimal}.
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Proof idea — Minimal displacement sets
Fix w € W, and let

Ow={viwv|veW} and O""={uc O, |{(u) minimal}.

o I gallery from vCy to wvGy = type(I") expression for v~ lwv.
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Proof idea — Minimal displacement sets
Fix w € W, and let

Ow={viwv|veW} and O""={uc O, |{(u) minimal}.
o I gallery from vCy to wvGy = type(I") expression for v~ lwv.
o Define 7: Ch(X) — O, : vCy > v 1wy,
@ The (combinatorial) minimal displacement set of w is
CombiMin(w) = {D € Ch(X) | dch(D, wD) minimal}
= {vGy € Ch(X) | £(v 'wv) minimal}
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Proof idea — Minimal displacement sets
Fix w € W, and let
Ow={viwv|veW} and O""={uc O, |{(u) minimal}.
o I gallery from vCy to wvGy = type(I") expression for v~ lwv.
o Define : Ch(X) = Oy : vCy — v twv.
@ The (combinatorial) minimal displacement set of w is

CombiMin(w) = {D € Ch(X) | dch(D, wD) minimal}
= {vGy € Ch(X) | £(v " wv) minimal} = 7~ 1(O™M).

Note that w € O™ if and only if Co € CombiMin(w).
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Proof idea — Minimal displacement sets
Fix w € W, and let

Op={viw|veW} and O7"={uc O, | {(u) minimal}.
o I gallery from vCy to wvGy = type(I") expression for v~ lwv.
o Define 7: Ch(X) — O, : vCy > v 1wy,
@ The (combinatorial) minimal displacement set of w is
CombiMin(w) = {D € Ch(X) | dch(D, wD) minimal}
= {vGy € Ch(X) | £(v " wv) minimal} = 7~ 1(O™M).

Note that w € O™ if and only if Co € CombiMin(w).

Proof: WLOG, D = v(y and E = vs(p adjacent (v € W,s € S).
= (v iwv) = £(OmI") = L(sv—Lwvs)
= 7(D) = v lwv > sv lwvs = 7(E). O
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Proof idea — Minimal displacement sets

— — / .

D CombiMin(w) gallery-connected
4

w — w’ for all w € Omin

U
u
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Proof idea — Minimal displacement sets

— — W .
w/_ W_fw :W - Suppose w € O)'"" and

CombiMin(w) gallery-connected

4

w — w’ for all w € Omin

In general, CombiMin(w)

is not connected

4

needs strong conjugations!
S ~~> tSt ~> Ststs = t
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Proof idea — The complex C"

Let C" be the smallest chamber subcomplex A of ¥ such that
(1) Co (S Ch(A);
@ If C € Ch(A) and I minimal gallery from C to w*1C, then I' C A;

© Let R be a (spherical) residue such that w normalises Staby/ (R).
If C,D € R and C € Ch(A) and D € CombiMin(w), then D € Ch(A).
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Proof idea — The complex C"

Let C" be the smallest chamber subcomplex A of ¥ such that
QO G e Ch(A);
@ If C € Ch(A) and I minimal gallery from C to w™1C, then I C A;

© Let R be a (spherical) residue such that w normalises Staby,/(R).
If C,D € R and C € Ch(A) and D € CombiMin(w), then D € Ch(A).

Write w =~ w' if there exists w’ € W with w — w" =~ w/'.
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Proof idea — The complex C*

Let C" be the smallest chamber subcomplex A of ¥ such that
o C() S Ch(A);
@ If C € Ch(A) and I minimal gallery from C to w*1C, then I' C A;

© Let R be a (spherical) residue such that w normalises Staby/ (R).
If C,D € R and C € Ch(A) and D € CombiMin(w), then D € Ch(A).

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.
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Proof idea — The complex C"

Let C" be the smallest chamber subcomplex A of ¥ such that
o C() S Ch(A);
@ If C € Ch(A) and I minimal gallery from C to w*1C, then I' C A;

© Let R be a (spherical) residue such that w normalises Staby/ (R).
If C,D € R and C € Ch(A) and D € CombiMin(w), then D € Ch(A).

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).
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Proof idea — The complex C"

Let C" be the smallest chamber subcomplex A of ¥ such that
o C() S Ch(A);
@ If C € Ch(A) and I minimal gallery from C to w*1C, then I' C A;

© Let R be a (spherical) residue such that w normalises Staby/ (R).
If C,D € R and C € Ch(A) and D € CombiMin(w), then D € Ch(A).

Write w =~ w' if there exists w’ € W with w — w" =~ w/'.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).
(1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).
(2) If C,D € R and D € CombiMin(w), then 7(C) —~ m(D).
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Proof idea — The complex C*

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).
(1) If D is on a minimal gallery I' from C to wC, then (C) — =(D).
(2) If C,D € R and D € CombiMin(w), then 7(C) —~ m(D).
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).
2)If C,D € R and D € CombiMin(w), then 7(C) —~ 7(D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.

