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Finite groups

� Minimal generation. d(G ) = min{|S | : G = 〈S〉}.

� Invariable generation. {x1, . . . , xt} ⊆ G invariably generates if

G = 〈xg11 , . . . , x
gt
t 〉

for all gi ∈ G . Let dI (G ) = min{|S | : S invariably generates G}.

� Random generation. Let

Pt(G ) =
|{(x1, . . . , xt) ∈ G t : G = 〈x1, . . . , xt〉}|

|G |t

be the probability that t randomly chosen elements generate G .

� Conjugate generation. If G = 〈gG 〉 then define

κ(g) = min{|S | : S ⊆ gG , G = 〈S〉}.
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Finite simple groups

Theorem. Let G be a (non-abelian) finite simple group.

� d(G ) = 2 (Steinberg, 1962)

� dI (G ) = 2 (Kantor, Lubotzky & Shalev, 2011)

� P2(G )→ 1 as |G | → ∞ (Liebeck & Shalev, 1995)

� If G = Cln(q) is a classical group with n > 5, then

κ(g) 6 n + 1 for all 1 6= g ∈ G

(Guralnick & Saxl, 2003)

Problem. Can we establish analogous results for algebraic groups?
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First observations

Let G be a simple algebraic group over an algebraically closed field k of
characteristic p > 0, e.g. SLn(k), Spn(k), E8, etc.

� G is not finitely generated:

〈x1, . . . , xt〉 6 G (F ) < G

for some subfield F = k0(λ1, . . . , λm) of k (with k0 the prime field).

� S ⊆ G is a topological generating set if 〈S〉 is (Zariski-)dense in G .

� If k is algebraic over a finite field, then G is locally finite.

We will always assume that k is not algebraic over a finite field.
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Topological 2-generation

Theorem (Guralnick, 1998).

If p = 0, then ∆ := {(g , h) ∈ G 2 : G = 〈g , h〉} is dense in G 2.

� If V is a finite dimensional kG -module, then

{(g , h) ∈ G 2 : 〈g , h〉 acts irreducibly on V } is open in G 2

� Let V1 be the adjoint module for G and V2 an irreducible kG -module
such that every finite subgroup of G is reducible. Then

∆ = {(g , h) ∈ G 2 : 〈g , h〉 is irreducible on V1 and V2} is open

� If g ∈ G is non-central and h ∈ G is a regular semisimple element
such that 〈h〉 is a maximal torus, then G = 〈g , ha〉 for some a ∈ G .

Therefore, ∆ is non-empty and thus dense.
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A generalisation

Notation. Let Ω be a (locally closed) irreducible subset of G t , e.g.

G t , {g} × G t−1 or C1 × · · · × Ct , with Ci = gG
i

For x = (x1, . . . , xt) ∈ Ω, set G (x) = 〈x1, . . . , xt〉 and define

∆ = {x ∈ Ω : G (x) = G}.

Theorem (BGG, 2019). If ∆ is non-empty, then ∆ is dense in Ω.

� As a special case, {x ∈ G 2 : G (x) = G} is dense in G 2 for all p > 0.

� By considering Ω = C1 × · · · × Ct , it follows that all topological
generating sets for G are “almost invariable”.
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Comments on the proof

Theorem (BGG, 2019). If ∆ is non-empty, then ∆ is dense in Ω.

� Assume ∆ 6= ∅ and write ∆ = ∆+ ∩ Λ, where

∆+ = {x ∈ Ω : dimG (x) > 0}
Λ = {x ∈ Ω : G (x) 66 H for any H ∈M}

and M is the set of maximal closed pos. diml. subgroups of G .

� By considering a finite collection of irreducible kG -modules, we can
construct an open subset Γ of Ω with ∆ ⊆ Γ ⊆ Λ.

� Key step: ∆+ 6= ∅ =⇒ ∆+ is dense in Ω.

� Then ∆ = ∆+ ∩ Λ = ∆+ ∩ Γ is dense in Ω.
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Exceptional algebraic groups

Theorem (BGG, 2019).

Let G be an exceptional group and set N = 4 if G = G2, otherwise
N = 5. Let Ω = C1 × · · · × Ct , where t > N and each Ci = gG

i is
non-central.

Then ∆ is dense in Ω.

� The bound t > N is best possible in all cases.

e.g. if G = E8 and C = gG is the class of long root elements, then
dimCV (g) = 190 on the adjoint module V , so ∆ = ∅ if Ω = C 4.

