A geometric flow of Balanced metrics

Luigi Vezzoni Università di Torino

Bridging the Gap between Kähler and non-Kähler Complex Geometry Birs, 2019.

Some classes of Hermitian metrics

An *n*-dimensional Hermitian manifold (M, ω) is

Kähler if $d\omega = 0$; Balanced if $d^*\omega = 0$ ($\iff d\omega^{n-1} = 0$); Pluriclosed if $\partial \bar{\partial} \omega = 0$; Gauduchon if $\partial \bar{\partial} \omega^{n-1} = 0$; Strongly Gauduchon if $[\partial \omega^{n-1}]_{\bar{\partial}} = 0$; Asteno-Kähler if $\partial \bar{\partial} \omega^{n-2} = 0$.

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 ・ 夕 � @

Some classes of Hermitian metrics

An *n*-dimensional Hermitian manifold (M, ω) is

Kähler if $d\omega = 0$; Balanced if $d^*\omega = 0$ ($\iff d\omega^{n-1} = 0$); Pluriclosed if $\partial \bar{\partial} \omega = 0$; Gauduchon if $\partial \bar{\partial} \omega^{n-1} = 0$; Strongly Gauduchon if $[\partial \omega^{n-1}]_{\bar{\partial}} = 0$; Asteno-Kähler if $\partial \bar{\partial} \omega^{n-2} = 0$.

Main problems faced in the talk: improve a balanced metric on a fixed cohomology class/ study the existence of different kind of special metrics.

Approaches: use a geometric flow/ work on homogeneous spaces.

BALANCED METRICS ($d^*\omega = 0$)

Some good reasons for studying balanced metrics:

• A metric is balanced if and only if $\Delta_{\partial} f = \Delta_{\bar{\partial}} f = 2\Delta_d f$ for every smooth map *f* (Gauduchon '77).

• The twistor space of an anti-self-dual, oriented 4-dimensional Riemannian manifold always has a balanced metric (Gauduchon '81).

• Every compact complex manifold bimeromorphic to a compact Kähler manifold is balanced (Alessandrini-Bassanelli '93). Hence Moishezon manifolds and complex manifolds in the Fujiki class C are balanced.

• Any left-invariant Hermitian metric on a complex Lie group is balanced.

- The balanced condition can be characterized in terms of currents, in particular Calabi-Eckmann manifolds have no balanced metrics (Michelson '82).
- On a balanced manifold ω^{n-1} is calibration.

SOME GENERALIZATIONS OF THE KÄHLER-RICCI FLOW

Some geometric flows of Hermitian non-Kähler metrics in the literature are generalizations of the Kähler-Ricci flow:

Hermitian curvature flows (Streets, Tian, Ustinovskiy...),

$$\partial_t \omega_t = -S(\omega_t) + Q(T_t, \bar{T}_t)$$

{ Hermitian curvature flow
Pluriclosed flow
Ustinovskiy flow

Chern-Ricci-flow (Gill, Tosatti, Weinkove...)

$$\partial_t \omega_t = -\rho(\omega_t)$$

Notation. Given a Hermitian manifold M, $\omega = \frac{i}{2}g_{r\bar{s}}dz^r \wedge dz^{\bar{s}}$, R and T are the curvature and the torsion of the Chern connection and

$$S_{i\bar{j}} = g^{r\bar{s}} R_{r\bar{s}i\bar{j}}, \quad \rho_{i\bar{j}} = g^{r\bar{s}} R_{i\bar{j}r\bar{s}}$$

シック・ヨー (ヨ・ (ヨ・ (山・))

In my approach I consider a generalization of the Calabi-flow.

In my approach I consider a generalization of the Calabi-flow. $(M, [\omega_0])$ compact *polarized* Kähler manifold. *Calabi functional*: Ca: {Kähler forms $\in [\omega_0]$ } $\rightarrow \mathbb{R}^+$

$$\mathsf{Ca}\colon \quad \omega\mapsto \int_M s^2_\omega\,\omega^n$$

In my approach I consider a generalization of the Calabi-flow. $(M, [\omega_0])$ compact *polarized* Kähler manifold. *Calabi functional*: Ca: {Kähler forms $\in [\omega_0]$ } $\rightarrow \mathbb{R}^+$

$$\mathsf{Ca}: \quad \omega \mapsto \int_M s^2_\omega \, \omega^n$$

Definition. *Extremal metric: critical point of* Ca.