P
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Proof idea — The complex C*

Proof of (1):

[ from Cy to w(y
type(l') = wusut
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Proof idea — The complex C*

Timothée Marquis (UCLouvain)

CR elements in Coxeter groups

Proof of (1):

[ from Cy to w(y
type(l') = wusut

wl from wCy to w2y
type(wl) = usut



Proof idea — The complex C"

Proof of (1):

[ from Cy to w(y
type(l') = wusut

wl from wCy to w2y

EAVRORY.. Sha
RV £ A
I 2

" from D to wD
type(l") = v-utus

S

type(r) cyclic shifts type(rl)
7(Co) — w(D)
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).
2)If C,D € R and D € CombiMin(w), then 7(C) —~ 7(D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.

P
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).
2)If C,D € R and D € CombiMin(w), then 7(C) —~ 7(D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.
Hyp: Co, D € R and w normalises Staby(R) = W, with | C S spherical.

P
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).

2)If C,D € R and D € CombiMin(w), then 7(C) —~ 7(D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.

Hyp: Co, D € R and w normalises Staby(R) = W, with | C S spherical.

Lem (Lusztig ‘77): Nyw (W) = W; x N; where Ny = {w € W | w.l = [},
and ¢(wyn;) = £(wy) + £(ny) for all wy € W and n; € Nj.

Write w = wyn; with w; € W, and n; € N,.

P

v
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).

2)If C,D € R and D € CombiMin(w), then 7(C) —~ 7(D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.

Hyp: Co, D € R and w normalises Staby(R) = W, with | C S spherical.

Lem (Lusztig ‘77): Nyw (W) = W; x N; where Ny = {w € W | w.l = [},
and ¢(wyn;) = £(wy) + £(ny) for all wy € W and n; € Nj.

Write w = wyn; with w; € W, and n; € N,.

Note that §6: W, — W, : x — n/xn,_1 is a diagram automorphism.

P

v
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).

2) If C,D € R and D € CombiMin(w), then 7(C) —~ (D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.

Hyp: Co, D € R and w normalises Staby(R) = W, with | C S spherical.

Lem (Lusztig ‘77): Nyw (W) = W; x N; where Ny = {w € W | w.l = [},
and ¢(wyn;) = £(wy) + £(ny) for all wy € W and n; € Nj.

Write w = wyn; with w; € W, and n; € N,.

Note that §6: W, — W, : x — n/xn,_1 is a diagram automorphism.

As D € R, we have D = v(y for some v € W,.

To prove: wy-nj = w —~ v lwy

P

v
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).

2) If C,D € R and D € CombiMin(w), then 7(C) —~ (D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.

Hyp: Co, D € R and w normalises Staby(R) = W, with | C S spherical.

Lem (Lusztig ‘77): Nyw (W) = W; x N; where Ny = {w € W | w.l = [},
and ¢(wyn;) = £(wy) + £(ny) for all wy € W and n; € Nj.

Write w = wyn; with w; € W, and n; € N,.

Note that §6: W, — W, : x — n/xn,_1 is a diagram automorphism.

As D € R, we have D = v(y for some v € W,.

To prove: wy-nj=w =~ v twv = v lwnyv- nfln, = v iwd(v)-ny.

P

v
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Proof idea — The complex C"

Write w —=~ w’ if there exists w” € W with w — w" ~ w’.

Proof: This is equivalent to: If C € Ch(C"), then 7(Cp) —~ 7(C).

1) If D is on a minimal gallery I' from C to wC, then 7(C) — ©(D).

2) If C,D € R and D € CombiMin(w), then 7(C) —~ (D).

To simplify notations, say C = Cy. For (1), see picture; for (2), see below.

Hyp: Co, D € R and w normalises Staby(R) = W, with | C S spherical.

Lem (Lusztig ‘77): Nyw (W) = W; x N; where Ny = {w € W | w.l = [},
and ¢(wyn;) = £(wy) + £(ny) for all wy € W and n; € Nj.

Write w = wyn; with w; € W, and n; € N,.

Note that 6: W), —» W, : x — n/xn,_1 is a diagram automorphism.

As D € R, we have D = v(y for some v € W,.

To prove: wy-nj=w =~ v twv = v lwnyv- nfln, = v iwd(v)-ny.

By [GKPOO] or [HN12] in W, we have w; —s=25 v tw;d(v) in W,

and hence w; - nj == v tw;d(v) - ny, as desired. O

v

P
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Proof idea — Here we go
Recall we have a CAT(0) metric d on X := |Z|caT(0)-
The minimal displacement set of w is

Min(w) = {x € X | d(x, wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.
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Proof idea — Here we go

Example:

w = sut

Min(w) = L

Min(w?) = |Z|car(o)
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Proof idea — Here we go
Recall we have a CAT(0) metric d on X := |Z|caT(0)-
The minimal displacement set of w is

Min(w) = {x € X | d(x, wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.
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Proof idea — Here we go
Recall we have a CAT(0) metric d on X := |Z|caT(0)-
The minimal displacement set of w is

Min(w) = {x € X | d(x, wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Assume that w € W has infinite order, and let w’ € OTin.
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Proof idea — Here we go
Recall we have a CAT(0) metric d on X := |Z|caT(0)-
The minimal displacement set of w is

Min(w) = {x € X | d(x, wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Assume that w € W has infinite order, and let w’ € OTin.
Reduction step: WLOG, w, w’ have an axis through G.
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Proof idea — Here we go
Recall we have a CAT(0) metric d on X := |Z|caT(0)-
The minimal displacement set of w is

Min(w) = {x € X | d(x, wx) is minimal}.

