A Riemann-Roch theorem in Bott-Chern cohomology

Jean-Michel Bismut

Université Paris-Sud, Orsay

Banff, October 28th - November 1st 2019

Bridging the gap between Kähler and non-Kähler complex geometry

Jean-Michel Bismut

Riemann-Roch in Bott-Chern

1/34

- 2 Exotic Hodge theories
- 3) The RRG theorem: two trivial cases
- 4 The proof when S is a point
- 5 Towards the proof of the general case
- 6 A proof of the main theorem
- 7 The case where the fibre is a point: the liptic theory

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Bott-Chern cohomology

• S complex manifold of dimension n.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

- S complex manifold of dimension n.
- Bott-Chern cohomology $H_{\rm BC}^{(p,q)}\left(S,\mathbf{C}\right) = \frac{\ker d^S \cap \Omega^{(p,q)}(S,\mathbf{C})}{\overline{\partial}^S \partial^S \Omega^{(p-1,q-1)}(S,\mathbf{C})}.$

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

- S complex manifold of dimension n.
- Bott-Chern cohomology $H_{\rm BC}^{(p,q)}\left(S,\mathbf{C}\right) = \frac{\ker d^S \cap \Omega^{(p,q)}(S,\mathbf{C})}{\overline{\partial}^S \partial^S \Omega^{(p-1,q-1)}(S,\mathbf{C})}.$
- In general $H_{\mathrm{BC}}^{\cdot}(X, \mathbf{C})$ strictly finer than $H_{\mathrm{DR}}^{\cdot}(X, \mathbf{C})$.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

- S complex manifold of dimension n.
- Bott-Chern cohomology $H_{\rm BC}^{(p,q)}\left(S,\mathbf{C}\right) = \frac{\ker d^S \cap \Omega^{(p,q)}(S,\mathbf{C})}{\overline{\partial}^S \partial^S \Omega^{(p-1,q-1)}(S,\mathbf{C})}.$
- In general $H_{BC}^{\cdot}(X, \mathbb{C})$ strictly finer than $H_{DR}^{\cdot}(X, \mathbb{C})$.
- $H_{\mathrm{BC}}^{(=)}\left(S,\mathbf{R}\right) = \bigoplus_{0 \le p \le n} H_{\mathrm{BC}}^{(p,p)}\left(S,\mathbf{R}\right).$

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Characteristic classes in $H_{\rm BC}(S, \mathbf{R})$

• E holomorphic vector bundle, g^E Hermitian metric.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

- E holomorphic vector bundle, g^E Hermitian metric.
- ∇^E Chern connection, R^E curvature type (1, 1).

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

- E holomorphic vector bundle, g^E Hermitian metric.
- ∇^E Chern connection, R^E curvature type (1, 1).
- $\operatorname{ch}(E, g^E) \in \Omega^{(=)}(S, \mathbf{R})$ closed form.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

- E holomorphic vector bundle, g^E Hermitian metric.
- ∇^E Chern connection, R^E curvature type (1, 1).
- $\operatorname{ch}(E, g^E) \in \Omega^{(=)}(S, \mathbf{R})$ closed form.
- Bott-Chern class $[ch(E, g^E)] \in H^{(=)}_{BC}(S, \mathbf{R})$ does not depend on g^E .

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

- E holomorphic vector bundle, g^E Hermitian metric.
- ∇^E Chern connection, R^E curvature type (1, 1).
- ch $(E, g^E) \in \Omega^{(=)}(S, \mathbf{R})$ closed form.
- Bott-Chern class $[ch(E, g^E)] \in H^{(=)}_{BC}(S, \mathbf{R})$ does not depend on g^E .
- It will be denoted $\operatorname{ch}_{\operatorname{BC}}(E) \in H^{(=)}_{\operatorname{BC}}(S, \mathbf{R}).$

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

A theorem of RRG

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

A theorem of RRG

 p: M → S proper submersion of complex manifolds, with fibre X_s = p⁻¹(s).

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

A theorem of RRG

- p: M → S proper submersion of complex manifolds, with fibre X_s = p⁻¹(s).
- F holomorphic vector bundle on M.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

A theorem of RRG

- p: M → S proper submersion of complex manifolds, with fibre X_s = p⁻¹(s).
- F holomorphic vector bundle on M.

Theorem

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

A theorem of RRG

- p: M → S proper submersion of complex manifolds, with fibre X_s = p⁻¹(s).
- F holomorphic vector bundle on M.

Theorem

• If $R^{\cdot}p_{*}F$ locally free,

$$\operatorname{ch}_{\mathrm{BC}}(R^{\cdot}p_{*}F) = p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(TX)\operatorname{ch}_{\mathrm{BC}}(F)\right] \operatorname{in} H_{\mathrm{BC}}^{(=)}(S,\mathbf{R}).$$

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

A theorem of RRG

- p: M → S proper submersion of complex manifolds, with fibre X_s = p⁻¹(s).
- F holomorphic vector bundle on M.

Theorem

• If $R^{\cdot}p_{*}F$ locally free,

 $\operatorname{ch}_{\mathrm{BC}}(R^{\cdot}p_{*}F) = p_{*}\left[\operatorname{Td}_{\mathrm{BC}}(TX)\operatorname{ch}_{\mathrm{BC}}(F)\right] \operatorname{in} H_{\mathrm{BC}}^{(=)}(S,\mathbf{R}).$

• For $c_{1,BC}(R^{\cdot}p_*F)$, the result is valid in full generality.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Remarks

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Remarks

• Families index theorem of Atiyah-Singer implies de Rham version of this result, valid even if $R^{\cdot}p_{*}F$ not locally free.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Remarks

- Families index theorem of Atiyah-Singer implies de Rham version of this result, valid even if $R^{\cdot}p_{*}F$ not locally free.
- If M, S projective, the result follows from versions of Riemann-Roch-Grothendieck, even if $R^{\cdot}p_{*}F$ not locally free.