Constant scalar curvature \implies Extremal

In my approach I consider a generalization of the Calabi-flow. $(M, [\omega_0])$ compact *polarized* Kähler manifold. *Calabi functional*: Ca: {Kähler forms $\in [\omega_0]$ } $\rightarrow \mathbb{R}^+$

$$\mathsf{Ca}:\quad \omega\mapsto \int_M s^2_\omega\,\omega^n$$

Definition. *Extremal metric: critical point of* Ca.

Constant scalar curvature \implies Extremal

Calabi flow (CF) $\partial_t \omega_t = i \partial \bar{\partial} s_t$, $\omega_{|t=0} = \omega_0$ CF minizes Ca. (Calabi '82)

< □ > < @ > < E > < E > E のQ@

In my approach I consider a generalization of the Calabi-flow. $(M, [\omega_0])$ compact *polarized* Kähler manifold. *Calabi functional*: Ca: {Kähler forms $\in [\omega_0]$ } $\rightarrow \mathbb{R}^+$

$$\mathsf{Ca}:\quad \omega\mapsto \int_M s^2_\omega\,\omega^n$$

Definition. *Extremal metric: critical point of* Ca.

Constant scalar curvature \Longrightarrow Extremal

Calabi flow (CF) $\partial_t \omega_t = i \partial \bar{\partial} s_t$, $\omega_{|t=0} = \omega_0$

CF minizes Ca. (Calabi '82)

Theorem [Chen-He '08]. *CF is well-posed. The flow is stable near CSC Kähler metrics and it exists as far as the Ricci curvature is bounded.*

Calabi flow as a flow of (n - 1, n - 1)-forms

The Calabi flow can be alternatively written in terms of (n - 1, n - 1)-forms as

$$\partial_t \omega_t^{n-1} = i \partial \bar{\partial} *_t (\rho(\omega_t) \wedge \omega_t), \quad \omega_{|t=0} = \omega_0.$$

< □ > < @ > < E > < E > E のQ@

Calabi flow as a flow of (n - 1, n - 1)-forms

The Calabi flow can be alternatively written in terms of (n - 1, n - 1)-forms as

$$\partial_t \omega_t^{n-1} = i \partial \bar{\partial} *_t (\rho(\omega_t) \wedge \omega_t), \quad \omega_{|t=0} = \omega_0.$$

This new flow moves the form ω_t^{n-1} in the Bott-Chern cohomology class

$$[\omega_0^{n-1}]_{BC} = \left\{ \omega_0^{n-1} + i\partial\bar{\partial}\vartheta : \vartheta \in \Lambda^{n-2,n-2} \right\} \in H_{BC} = \frac{\ker d}{\operatorname{im}\partial\bar{\partial}}$$

The following decomposition holds

$$\Omega = \ker \Delta^{BC} \oplus \operatorname{im} \partial \bar{\partial} \oplus (\operatorname{im} \partial^* + \operatorname{im} \bar{\partial}^*)$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

(Schweitzer '07).

GENERALIZATIONS OF THE CALABI-FLOW

It is quite natural to consider the flow of balanced metrics

$$\partial_t \omega_t^{n-1} = i \partial \bar{\partial} *_t (\rho(\omega_t) \wedge \omega_t), \quad \omega_{|t=0} = \omega_0.$$

< □ > < @ > < E > < E > E のQ@

GENERALIZATIONS OF THE CALABI-FLOW

It is quite natural to consider the flow of balanced metrics

$$\partial_t \omega_t^{n-1} = i \partial \bar{\partial} *_t (\rho(\omega_t) \wedge \omega_t), \quad \omega_{|t=0} = \omega_0.$$

Another flow which is natural to consider in the balanced setting is the Laplacian-type flow

$$\partial_t \omega_t^{n-1} = \Delta_t^{BC} \omega_t^{n-1} \quad \omega_{|t=0} = \omega_0$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

which is inspired by the *Laplacian flow* in G₂-geometry.

Laplacian flow in G_2 -geometry

A G₂-structure on a 7-dimensional manifold is a section φ of an open subbundle $\Lambda^3_+ \subseteq \Lambda^3$.

 φ determines a metric g_{φ} and an orientation.

 φ is torsion-free if $d\varphi = d^*\varphi = 0$.

The Laplacian flow (LF) is the geometric flow

$$\partial_t \varphi_t = \Delta_{\varphi_t} \varphi_t \,, \quad d\varphi_t = 0 \,.$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

(Byant '05)

Theorem [Bryant-Xu '11]. LF is well-posed.