If w has infinite order, then Min(w) is the closed convex subset of X which
is the union of all w-axes, i.e. of all geodesic lines L stabilised by w.

Assume that w € W has infinite order, and let w’ € OTin.
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~ twv for some v € W. Then vGy € CY.
Hyp: vCy € CombiMin(w).
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OTi".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~ lwv for some v € W. Then vCy € C*.
Hyp: vCy € CombiMin(w).
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OTi".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~ lwv for some v € W. Then vCy € C*.
Hyp: vCy € CombiMin(w).

Let x € Min(w) and x,,, € Min(w’).
= vxyr € Min(ww/v~1) = Min(w)
= [Xw, vxur] € Min(w)

Xy’
/
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~ lwv for some v € W. Then vCy € C*.
Hyp: vCy € CombiMin(w).

Let x € Min(w) and x,,, € Min(w’).
= vxyr € Min(ww/v~1) = Min(w)
= [xw, vxw] € Min(w)

Let ' =(Co,...,C,D,...,v() be a

minimal gallery containing [xy, vx,].
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.

Claim: Write w’ = v~ lwv for some v € W. Then vCy € C*.
Hyp: vCy € CombiMin(w).

Let x € Min(w) and x,,, € Min(w’).
= vxyr € Min(ww/v~1) = Min(w)
= [xw, vxw] € Min(w)

Let ' =(Co,...,C,D,...,v() be a

minimal gallery containing [xy, vx,].

Let m be the wall between C and D.

Let L be a w-axis through x € CN D.
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.

Claim: Write w’ = v~ lwv for some v € W. Then vCy € C*.
Hyp: vCy € CombiMin(w).

Let x € Min(w) and x,,, € Min(w’).
= vxyr € Min(ww/v~1) = Min(w)
= [xw, vxw] € Min(w)

Let ' =(Co,...,C,D,...,v() be a

minimal gallery containing [xy, vx,].

Let m be the wall between C and D.

Let L be a w-axis through x € CN D.

Case 1: LN m= {x}.
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~twv for some v € W. Then vGy € C".
Hyp: vCy € CombiMin(w).

Let x € Min(w) and x,,, € Min(w’).
= vxyr € Min(ww/v~1) = Min(w)
= [xw, vxw] € Min(w)

Let ' =(Co,...,C,D,...,v() be a

minimal gallery containing [xy, vx,].

Let m be the wall between C and D.

Let L be a w-axis through x € CN D.

Case 1: LNnm={«}. Then CeC"¥ = DeC".
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~twv for some v € W. Then vGy € C".
Hyp: vCy € CombiMin(w).

VXw/ Let x, € Min(w) and x,s € Min(w’).
' Let T =(Cp,...,C,D,...,vG) be a
minimal gallery containing [xy, vx,].
Let m be the wall between C and D.
Let L be a w-axis through x € CN D.

Case 2: L C m.
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~twv for some v € W. Then vGy € C".
Hyp: vCy € CombiMin(w).

VXw/ Let x, € Min(w) and x,s € Min(w’).
' Let T =(Cp,...,C,D,...,vG) be a
minimal gallery containing [xy, vx,].
Let m be the wall between C and D.
Let L be a w-axis through x € CN D.

Case 2: L C m.
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~twv for some v € W. Then vGy € C".
Hyp: vCy € CombiMin(w).

VXw/ Let x, € Min(w) and x,s € Min(w’).
' Let T =(Cp,...,C,D,...,vG) be a
minimal gallery containing [xy, vx,].
Let m be the wall between C and D.
Let L be a w-axis through x € CN D.

Case 2: L C m. Then w normalises Stabyy(Ry).*
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~twv for some v € W. Then vGy € C".
Hyp: vCy € CombiMin(w).

VXw/ Let x, € Min(w) and x,s € Min(w’).
' Let T =(Cp,...,C,D,...,vG) be a
minimal gallery containing [xy, vx,].
oij(vCo) Let m be the wall between C and D.
Let L be a w-axis through x € CN D.

Case 2: L C m. Then w normalises Stabyy(Ry).*
Prop: E = projg (vCo) € CombiMin(w)
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Proof idea — Here we go

Assume that w € W has infinite order, and let w’ € OT'".
Reduction step: WLOG, w, w’ have an axis through G.
Claim: Write w’ = v~twv for some v € W. Then vGy € C".
Hyp: vCy € CombiMin(w).

VXw/ Let x, € Min(w) and x,s € Min(w’).
' Let T =(Cp,...,C,D,...,vG) be a
minimal gallery containing [xy, vx,].
!roij(vCo) Let m be the wall between C and D.
Let L be a w-axis through x € CN D.
Case 2: L C m. Then w normalises Stabyy(Ry).*
Prop: E = projg (vCo) € CombiMin(w)
Xw Hence, C e C" = E € C". O
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