Exotic Hodge theories The RRG theorem: two trivial cases The proof when S is a point Towards the proof of the general case A proof of the main theorem The case where the fibre is a point: the liptic theory References

Remarks

- Families index theorem of Atiyah-Singer implies de Rham version of this result, valid even if $R^{\cdot}p_{*}F$ not locally free.
- If M, S projective, the result follows from versions of Riemann-Roch-Grothendieck, even if $R^{\cdot}p_{*}F$ not locally free.
- In general, if *F* coherent sheaf, ch_{BC} (*F*) was in principle defined by Schweitzer.

Hodge theory without a metric

Hodge theory without a metric

• X smooth compact oriented manifold.

Hodge theory without a metric

- X smooth compact oriented manifold.
- One can scale the intersection product $\int_X \alpha \wedge \beta$...

Hodge theory without a metric

- X smooth compact oriented manifold.
- One can scale the intersection product $\int_X \alpha \wedge \beta$...
- ... so as to obtain a nondegenerate Hermitian form of signature (∞, ∞) .

An elementary example

An elementary example

• If dim_{**R**} M = 2, $\eta \left(\alpha^{(0)}, \beta^{(2)} \right) = -i \int_M \alpha \wedge \overline{\beta} \dots$

An elementary example

• If dim_{**R**}
$$M = 2$$
, $\eta \left(\alpha^{(0)}, \beta^{(2)} \right) = -i \int_M \alpha \wedge \overline{\beta} \dots$

•
$$\eta\left(\alpha^{(1)},\beta^{1}\right)=i\int_{M}\alpha\wedge\overline{\beta}\ldots$$

An elementary example

• If dim_{**R**}
$$M = 2$$
, $\eta \left(\alpha^{(0)}, \beta^{(2)} \right) = -i \int_M \alpha \wedge \overline{\beta} \dots$

•
$$\eta\left(\alpha^{(1)},\beta^{1}\right)=i\int_{M}\alpha\wedge\overline{\beta}\dots$$

•
$$\eta\left(\alpha^{(2)},\beta^{(0)}\right) = i\int_M \alpha \wedge \overline{\beta}.$$

An elementary example

• If dim_{**R**} M = 2, $\eta \left(\alpha^{(0)}, \beta^{(2)} \right) = -i \int_M \alpha \wedge \overline{\beta} \dots$

•
$$\eta\left(\alpha^{(1)},\beta^{1}\right)=i\int_{M}\alpha\wedge\overline{\beta}..$$

•
$$\eta\left(\alpha^{(2)},\beta^{(0)}\right) = i\int_M \alpha \wedge \overline{\beta}$$

• η is a Hermitian form of signature (∞, ∞) .

The adjoint of d

The adjoint of d

• d^* adjoint of d with respect to η .

The adjoint of d

• d^* adjoint of d with respect to η .

• Then
$$d^* = d$$
.

The adjoint of d

- d^* adjoint of d with respect to η .
- Then $d^* = d$.
- Hodge Laplacian $[d, d^*] = 0...$ which is not elliptic, not Fredholm...
The adjoint of d

- d^* adjoint of d with respect to η .
- Then $d^* = d$.
- Hodge Laplacian $[d, d^*] = 0...$ which is not elliptic, not Fredholm...
- If M complex, $\overline{\partial}^* = \partial, \partial^* = \overline{\partial}$.

The adjoint of d

- d^* adjoint of d with respect to η .
- Then $d^* = d$.
- Hodge Laplacian $[d, d^*] = 0...$ which is not elliptic, not Fredholm...
- If M complex, $\overline{\partial}^* = \partial, \partial^* = \overline{\partial}$.

•
$$\left[\overline{\partial}, \overline{\partial}^*\right] = 0, \left[\partial, \partial^*\right] = 0.$$

The case of a Hermitian vector bundle

The case of a Hermitian vector bundle

• (E, g^E) holomorphic Hermitian vector bundle with Chern connection ∇^E .

The case of a Hermitian vector bundle

• (E, g^E) holomorphic Hermitian vector bundle with Chern connection ∇^E .

• Then
$$\nabla^{E''*} = \nabla^{E'}$$
.

The case of a Hermitian vector bundle

• (E, g^E) holomorphic Hermitian vector bundle with Chern connection ∇^E .

• Then
$$\nabla^{E''*} = \nabla^{E'}$$
.

• Curvature R^E is the Hodge Laplacian $[\nabla^{E''}, \nabla^{E'}]$...

The case of a Hermitian vector bundle

- (E, g^E) holomorphic Hermitian vector bundle with Chern connection ∇^E .
- Then $\nabla^{E''*} = \nabla^{E'}$.
- Curvature R^E is the Hodge Laplacian $[\nabla^{E''}, \nabla^{E'}]$...
- ... which is nilpotent.

A modified Hermitian form on $\Omega^{\cdot}(M)$

• Assume M complex and ω a real (1, 1) form.

- Assume M complex and ω a real (1, 1) form.
- Multiplication by $i\omega$ is η -self-adjoint.

- Assume M complex and ω a real (1, 1) form.
- Multiplication by $i\omega$ is η -self-adjoint.
- $\theta(\alpha, \beta) = \eta(\alpha, e^{-i\omega\beta\beta)$ Hermitian form.