LAPLACIAN FLOW IN G_2 -Geometry

・ロト・西ト・ヨト・ヨー つへぐ

Laplacian flow in G_2 -geometry

・ロト・西ト・モート ヨー うくの

 $-L_{\varphi}, -l_{\varphi}$ are not elliptic,

LAPLACIAN FLOW IN G_2 -Geometry

$$\begin{split} \Lambda^2 & \stackrel{d}{\longrightarrow} \Lambda^3 & \Lambda^3_+ \cap [\varphi_0] \xrightarrow{P(\varphi) = \Delta_{\varphi} \varphi} \Lambda^3 \\ & \downarrow \Delta & \uparrow^{\varphi_0 + d} & \uparrow^d \\ & \Lambda^2 & \stackrel{d^*}{\longleftarrow} \Lambda^3 & \Lambda^2_+ \subseteq \Lambda^2 \xrightarrow{p(\sigma)} \Lambda^2 \end{split}$$
$$p(\sigma) = d^* \varphi_0 + \Delta_{\varphi_0 + d\sigma} \sigma. \text{ If} \\ & P_{*|\varphi} = L_{\varphi} , \quad p_{*|\sigma} = l_{\sigma} \\ -L_{\varphi}, -l_{\varphi} \text{ are not elliptic, but there exists } V \colon \Lambda^3_+ \to \Gamma(M) \text{ such that} \\ & \text{if} \quad \tilde{P}(\varphi) = \Delta_{\varphi} \varphi + \mathcal{L}_{V(\varphi)} \varphi , \quad \varphi \in \Lambda^3_+ \cap [\varphi_0] \end{split}$$

then $\tilde{P}_{*|\varphi} \circ d = -\Delta_{\varphi} \circ d + \text{l.o.t.}, \quad \tilde{p}_{*|\varphi} = -\Delta_{\varphi} + \text{l.o.t.}$

The well-posedness of the LF follows via a DeTurck trick.

THE BALANCED FLOW

$$P_{*|\varphi} = L_{\varphi} , \quad p_{*|\sigma} = l_{\sigma}$$

 $-L_{\varphi}, -l_{\varphi}$ are not elliptic for both the balanced flows introduced,

THE BALANCED FLOW

$$P_{*|\varphi} = L_{\varphi} \,, \quad p_{*|\sigma} = l_{\sigma}$$

 $-L_{\varphi}, -l_{\varphi}$ are not elliptic for both the balanced flows introduced, but if

$$P(\omega^{n-1}) = i\partial\bar{\partial} *_{\omega} (\rho(\omega) \wedge \omega) + (n-1)\Delta_{\omega}^{BC} \omega^{n-1}$$

then

$$P_{*|\varphi} \circ i\partial\bar{\partial} = -(n-1)\Delta^{BC} \circ i\partial\bar{\partial} + \text{l.o.t.}, \quad p_{*|\varphi} = -(n-1)\Delta^{A} + \text{l.o.t.}$$

Well-posedness of the Balanced flow

Theorem [Bedulli-V. '18]. Let (M, ω_0) be a compact balanced manifold. *The geometric flow* (*BF*)

$$\begin{split} \partial_t \omega_t^{n-1} &= i \partial \bar{\partial} *_t \left(\rho(\omega_t) \wedge \omega_t \right) + (n-1) \Delta_t^{BC} \, \omega_t^{n-1} \,, \\ d\omega_t^{n-1} &= 0 \,, \quad \omega_{|t=0} = \omega_0 \end{split}$$

is well-posed. The solution ω_t *satisfies,* $\omega_t^{n-1} \in [\omega_0^{n-1}]_{BC}$ *and if* ω_0 *is Kälher it reduces to the Calabi flow.*

Remark. The short-time existence is not free since flow is parabolic "only along $\partial \bar{\partial}$ -exact forms".

In general (BF) cannot be reduced to a scalar flow and $T_{\text{max}} < \infty$.