� Excluding a handful of classes, we can show that ∆ is dense if t > 3.

� We expect the same bounds are best possible for the corresponding
finite exceptional groups.

Here [GS, 2003] gives κ(g) 6 rank(G ) + 4 for all 1 6= g ∈ G (q).
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Key lemma

For H 6 G and g ∈ G , set

X = G/H, X (g) = {x ∈ X : xg = x}, α(G ,H, g) =
dimX (g)

dimX

Lemma. Let G be a simple algebraic group and set Ω = C1×· · ·×Ct ,
where t > 3 and each Ci = gG

i is non-central. Then ∆ is dense if

t∑
i=1

α(G ,H, gi ) < t − 1 (?)

for all H ∈M.

This relies on the fact that G has only finitely many classes of positive
dimensional maximal closed subgroups (Liebeck & Seitz, 2004).
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Fixed point spaces for exceptional groups

Lemma. Let G be an exceptional group and set

β(G ) = max{α(G ,H, g) : g ∈ G non-central, H ∈M}.

� Then β(G ) < 1− 1
N , where N = 4 if G = G2, otherwise N = 5.

� More precisely:

G E8 E7 E6 F4 G2

β(G ) 15/19 7/9 10/13 3/4 2/3

Corollary. If Ω = C1 × · · · × Ct with t > N and Ci = gG
i , then

t∑
i=1

α(G ,H, gi ) 6 t · β(G ) < t

(
1− 1

N

)
6 t − 1

for all H ∈M, so (?) holds and ∆ is dense.
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Computing dimensions

Lemma (Lawther, Liebeck & Seitz, 2002). If g ∈ H, then

dimX (g) = dimX − dim gG + dim(gG ∩ H).

Example (LLS). Let G = E8, H = P8, g ∈ G a long root element.

� We may assume g ∈ L′, where L = T1E7 is a Levi factor. Then

dim(gG ∩ H) =
1

2
(dim gG + dim gL′) =

1

2
(58 + 34) = 46

� The lemma now gives dimX (g) = 57− 58 + 46 = 45, so

α(G ,H, g) =
dimX (g)

dimX
=

45

57
=

15

19
= β(G )
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An application to random generation

Let L be a finite group and let r , s be primes dividing |L|.

Write Pr ,s(L) for the probability that L is generated by a randomly chosen
element of order r and a random element of order s.

Theorem. Let r , s be primes with (r , s) 6= (2, 2) and let Gi be a
sequence of finite simple exceptional groups such that |Gi | → ∞ and
r , s divide |Gi | for all i .

� Guralnick, Liebeck, Lübeck & Shalev, 2019.

If (r , s) = (2, 3), then Pr ,s(Gi )→ 1 as i →∞.

� BGG, 2019. The same conclusion holds for all r and s.
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Another key lemma

Let G (q) = Gσ be a finite quasisimple exceptional group of Lie type over
Fq, where σ is a suitable Steinberg endomorphism of G .

Let r , s be prime divisors of |G (q)/Z (G (q))| with (r , s) 6= (2, 2) and define

C(G , r , q) = max{dim gG : g ∈ G (q) has order r modulo Z (G )}.

e.g. if G = E8 and r = 3, then C(G , r , q) = 168 for all q.

Lemma. Let gr ∈ G be any element of order r modulo Z (G ) with
dim gG

r = C(G , r , q) and define gs ∈ G similarly. Then

α(G ,H, gr ) + α(G ,H, gs) < 1

for all positive dimensional maximal closed subgroups H of G .
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Some comments on the proof

� Set Ω = C1 × C2, where C1 = gG
r and C2 = gG

s as before, with
Ci (q) := Ci ∩ G (q) 6= ∅ for i = 1, 2.

� From the lemma, we deduce that

∆ = {(g , h) ∈ Ω : G = 〈g , h〉} is dense in Ω

and then a general theorem [GLLS, 2019] implies that the proportion
of pairs in Cr (q)× Cs(q) generating G (q) tends to 1 as q →∞.

� But almost all pairs of elements of order r and s (modulo Z (G )) in
G (q) are contained in Cr (q)× Cs(q) for such classes Cr and Cs .

Conjecture (GLLS, 2019). Let r , s be primes with {r , s} 6⊆ {2, 3}
and let Gi be a sequence of finite simple groups such that |Gi | → ∞
and r , s divide |Gi | for all i . Then Pr ,s(Gi )→ 1 as i →∞.
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