- Assume M complex and ω a real (1, 1) form.
- Multiplication by $i\omega$ is η -self-adjoint.
- $\theta(\alpha, \beta) = \eta(\alpha, e^{-i\omega\beta\beta)$ Hermitian form.

•
$$d^* = d - id\omega \wedge, \overline{\partial}^* = \partial - i\partial\omega.$$

- Assume M complex and ω a real (1, 1) form.
- Multiplication by $i\omega$ is η -self-adjoint.
- $\theta(\alpha, \beta) = \eta(\alpha, e^{-i\omega\beta\beta)$ Hermitian form.

•
$$d^* = d - id\omega \wedge, \overline{\partial}^* = \partial - i\partial\omega.$$

•
$$[d, d^*] = 0, \left[\overline{\partial}, \overline{\partial}^*\right] = -i\overline{\partial}\partial\omega.$$

A modified Hermitian form on $\Omega^{\cdot}(M)$

- Assume M complex and ω a real (1, 1) form.
- Multiplication by $i\omega$ is η -self-adjoint.
- $\theta(\alpha, \beta) = \eta(\alpha, e^{-i\omega\beta\beta)$ Hermitian form.

•
$$d^* = d - id\omega \wedge, \overline{\partial}^* = \partial - i\partial\omega.$$

•
$$[d, d^*] = 0, \left[\overline{\partial}, \overline{\partial}^*\right] = -i\overline{\partial}\partial\omega.$$

• Holomorphic Laplacian vanishes if and only if $\overline{\partial}\partial\omega = 0$.

Description of two trivial cases

Description of two trivial cases

• First case: M = S, fibre is a point.

Description of two trivial cases

- First case: M = S, fibre is a point.
- Second case: base S is a point.

The case where the fibre is a point

The case where the fibre is a point

• Take $M = S, F = \mathbf{C}$.

The case where the fibre is a point

- Take $M = S, F = \mathbf{C}$.
- The theorem to be proved is the known fact 1 = 1.

•
$$\chi(X, F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F).$$

The case where S is a point

•
$$\chi(X, F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F).$$

• X projective: Riemann-Roch-Hirzebruch.

- $\chi(X,F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F).$
- X projective: Riemann-Roch-Hirzebruch.
- If X Kähler, proof by local index theorem for D^X .

- $\chi(X, F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F).$
- X projective: Riemann-Roch-Hirzebruch.
- If X Kähler, proof by local index theorem for D^X .
- X arbitrary, deformation of $D^X = \overline{\partial}^X + \overline{\partial}^{X*}$ in smooth category to classical Dirac operator (Atiyah-Singer).

- $\chi(X, F) = \int_X \operatorname{Td}(TX) \operatorname{ch}(F).$
- X projective: Riemann-Roch-Hirzebruch.
- If X Kähler, proof by local index theorem for D^X .
- X arbitrary, deformation of $D^X = \overline{\partial}^X + \overline{\partial}^{X*}$ in smooth category to classical Dirac operator (Atiyah-Singer).
- In families, smooth deformation destroys the holomorphic structure: Bott-Chern information is lost!

A simple idea of the proof

A simple idea of the proof

• How to prove RRH by heat equation while preserving $\overline{\partial}^X$ in the non-Kähler case ?

A simple idea of the proof

- How to prove RRH by heat equation while preserving $\overline{\partial}^X$ in the non-Kähler case ?
- By enlarging the set of permissible metrics.

The local index theorem

The local index theorem

• For t > 0, $p_t(x, x')$ smooth kernel for $\exp\left(-tD^{X,2}\right)$.

The local index theorem

For t > 0, p_t (x, x') smooth kernel for exp (-tD^{X,2}).
McKean-Singer

$$\chi(X,F) = \operatorname{Tr}_{s}\left[\exp\left(-tD^{X,2}\right)\right] = \int_{X} \operatorname{Tr}_{s}\left[p_{t}\left(x,x\right)\right] dx.$$

The local index theorem

For t > 0, p_t (x, x') smooth kernel for exp (-tD^{X,2}).
McKean-Singer

$$\chi(X,F) = \operatorname{Tr}_{s}\left[\exp\left(-tD^{X,2}\right)\right] = \int_{X} \operatorname{Tr}_{s}\left[p_{t}\left(x,x\right)\right] dx.$$

• As
$$t \to 0$$
, $p_t(x, x) \simeq t^{-n/2}$.

The local index theorem

For t > 0, p_t (x, x') smooth kernel for exp (-tD^{X,2}).
McKean-Singer

$$\chi(X,F) = \operatorname{Tr}_{s}\left[\exp\left(-tD^{X,2}\right)\right] = \int_{X} \operatorname{Tr}_{s}\left[p_{t}\left(x,x\right)\right] dx.$$

• As
$$t \to 0$$
, $p_t(x, x) \simeq t^{-n/2}$.

• The local index theorem says that in certain cases, as $t \to 0$, $\text{Tr}_{s}[p_{t}(x, x)]$ has a geometrically computable limit...

The local index theorem

For t > 0, p_t (x, x') smooth kernel for exp (-tD^{X,2}).
McKean-Singer

$$\chi(X,F) = \operatorname{Tr}_{s}\left[\exp\left(-tD^{X,2}\right)\right] = \int_{X} \operatorname{Tr}_{s}\left[p_{t}\left(x,x\right)\right] dx.$$

• As
$$t \to 0$$
, $p_t(x, x) \simeq t^{-n/2}$.

- The local index theorem says that in certain cases, as $t \to 0$, $\text{Tr}_{s}[p_{t}(x, x)]$ has a geometrically computable limit...
- ... which proves the index theorem.