Open problem. Study the short-time existence of

$$\partial_t \omega_t = i \partial \bar{\partial} *_t \left(\rho(\omega_t) \wedge \omega_t \right), \qquad \partial_t \omega_t^{n-1} = \Delta_t^{\mathrm{BC}} \omega_t^{n-1}$$

Theorem. [Bedulli-V.]. Let $(M, \bar{\omega})$ be a compact Ricci-flat Kähler manifold. Then there exists $\delta > 0$ such that if ω_0 is a balanced metric on M satisfying $\|\omega_0 - \bar{\omega}\|_{C^{\infty}} < \delta$, then (BC) starting from ω_0 exists for all $t \in [0, \infty)$ and as $t \to \infty$ it converges in C^{∞} topology to a balanced form ω satisfying

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

(1)
$$i\partial\bar{\partial}*(\rho\wedge\omega)+(n-1)\Delta^{BC}*\omega=0$$

Theorem. [Bedulli-V.]. Let $(M, \bar{\omega})$ be a compact Ricci-flat Kähler manifold. Then there exists $\delta > 0$ such that if ω_0 is a balanced metric on M satisfying $\|\omega_0 - \bar{\omega}\|_{C^{\infty}} < \delta$, then (BC) starting from ω_0 exists for all $t \in [0, \infty)$ and as $t \to \infty$ it converges in C^{∞} topology to a balanced form ω satisfying

(1)
$$i\partial\bar{\partial}*(\rho\wedge\omega)+(n-1)\Delta^{BC}*\omega=0$$

Related Problems. The result is similar to the stability of the Laplacian flow in G₂-geometry (Lotay-Wei) and suggest that ω_t should converge to $\bar{\omega}$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Theorem. [Bedulli-V.]. Let $(M, \bar{\omega})$ be a compact Ricci-flat Kähler manifold. Then there exists $\delta > 0$ such that if ω_0 is a balanced metric on M satisfying $\|\omega_0 - \bar{\omega}\|_{C^{\infty}} < \delta$, then (BC) starting from ω_0 exists for all $t \in [0, \infty)$ and as $t \to \infty$ it converges in C^{∞} topology to a balanced form ω satisfying

(1)
$$i\partial\bar{\partial}*(\rho\wedge\omega)+(n-1)\Delta^{BC}*\omega=0$$

Related Problems. The result is similar to the stability of the Laplacian flow in G₂-geometry (Lotay-Wei) and suggest that ω_t should converge to $\bar{\omega}$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Describe balanced metrics satisfying (1).

Theorem. [Bedulli-V.]. Let $(M, \bar{\omega})$ be a compact Ricci-flat Kähler manifold. Then there exists $\delta > 0$ such that if ω_0 is a balanced metric on M satisfying $\|\omega_0 - \bar{\omega}\|_{C^{\infty}} < \delta$, then (BC) starting from ω_0 exists for all $t \in [0, \infty)$ and as $t \to \infty$ it converges in C^{∞} topology to a balanced form ω satisfying

(1)
$$i\partial\bar{\partial}*(\rho\wedge\omega)+(n-1)\Delta^{BC}*\omega=0$$

Related Problems. The result is similar to the stability of the Laplacian flow in G₂-geometry (Lotay-Wei) and suggest that ω_t should converge to $\bar{\omega}$.

Describe balanced metrics satisfying (1).

Improve the result.

A REMARK ON EXTREMAL BALANCED METRICS

Balanced metrics satisfying

$$i\partial\bar\partial*(\rho\wedge\omega)+(n-1)\Delta^{\mathrm{BC}}*\omega=0$$

can be seen as a generalization of extremal Kähler metrics to the balanced frameworks.

A REMARK ON EXTREMAL BALANCED METRICS

Balanced metrics satisfying

$$i\partial\bar{\partial}*(\rho\wedge\omega)+(n-1)\Delta^{\mathrm{BC}}*\omega=0$$

can be seen as a generalization of extremal Kähler metrics to the balanced frameworks.

Another generalization was proposed by Teng Fei who introduced extremal balanced metrics as critical points of the Calabi functional

$$\operatorname{Ca}: [\omega_0^{n-1}]_{BC} \cap \Lambda_+^{n-1,n-1} \to \mathbb{R}_+, \quad \operatorname{Ca}(\omega^{n-1}) = \int_M s_\omega^2 \, \omega^n$$

In this way

$$\omega \text{ extremal } \iff 2(n-1)i\partial\bar{\partial}s \wedge \rho = i\partial\bar{\partial}((2\Delta s + s^2)\omega)$$

・ロト・西ト・ヨト・ヨー もくの

A REMARK ON EXTREMAL BALANCED METRICS

Balanced metrics satisfying

$$i\partial\bar{\partial}*(\rho\wedge\omega)+(n-1)\Delta^{\mathrm{BC}}*\omega=0$$

can be seen as a generalization of extremal Kähler metrics to the balanced frameworks.

