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m Minimal generation. d(G) = min{|S| : G = (S)}.
m Invariable generation. {xi,...,x;} C G invariably generates if
G =05 .. x5

for all gi € G. Let d;(G) = min{|S]| : S invariably generates G}.

m Random generation. Let

,Xt) € Gt : G = (x1,...,xt)}]|

P(G) = (IR G|t

be the probability that t randomly chosen elements generate G.

m Conjugate generation. If G = (g©) then define

r(g) =min{|S| : SCg® G = (5}
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Theorem. Let G be a (non-abelian) finite simple group.
m d(G) = 2 (Steinberg, 1962)
m d;(G) =2 (Kantor, Lubotzky & Shalev, 2011)

m P»(G) — 1as |G| — oo (Liebeck & Shalev, 1995)

m If G = Cly(q) is a classical group with n > 5, then

k(g)<n+1lforalll#ge€G
(Guralnick & Saxl, 2003)

Problem. Can we establish analogous results for algebraic groups?
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First observations

Let G be a simple algebraic group over an algebraically closed field k of
characteristic p > 0, e.g. SL,(k), Sp,(k), Es, etc.

m G is not finitely generated:

(x1,...,x) < G(F) < G
for some subfield F = ko(A1,...,Am) of k (with ko the prime field).
m S C G is a topological generating set if (S) is (Zariski-)dense in G.

m If k is algebraic over a finite field, then G is locally finite.

[ We will always assume that k is not algebraic over a finite field. ]
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Topological 2-generation

Theorem (Guralnick, 1998).
If p=0, then A :={(g,h) € G®> : G = (g, h)} is dense in G2.

m If V is a finite dimensional kG-module, then

{(g,h) € G : (g, h) acts irreducibly on V'} is open in G2

m Let V4 be the adjoint module for G and V5 an irreducible kG-module
such that every finite subgroup of G is reducible. Then

A ={(g,h) € G% : (g, h) is irreducible on V; and V5} is open

m If g € G is non-central and h € G is a regular semisimple element

such that (h) is a maximal torus, then G = (g, h?) for some a € G.

Therefore, A is non-empty and thus dense.
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A generalisation

Notation. Let Q be a (locally closed) irreducible subset of G, e.g.
Gt {g} x G*Lor Gy x -+ x G, with G; = g°

For x = (x1,...,x) € Q, set G(x) = (x1,...,x:) and define

A={xeQ: G(x)=G}.

[ Theorem (BGG, 2019). If A is non-empty, then A is dense in . ]

m As a special case, {x € G2 : G(x) = G} is dense in G for all p > 0.

m By considering Q = C; X --- X C;, it follows that all topological
generating sets for G are “almost invariable”.
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[ Theorem (BGG, 2019). If A is non-empty, then A is dense in . ]

m Assume A # () and write A = AT N A, where

AT ={xeQ : dimG(x) > 0}
N={xeQ: G(x) £ H forany H e M}

and M is the set of maximal closed pos. diml. subgroups of G.

m By considering a finite collection of irreducible kG-modules, we can
construct an open subset I of Q with A C T CA.

m Key step: A" #£ () = A" is dense in Q.

B Then A=ATNA=ATNAT is dense in Q.
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Theorem (BGG, 2019).

Let G be an exceptional group and set N = 4 if G = G, otherwise
N=5. Let Q= Cy x---x C;, where t > N and each C; :g,-G is
non-central. Then A is dense in Q.

m The bound t > N is best possible in all cases.

e.g. if G = Egand C = g€ is the class of long root elements, then
dim Cy(g) = 190 on the adjoint module V, so A = () if Q = C*.

m Excluding a handful of classes, we can show that A is dense if t > 3.

B We expect the same bounds are best possible for the corresponding
finite exceptional groups.

Here [GS, 2003] gives x(g) < rank(G) + 4 for all 1 # g € G(q).
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Key lemma

For H< G and g € G, set

X=G/H, X(g) ={xeX :x8=x}, a(G,H,g) = W

Lemma. Let G be a simple algebraic group and set 2 = Gy x- - - x C,
where t > 3 and each C; = g,-G is non-central. Then A is dense if

t

> (G, Hg)<t-1 (%)

i=1

for all H € M.

.

This relies on the fact that G has only finitely many classes of positive
dimensional maximal closed subgroups (Liebeck & Seitz, 2004).
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Lemma. Let G be an exceptional group and set
B(G) = max{a(G,H,g) : g € G non-central, H € M}.

m Then 3(G) < 1— 4, where N =4 if G = Gy, otherwise N = 5.

m More precisely:

G E E E F G
B(G) 15/19 7/9 10/13 3/4 2/3

\.

Corollary. If Q =C x -+ x G with t > N and C; = g,-G, then

Za(G,H,g,-)gt-ﬂ(G)<t<l—lb> <t—1

i=1
for all H € M, so (x) holds and A is dense.
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Computing dimensions

Lemma (Lawther, Liebeck & Seitz, 2002). If g € H, then

dim X(g) = dim X — dim g© + dim(g® N H).

Example (LLS). Let G = Eg, H = P, g € G a long root element.

m We may assume g € L', where L = T1E7 is a Levi factor. Then
1 / 1
dim(gG NH) = E(dim gG + dim gL )= E(58 +34) =46

m The lemma now gives dim X(g) = 57 — 58 + 46 = 45, so

dimX(g) 45 15

H e = — = — =
A6 H.8) =~ N =5 =19

p(6)
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An application to random generation

Let L be a finite group and let r,s be primes dividing |L|.

Write P, s(L) for the probability that L is generated by a randomly chosen
element of order r and a random element of order s.

Theorem. Let r,s be primes with (r,s) # (2,2) and let G; be a
sequence of finite simple exceptional groups such that |G;| — oo and
r, s divide |G;| for all i.

m Guralnick, Liebeck, Liibeck & Shalev, 2019.
If (r,s) =(2,3), then P, s(G;) = 1 as i — oo.

m BGG, 2019. The same conclusion holds for all r and s.
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Another key lemma

Let G(q) = G, be a finite quasisimple exceptional group of Lie type over
Fy, where o is a suitable Steinberg endomorphism of G.

Let r, s be prime divisors of |G(q)/Z(G(q))| with (r,s) # (2,2) and define

C(G,r,q) = max{dimg® : g € G(q) has order r modulo Z(G)}.

e.g. if G = Eg and r =3, then C(G, r,q) = 168 for all q.

Lemma. Let g, € G be any element of order r modulo Z(G) with
dimg® = C(G, r, q) and define g5 € G similarly. Then

a(G,H,g)+ a(G,H,g) <1

for all positive dimensional maximal closed subgroups H of G.
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m Set Q= C; x G, where C; = gf and G = g€ as before, with
Ci(q) =CnNG(qg)#£Dfori=1,2.

m From the lemma, we deduce that

A={(g,h)eQ: G={g,h)} is dense in Q

and then a general theorem [GLLS, 2019] implies that the proportion
of pairs in C,(q) x Cs(q) generating G(q) tends to 1 as g — oc.

m But almost all pairs of elements of order r and s (modulo Z(G)) in
G(q) are contained in C,(q) x Cs(q) for such classes C, and Cs.

Conjecture (GLLS, 2019). Let r,s be primes with {r,s} Z {2,3}
and let G; be a sequence of finite simple groups such that |G;| — oo
and r, s divide |G;| for all i. Then P, s(G;) — 1 as i — oc.