The local index theorem

For t > 0, p_t (x, x') smooth kernel for exp (-tD^{X,2}).
McKean-Singer

$$\chi(X,F) = \operatorname{Tr}_{s}\left[\exp\left(-tD^{X,2}\right)\right] = \int_{X} \operatorname{Tr}_{s}\left[p_{t}\left(x,x\right)\right] dx.$$

• As
$$t \to 0$$
, $p_t(x, x) \simeq t^{-n/2}$.

- The local index theorem says that in certain cases, as $t \to 0$, $\text{Tr}_{s}[p_{t}(x, x)]$ has a geometrically computable limit...
- ... which proves the index theorem.
- This holds in particular when X is Kähler.
The proof when $\overline{\partial}^X \partial^X \omega^X = 0$

The proof when $\overline{\partial}^X \partial^X \omega^X = 0$

• X compact complex manifold, ω^X a Kähler form (not necessarily closed).

```
The proof when \overline{\partial}^X \partial^X \omega^X = 0
```

- X compact complex manifold, ω^X a Kähler form (not necessarily closed).
- I proved that there is a local index theorem if and only if $\overline{\partial}^X \partial^X \omega^X = 0$.

```
The proof when \overline{\partial}^X \partial^X \omega^X = 0
```

- X compact complex manifold, ω^X a Kähler form (not necessarily closed).
- I proved that there is a local index theorem if and only if $\overline{\partial}^X \partial^X \omega^X = 0$.
- Exotic Laplacian $\overline{\partial}^X \partial^X \omega^X$ obstruction to local index theorem.

A Lichnerowicz formula for the Bochner Laplacian

A Lichnerowicz formula for the Bochner Laplacian

$$\left(\overline{\partial}^{X} + \overline{\partial}^{X*}\right)^{2} = -\frac{1}{2} \overline{\nabla}_{e_{i}}^{\Lambda^{*}\left(\overline{T^{*}X}\right) \otimes F, 2} + \frac{K^{X}}{8} + \left(R^{F} + \frac{1}{2} \operatorname{Tr}\left[R^{TX}\right]\right)^{c} - \left(\overline{\partial}^{X} \partial^{X} i \omega^{X}\right)^{c} - \frac{1}{16} \left\| \left(\overline{\partial}^{X} - \partial^{X}\right) \omega^{X} \right\|_{\Lambda^{*}\left(T^{*}_{\mathbf{R}}X\right)}^{2}.$$

A Lichnerowicz formula for the Bochner Laplacian

$$\left(\overline{\partial}^{X} + \overline{\partial}^{X*}\right)^{2} = -\frac{1}{2} \overline{\nabla}_{e_{i}}^{\Lambda^{\circ}(\overline{T^{*}X}) \otimes F, 2} + \frac{K^{X}}{8} + \left(R^{F} + \frac{1}{2} \operatorname{Tr}\left[R^{TX}\right]\right)^{c} - \left(\overline{\partial}^{X} \partial^{X} i \omega^{X}\right)^{c} - \frac{1}{16} \left\| \left(\overline{\partial}^{X} - \partial^{X}\right) \omega^{X} \right\|_{\Lambda^{\circ}(T^{*}_{\mathbf{R}}X)}^{2}.$$

The term $\left(\overline{\partial}^X \partial^X i \omega^X\right)^c$ is of length 4 in the Clifford algebra.

A Lichnerowicz formula for the Bochner Laplacian

$$\left(\overline{\partial}^{X} + \overline{\partial}^{X*}\right)^{2} = -\frac{1}{2} \overline{\nabla}_{e_{i}}^{\Lambda^{*}\left(\overline{T^{*}X}\right) \otimes F, 2} + \frac{K^{X}}{8} + \left(R^{F} + \frac{1}{2} \operatorname{Tr}\left[R^{TX}\right]\right)^{c} - \left(\overline{\partial}^{X} \partial^{X} i \omega^{X}\right)^{c} - \frac{1}{16} \left\| \left(\overline{\partial}^{X} - \partial^{X}\right) \omega^{X} \right\|_{\Lambda^{*}\left(T^{*}_{\mathbf{R}}X\right)}^{2}.$$

The term $\left(\overline{\partial}^X \partial^X i \omega^X\right)^c$ is of length 4 in the Clifford algebra. Local index theory accepts only terms of length ≤ 2 .

A Lichnerowicz formula for the Bochner Laplacian

$$\begin{split} \left(\overline{\partial}^{X} + \overline{\partial}^{X*}\right)^{2} &= -\frac{1}{2} \overline{\nabla}_{e_{i}}^{\Lambda^{*}\left(\overline{T^{*}X}\right) \otimes F, 2} + \frac{K^{X}}{8} + \left(R^{F} + \frac{1}{2} \operatorname{Tr}\left[R^{TX}\right]\right)^{c} \\ &- \left(\overline{\partial}^{X} \partial^{X} i \omega^{X}\right)^{c} - \frac{1}{16} \left\| \left(\overline{\partial}^{X} - \partial^{X}\right) \omega^{X} \right\|_{\Lambda^{*}\left(T^{*}_{\mathbf{R}}X\right)}^{2}. \end{split}$$

The term $\left(\overline{\partial}^X \partial^X i \omega^X\right)^c$ is of length 4 in the Clifford algebra. Local index theory accepts only terms of length ≤ 2 . If $\overline{\partial}^X \partial^X \omega^X = 0$, there is a local index theorem, compatible with RRH.