Another generalization was proposed by Teng Fei who introduced extremal balanced metrics as critical points of the Calabi functional

$$\operatorname{Ca} \colon [\omega_0^{n-1}]_{BC} \cap \Lambda_+^{n-1,n-1} \to \mathbb{R}_+, \quad \operatorname{Ca}(\omega^{n-1}) = \int_M s_\omega^2 \, \omega^n$$

In this way

$$\omega \text{ extremal } \iff 2(n-1)i\partial\bar{\partial}s \wedge \rho = i\partial\bar{\partial}((2\Delta s + s^2)\omega)$$

Problem. *Study the interplay between the two notions of extremal balanced metrics*

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let (M, ω) be a Hermitian manifold and

 $C^{\infty}_{\omega}(M) = \left\{ v \in C^{\infty}(M) : \omega_v^{n-1} = \omega^{n-1} + i\partial\bar{\partial}(v\omega^{n-2}) > 0 \right\}$

which is open in $C^{\infty}(M)$.

Let (M, ω) be a Hermitian manifold and

 $C^{\infty}_{\omega}(M) = \left\{ v \in C^{\infty}(M) : \omega_v^{n-1} = \omega^{n-1} + i\partial\bar{\partial}(v\omega^{n-2}) > 0 \right\}$

which is open in $C^{\infty}(M)$.

- ω balanced \implies ω_v balanced ω Gauduchon \implies ω_v Gauduchon
- ω Strongly Gauduchon $\implies \omega_v$ Strongly Gauduchon

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 $\left\{\omega_v^{n-1}\right\} \subset \Lambda_+^{n-1,n-1} \cap [\omega^{n-1}]_{BC}.$

Let (M, ω) be a Hermitian manifold and

 $C^{\infty}_{\omega}(M) = \left\{ v \in C^{\infty}(M) : \omega_v^{n-1} = \omega^{n-1} + i\partial\bar{\partial}(v\omega^{n-2}) > 0 \right\}$

which is open in $C^{\infty}(M)$.

- ω Strongly Gauduchon $\implies \omega_v$ Strongly Gauduchon

 $\left\{\omega_v^{n-1}\right\} \subset \Lambda_+^{n-1,n-1} \cap [\omega^{n-1}]_{BC}$. We introduce

$$\partial_t \omega_t^{n-1} = i \partial \bar{\partial} (s_{\omega_t} \omega^{n-2}), \quad \omega_{|t=0} = \omega_0 \in \{\omega_v\}$$

which is inspired by the (n - 1)-plurisubharmonic flow

$$\partial_t \omega_t^{n-1} = -(n-1)\rho(\omega_t) \wedge \omega^{n-2}, \quad \omega_{|t=0} = \omega_0.$$

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● ○ ○ ○

Theorem [Bedulli-V.]. *The flow*

$$\partial_t \omega_t^{n-1} = i \partial \bar{\partial} (s_{\omega_t} \omega^{n-2}), \quad \omega_{|t=0} = \omega_0 \in \{\omega_v\}$$

always has a unique short-time solution $\{\omega_t\}_{t\in[0,T_{max})}$. $\{\omega_t\}$ is balanced for every t. If further $c_1(M) \leq 0$, ω is Kähler-Einstein and ω_0 is close enough to ω in C^{∞} -topology, then $\{\omega_t\}$ is defined for any positive t and converges in C^{∞} -topology to ω .

Theorem [Bedulli-V.]. *The flow*

$$\partial_t \omega_t^{n-1} = i \partial \bar{\partial} (s_{\omega_t} \omega^{n-2}), \quad \omega_{|t=0} = \omega_0 \in \{\omega_v\}$$

always has a unique short-time solution $\{\omega_t\}_{t\in[0,T_{max})}$. $\{\omega_t\}$ is balanced for every t. If further $c_1(M) \leq 0$, ω is Kähler-Einstein and ω_0 is close enough to ω in C^{∞} -topology, then $\{\omega_t\}$ is defined for any positive t and converges in C^{∞} -topology to ω .

 $\partial_t \omega_t^{n-1} = i \partial \bar{\partial} (s_{\omega_t} \omega^{n-2})$ is equivalent to $\partial_t u_t = s_{u_t}$

which is elliptic in very strong sense (Whisken-Polden, Mantegazza-Martinazzi) \implies short-time existence.