The space \mathcal{X}

• $\pi : \mathcal{X} \to X$ total space of TX, with fibre $\widehat{TX}, \, \widehat{y} \in \widehat{TX}$ tautological section, $y \in TX$ corresponding section of TX.

- $\pi : \mathcal{X} \to X$ total space of TX, with fibre $\widehat{TX}, \, \widehat{y} \in \widehat{TX}$ tautological section, $y \in TX$ corresponding section of TX.
- Embed X into \mathcal{X} and use the Koszul complex $(\Lambda^{\cdot}(T^*X), i_y).$

- $\pi : \mathcal{X} \to X$ total space of TX, with fibre $\widehat{TX}, \, \widehat{y} \in \widehat{TX}$ tautological section, $y \in TX$ corresponding section of TX.
- Embed X into \mathcal{X} and use the Koszul complex $(\Lambda^{\cdot}(T^*X), i_y).$
- $A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2$ acts on $\Omega^{(0,\cdot)}(\mathcal{X}, \pi^*(\Lambda^{\cdot}(T^*X) \otimes F)).$

- $\pi : \mathcal{X} \to X$ total space of TX, with fibre $\widehat{TX}, \, \widehat{y} \in \widehat{TX}$ tautological section, $y \in TX$ corresponding section of TX.
- Embed X into \mathcal{X} and use the Koszul complex $(\Lambda^{\cdot}(T^*X), i_y).$
- $A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2$ acts on $\Omega^{(0,\cdot)}(\mathcal{X}, \pi^*(\Lambda^{\cdot}(T^*X) \otimes F)).$
- The cohomology of this new complex is still equal to $H^{(0,\cdot)}(X,F)$.

Exotic Hodge theory

• On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is intersection duality on X, and Hermitian duality fibrewise.

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is intersection duality on X, and Hermitian duality fibrewise.

•
$$r(x, \widehat{y}) = (x, -\widehat{y}).$$

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is intersection duality on X, and Hermitian duality fibrewise.

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))...$
- ... introduce duality which is intersection duality on X, and Hermitian duality fibrewise.

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))\dots$
- ... introduce duality which is intersection duality on X, and Hermitian duality fibrewise.

•
$$r(x, \widehat{y}) = (x, -\widehat{y}).$$

• $g^{\widehat{TX}}$ metric on $\widehat{TX}, \omega^X(1, 1)$ form on $X.$
• $\epsilon (s \widehat{\otimes} t, s' \widehat{\otimes} t') = \frac{i^n}{(2\pi)^{2n}} (-1)^{p(p+1)/2} \int_{\mathcal{X}} \langle \underline{r}^* t, t' \rangle_{g^{\Lambda^*}(\overline{\widehat{T^*X}}) \otimes F} \underline{r}^* s \wedge \overline{e^{-i\omega^X} s'} dv_{\widehat{TX}}.$

Exotic Hodge theory

- On $\Omega^{(0,\cdot)}(\mathcal{X},\pi^*(\Lambda^{\cdot}(T^*X)\otimes F))\dots$
- ... introduce duality which is intersection duality on X, and Hermitian duality fibrewise.

•
$$r(x, \widehat{y}) = (x, -\widehat{y}).$$

• $g^{\widehat{TX}}$ metric on $\widehat{TX}, \omega^X(1, 1)$ form on $X.$
• $\epsilon \left(s\widehat{\otimes}t, s'\widehat{\otimes}t'\right) = \frac{i^n}{(2\pi)^{2n}} (-1)^{p(p+1)/2} \int_{\mathcal{X}} \langle \underline{r}^*t, t' \rangle_{g^{\Lambda^*}(\widehat{T^*X}) \otimes F} \underline{r}^*s \wedge \overline{e^{-i\omega^X}s'} dv_{\widehat{TX}}.$

• ϵ Hermitian form of signature (∞, ∞) .

•
$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2$$

•
$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2 = \overline{\partial}^{\mathcal{X}} + \overline{\partial}^{\widehat{TX}} + i_y/b^2.$$

•
$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2 = \overline{\partial}^{\mathcal{X}} + \overline{\partial}^{\widehat{TX}} + i_y/b^2.$$

• A_b' adjoint of A_b'' .
• $A_b' = \partial^{\mathcal{X}} + \overline{\partial}^{\widehat{TX}*} + i_{\overline{y}}/b^2 + \overline{y}^* \wedge /b^2 - i\partial\omega^{\mathcal{X}} + \dots$

Evaluation of the adjoint

•
$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2 = \overline{\partial}^{\mathcal{X}} + \overline{\partial}^{\widehat{TX}} + i_y/b^2.$$

• A_b' adjoint of $A_b''.$
• $A_b' = \partial^{\mathcal{X}} + \overline{\partial}^{\widehat{TX}*} + i_{\overline{y}}/b^2 + \overline{y}^* \wedge /b^2 - i\partial\omega^{\mathcal{X}} + \dots$
• Laplacian looks like
 $L_b = \frac{1}{2b^2} \underbrace{\left(-\Delta_{g^{\widehat{TX}}}^V + |Y|_{g^{TX}}^2\right)}_{\mathcal{Y}_{g^{TX}}} + \frac{1}{b} \underbrace{\nabla_Y}_{\text{bind}} - \underbrace{i\overline{\partial}^{\mathcal{X}}\partial^{\mathcal{X}}\omega^{\mathcal{X}}}_{\text{decumultized}} + \dots$

harmonic oscillator

geodesic flow

uequantized

Evaluation of the adjoint

•
$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2 = \overline{\partial}^{\mathcal{X}} + \overline{\partial}^{\widehat{T\mathcal{X}}} + i_y/b^2.$$

• A_b' adjoint of $A_b''.$
• $A_b' = \partial^{\mathcal{X}} + \overline{\partial}^{\widehat{T\mathcal{X}}*} + i_{\overline{y}}/b^2 + \overline{y}* \wedge /b^2 - i\partial\omega^{\mathcal{X}} + \dots$
• Laplacian looks like
 $L_b = \frac{1}{2b^2} \left(-\Delta_{g^{\widehat{T\mathcal{X}}}}^V + |Y|_{g^{T\mathcal{X}}}^2 \right) + \frac{1}{b} \quad \underbrace{\nabla_Y}_{Y} \quad -i\overline{\partial}^{\mathcal{X}} \partial^{\mathcal{X}} \omega^{\mathcal{X}} + \dots$

harmonic oscillator

geodesic flow

dequantized

• This Laplacian is hypoelliptic, Fredholm, compact resolvent, heat kernel....

Evaluation of the adjoint

$$L_b = \frac{1}{2b^2} \underbrace{\left(-\Delta_{g\widehat{T}\widehat{X}}^V + |Y|_{g^TX}^2\right)}_{\text{harmonic oscillator}} + \frac{1}{b} \underbrace{\nabla_Y}_{\text{geodesic flow}} - \underbrace{i\overline{\partial}^X \partial^X \omega^X}_{\text{dequantized}} + \dots$$

- This Laplacian is hypoelliptic, Fredholm, compact resolvent, heat kernel....
- It is potentially good in families: it has been obtained by replacing L_2 metric by nonpositive metric.

Jean-Michel Bismut

21/34

Riemann-Roch in Bott-Chern

The behavior of L_b as $b \to 0$

The behavior of L_b as $b \to 0$

• As $b \to 0$, L_b converges in the proper sense to $\Box^X = \left[\overline{\partial}^X, \overline{\partial}^{X*}\right].$

The behavior of L_b as $b \to 0$

- As $b \to 0$, L_b converges in the proper sense to $\Box^X = \left[\overline{\partial}^X, \overline{\partial}^{X*}\right].$
- As $b \to 0$, the hypoelliptic heat kernel $p_{b,t}^{\mathcal{X}}$ collapses to the elliptic heat kernel $p_t^{\mathcal{X}}$.

The behavior of L_b as $b \to 0$

- As $b \to 0$, L_b converges in the proper sense to $\Box^X = \left[\overline{\partial}^X, \overline{\partial}^{X*}\right].$
- As $b \to 0$, the hypoelliptic heat kernel $p_{b,t}^{\mathcal{X}}$ collapses to the elliptic heat kernel $p_t^{\mathcal{X}}$.
- It is still true that $\chi(X, F) = \text{Tr}_{s} [\exp(-tL_{b})].$

The hypoelliptic theory still fails!

The hypoelliptic theory still fails!

• Except when $\overline{\partial}^X \partial^X \omega^X = 0$, no local index theorem for the heat kernel for L_b .
The hypoelliptic theory still fails!

- Except when $\overline{\partial}^X \partial^X \omega^X = 0$, no local index theorem for the heat kernel for L_b .
- The obstruction is still $\overline{\partial}^X \partial^X \omega^X$.

The solution

The solution

• In the previous constructions, ω^X can be taken to depend on Y.

The solution

- In the previous constructions, ω^X can be taken to depend on Y.
- If $\omega^X(1,1)$ form, in the above constructions, we replace ω^X by $|Y|^2_{g\widehat{TX}} \omega^X$.

Another Hodge Laplacian

Another Hodge Laplacian

$$\frac{1}{2b^2}\underbrace{\left(-\Delta_{g^{\widehat{TX}}}^V + \left|Y\right|_{g^{TX}}^2 \left|Y\right|_{g^{\widehat{TX}}}^2\right)}_{\text{quartic oscillator}} + \frac{1}{b}\underbrace{\nabla_Y}_{\text{geodesic}} - \left|Y\right|_{g^{\widehat{TX}}}^2\overline{\partial}\partial i\omega^X + \cdot$$

Another Hodge Laplacian

• The corresponding hypoelliptic Laplacian is of the form

$$\frac{1}{2b^2}\underbrace{\left(-\Delta_{g^{\widehat{TX}}}^V + \left|Y\right|_{g^{TX}}^2 \left|Y\right|_{g^{\widehat{TX}}}^2\right)}_{\text{quartic oscillator}} + \frac{1}{b}\underbrace{\nabla_Y}_{\text{geodesic}} - \left|Y\right|_{g^{\widehat{TX}}}^2 \overline{\partial}\partial i\omega^X + \cdot$$

• It is still a Fredholm hypoelliptic operator.

Another Hodge Laplacian

$$\frac{1}{2b^2}\underbrace{\left(-\Delta_{g^{\widehat{TX}}}^V + \left|Y\right|_{g^{TX}}^2 \left|Y\right|_{g^{\widehat{TX}}}^2\right)}_{\text{quartic oscillator}} + \frac{1}{b}\underbrace{\nabla_Y}_{\text{geodesic}} - \left|Y\right|_{g^{\widehat{TX}}}^2 \overline{\partial}\partial i\omega^X + \cdot$$

- It is still a Fredholm hypoelliptic operator.
- As $t \to 0$, local index theorem holds, because Y can be scaled.