Conjecture [Fino-V.]. *Every compact complex manifold admitting a pluriclosed and a balanced metric is Kähler.*

Conjecture [Fino-V.]. *Every compact complex manifold admitting a pluriclosed and a balanced metric is Kähler.*

Some evidences

Conjecture [Fino-V.]. *Every compact complex manifold admitting a pluriclosed and a balanced metric is Kähler.*

Some evidences

• Every metric which is simultaneously pluriclosed and balanced is necessary Kähler.

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Conjecture [Fino-V.]. *Every compact complex manifold admitting a pluriclosed and a balanced metric is Kähler.*

Some evidences

- Every metric which is simultaneously pluriclosed and balanced is necessary Kähler.
- Verbitsky proved that the twistor space of a compact, anti-self-dual Riemannian manifold has no pluriclosed metrics unless it is Kähler.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Conjecture [Fino-V.]. *Every compact complex manifold admitting a pluriclosed and a balanced metric is Kähler.*

Some evidences

- Every metric which is simultaneously pluriclosed and balanced is necessary Kähler.
- Verbitsky proved that the twistor space of a compact, anti-self-dual Riemannian manifold has no pluriclosed metrics unless it is Kähler.
- Chiose proved that a compact complex manifold of in the Fujiki class *C* has a pluriclosed metric if and only if it is Kähler.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Conjecture [Fino-V.]. *Every compact complex manifold admitting a pluriclosed and a balanced metric is Kähler.*

Some evidences

- Every metric which is simultaneously pluriclosed and balanced is necessary Kähler.
- Verbitsky proved that the twistor space of a compact, anti-self-dual Riemannian manifold has no pluriclosed metrics unless it is Kähler.
- Chiose proved that a compact complex manifold of in the Fujiki class *C* has a pluriclosed metric if and only if it is Kähler.
- Li, Fu and Yau found a new class of non-Kähler balanced manifolds by using conifold transactions. Such examples include the connected sums M_k of *k*-copies of $S^3 \times S^3$, $k \ge 1$. M_k has no pluriclosed metrics.

• Chiose, Rasdeaconu, Suvaina proved that the conjecture is true on compact 3-folds such that for every Gauduchon metric ω

 $H_A^{2,2} \ni [\omega^2]_A$ contains a balanced metric

Theorem [Fino-V.]. *The conjecture is true in* 2-*step nilmanifolds with invariant complex structures and on* 3-*dimensional solvmanifolds with invariant complex structures and holomorphically trivial canonical bundle.*

• Chiose, Rasdeaconu, Suvaina proved that the conjecture is true on compact 3-folds such that for every Gauduchon metric ω

 $H_A^{2,2} \ni [\omega^2]_A$ contains a balanced metric

Theorem [Fino-V.]. *The conjecture is true in* **2***-step nilmanifolds with invariant complex structures and on* **3***-dimensional solvmanifolds with invariant complex structures and holomorphically trivial canonical bundle.*

Theorem [Grantcharov-Fino-V.]. *The conjecture is true in compact semisimple Lie groups with the Samelson complex structure.*

• Chiose, Rasdeaconu, Suvaina proved that the conjecture is true on compact 3-folds such that for every Gauduchon metric ω

 $H_A^{2,2} \ni [\omega^2]_A$ contains a balanced metric

Theorem [Fino-V.]. *The conjecture is true in* 2*-step nilmanifolds with invariant complex structures and on* 3*-dimensional solvmanifolds with invariant complex structures and holomorphically trivial canonical bundle.*

Theorem [Grantcharov-Fino-V.]. *The conjecture is true in compact semisimple Lie groups with the Samelson complex structure.*

It is quite natural to consider the same problem for other classes of Hermitian metrics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Chiose, Rasdeaconu, Suvaina proved that the conjecture is true on compact 3-folds such that for every Gauduchon metric ω

 $H_A^{2,2} \ni [\omega^2]_A$ contains a balanced metric

Theorem [Fino-V.]. *The conjecture is true in* 2*-step nilmanifolds with invariant complex structures and on* 3*-dimensional solvmanifolds with invariant complex structures and holomorphically trivial canonical bundle.*

Theorem [Grantcharov-Fino-V.]. *The conjecture is true in compact semisimple Lie groups with the Samelson complex structure.*

It is quite natural to consider the same problem for other classes of Hermitian metrics

Theorem [Grantcharov-Fino-V.]. *The homogeneous space* $SU(5)/T^2$ *simply connected and has an invariant complex structure which admits both balanced and astheno-Kähler metrics, but does not admit any pluriclosed metric.*

Thank you!

・ロト・西ト・ヨー シック・