Another Hodge Laplacian

$$\frac{1}{2b^2}\underbrace{\left(-\Delta_{g^{\widehat{TX}}}^V + \left|Y\right|_{g^{TX}}^2 \left|Y\right|_{g^{\widehat{TX}}}^2\right)}_{\text{quartic oscillator}} + \frac{1}{b}\underbrace{\nabla_Y}_{\text{geodesic}} - \left|Y\right|_{g^{\widehat{TX}}}^2 \overline{\partial}\partial i\omega^X + \cdot$$

- It is still a Fredholm hypoelliptic operator.
- As $t \to 0$, local index theorem holds, because Y can be scaled.
- $\chi(X, F) = \int_X \text{Td}(TX) \operatorname{ch}(F)$ obtained by suitably modifying the classical L_2 metric.

Another Hodge Laplacian

$$\frac{1}{2b^2}\underbrace{\left(-\Delta_{g^{\widehat{TX}}}^V + \left|Y\right|_{g^{TX}}^2 \left|Y\right|_{g^{\widehat{TX}}}^2\right)}_{\text{quartic oscillator}} + \frac{1}{b}\underbrace{\nabla_Y}_{\text{geodesic}} - \left|Y\right|_{g^{\widehat{TX}}}^2 \overline{\partial}\partial i\omega^X + \cdot$$

- It is still a Fredholm hypoelliptic operator.
- As $t \to 0$, local index theorem holds, because Y can be scaled.
- $\chi(X, F) = \int_X \text{Td}(TX) \operatorname{ch}(F)$ obtained by suitably modifying the classical L_2 metric.
- $|Y|_{g^{\widehat{TX}}}^2$ critical power.

Kähler fibrations

• $p: M \to S$ proper holomorphic submersion with fibre X.

- $p: M \to S$ proper holomorphic submersion with fibre X.
- $\omega^M \underline{\text{closed}}(1,1)$ form which is positive along the fibre.

- $p: M \to S$ proper holomorphic submersion with fibre X.
- ω^M <u>closed</u> (1, 1) form which is positive along the fibre.
- By B. Gillet-Soulé, using fibrewise elliptic Hodge theory...

- $p: M \to S$ proper holomorphic submersion with fibre X.
- $\omega^M \underline{\text{closed}}(1,1)$ form which is positive along the fibre.
- By B. Gillet-Soulé, using fibrewise elliptic Hodge theory...
- ... construction of closed superconnection forms α_t on S such that $\frac{\partial}{\partial t}\alpha_t = \frac{\overline{\partial}^S \partial^S}{2i\pi} \frac{\gamma_t}{t} \dots$

- $p: M \to S$ proper holomorphic submersion with fibre X.
- $\omega^M \underline{\text{closed}}(1,1)$ form which is positive along the fibre.
- By B. Gillet-Soulé, using fibrewise elliptic Hodge theory...
- ... construction of closed superconnection forms α_t on S such that ∂/∂t α_t = ∂/∂^S∂^S/2t πt ...
 ... with α₀ = p_{*} [Td (TX, g^{TX}) ch (F, g^F)], α_∞ = ch (R[·]p_{*}F, g<sup>R[·]p_{*}F).
 </sup>

Kähler fibrations

- $p: M \to S$ proper holomorphic submersion with fibre X.
- ω^M <u>closed</u> (1,1) form which is positive along the fibre.
- By B. Gillet-Soulé, using fibrewise elliptic Hodge theory...
- ... construction of closed superconnection forms α_t on S such that ∂/∂t α_t = ∂/∂t α_t = ∂/∂t α_t / 2iπ γ_t ...
 ...with α₀ = p_{*} [Td (TX, g^{TX}) ch (F, g^F)], α_∞ = ch (R[·]p_{*}F, g<sup>R[·]p_{*}F).
 Analytic torsion forms ∂/∂t ∂/∂t α_∞ = α_∞ α₀ =
 </sup>
 - ch $\left(R^{\cdot}p_{*}F, g^{R^{\cdot}p_{*}F}\right) p_{*}\left[\operatorname{Td}\left(TX, g^{TX}\right)\operatorname{ch}\left(F, g^{F}\right)\right].$

Jean-Michel Bismut

Riemann-Roch in Bott-Chern

26 / 34

Adiabatic limits

• S compact, ω^S Kähler metric on S (or a small neighborhood).

- S compact, ω^S Kähler metric on S (or a small neighborhood).
- For $\epsilon > 0$ small enough, $\omega_{\epsilon}^{M} = \omega^{M} + \frac{1}{\epsilon}p^{*}\omega^{S}$ Kähler metric on M.

- S compact, ω^S Kähler metric on S (or a small neighborhood).
- For $\epsilon > 0$ small enough, $\omega_{\epsilon}^{M} = \omega^{M} + \frac{1}{\epsilon}p^{*}\omega^{S}$ Kähler metric on M.
- On M, Dirac operator $D_{\epsilon}^{M} = \overline{\partial}^{M} + \overline{\partial}_{\epsilon}^{M*}$.

- S compact, ω^S Kähler metric on S (or a small neighborhood).
- For $\epsilon > 0$ small enough, $\omega_{\epsilon}^{M} = \omega^{M} + \frac{1}{\epsilon}p^{*}\omega^{S}$ Kähler metric on M.
- On M, Dirac operator $D^M_{\epsilon} = \overline{\partial}^M + \overline{\partial}^{M*}_{\epsilon}$.
- As $\epsilon \to 0$, D_{ϵ}^{M} converges to superconnection (nilpotent on the base, elliptic on the fibre).

- S compact, ω^S Kähler metric on S (or a small neighborhood).
- For $\epsilon > 0$ small enough, $\omega_{\epsilon}^{M} = \omega^{M} + \frac{1}{\epsilon}p^{*}\omega^{S}$ Kähler metric on M.
- On M, Dirac operator $D_{\epsilon}^{M} = \overline{\partial}^{M} + \overline{\partial}_{\epsilon}^{M*}$.
- As $\epsilon \to 0$, D_{ϵ}^{M} converges to superconnection (nilpotent on the base, elliptic on the fibre).
- The above results are adiabatic local limits $\epsilon \to 0$ of the results for one single Kähler manifold.

- S compact, ω^S Kähler metric on S (or a small neighborhood).
- For $\epsilon > 0$ small enough, $\omega_{\epsilon}^{M} = \omega^{M} + \frac{1}{\epsilon}p^{*}\omega^{S}$ Kähler metric on M.
- On M, Dirac operator $D_{\epsilon}^{M} = \overline{\partial}^{M} + \overline{\partial}_{\epsilon}^{M*}$.
- As $\epsilon \to 0$, D_{ϵ}^{M} converges to superconnection (nilpotent on the base, elliptic on the fibre).
- The above results are adiabatic local limits $\epsilon \to 0$ of the results for one single Kähler manifold.
- These results extend to $\overline{\partial}^M \partial^M \omega^M = 0.$

The general case

• Pick ω^M (1,1) form positive along fibers X.

 $\label{eq:constraint} Introduction \\ Exotic Hodge theories \\ The RRG theorem: two trivial cases \\ The proof when S is a point \\ Towards the proof of the general case \\ A proof of the main theorem \\ The case where the fibre is a point: the liptic theory \\ References \\ \end{tabular}$

- Pick ω^M (1,1) form positive along fibers X.
- \mathcal{M} total space of \widehat{TX} , fibers on S with fiber \mathcal{X} .

- Pick ω^M (1,1) form positive along fibers X.
- \mathcal{M} total space of \widehat{TX} , fibers on S with fiber \mathcal{X} .
- \hat{y} canonical section of TX on \mathcal{M} .

- Pick ω^M (1,1) form positive along fibers X.
- \mathcal{M} total space of \widehat{TX} , fibers on S with fiber \mathcal{X} .
- \hat{y} canonical section of TX on \mathcal{M} .
- Introduce superconnection analogue of

$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2.$$

The general case

- Pick ω^M (1,1) form positive along fibers X.
- \mathcal{M} total space of TX, fibers on S with fiber \mathcal{X} .
- \hat{y} canonical section of TX on \mathcal{M} .
- Introduce superconnection analogue of

$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2.$$

• We get families of closed superconnection forms $\alpha_{b,t}$ on S.

- Pick ω^M (1,1) form positive along fibers X.
- \mathcal{M} total space of \widehat{TX} , fibers on S with fiber \mathcal{X} .
- \hat{y} canonical section of TX on \mathcal{M} .
- Introduce superconnection analogue of -x

$$A_b'' = \overline{\partial}^{\alpha} + i_y/b^2.$$

- We get families of closed superconnection forms $\alpha_{b,t}$ on S.
- These forms lie in the same Bott-Chern class as the α_t (heat equation in the deformation parameter b).

- Pick ω^M (1,1) form positive along fibers X.
- \mathcal{M} total space of \widehat{TX} , fibers on S with fiber \mathcal{X} .
- \hat{y} canonical section of TX on \mathcal{M} .
- Introduce superconnection analogue of

$$A_b'' = \overline{\partial}^{\mathcal{X}} + i_y/b^2.$$

- We get families of closed superconnection forms $\alpha_{b,t}$ on S.
- These forms lie in the same Bott-Chern class as the α_t (heat equation in the deformation parameter b).
- This is possible because we deform nondegenerate Hermitian forms.

The final step

The final step

• As $t \to 0$, these forms $\alpha_{b,t}$ have no limit in general.

The final step

- As $t \to 0$, these forms $\alpha_{b,t}$ have no limit in general.
- Replace ω^M by $|Y|^2_{g^{\widehat{TX}}} \omega^M$.

The final step

- As $t \to 0$, these forms $\alpha_{b,t}$ have no limit in general.
- Replace ω^M by $|Y|^2_{q\widehat{TX}} \omega^M$.
- Prove the new forms lie in the same Bott-Chern class.
The final step

- As $t \to 0$, these forms $\alpha_{b,t}$ have no limit in general.
- Replace ω^M by $|Y|^2_{q^{\widehat{TX}}} \omega^M$.
- Prove the new forms lie in the same Bott-Chern class.
- Make $t \to 0...$ finally!

 $\label{eq:constraint} Introduction \\ Exotic Hodge theories \\ The RRG theorem: two trivial cases \\ The proof when S is a point \\ Towards the proof of the general case \\ A proof of the main theorem \\ The case where the fibre is a point: the liptic theory \\ References \\ Referenc$

A proof when the fibre is a point

• If M = S, fibration is Kähler (take $\omega^M = 0$).

- If M = S, fibration is Kähler (take $\omega^M = 0$).
- If $\omega^M = 0$, for any t > 0, $\alpha_t = 1$, get 1 = 1, and T = 0.

- If M = S, fibration is Kähler (take $\omega^M = 0$).
- If $\omega^M = 0$, for any t > 0, $\alpha_t = 1$, get 1 = 1, and T = 0.
- Forget about the Kähler property...

- If M = S, fibration is Kähler (take $\omega^M = 0$).
- If $\omega^M = 0$, for any t > 0, $\alpha_t = 1$, get 1 = 1, and T = 0.
- Forget about the Kähler property...
- ... and explain the given proof in the general case.

 $\label{eq:constraint} Introduction \\ Exotic Hodge theories \\ The RRG theorem: two trivial cases \\ The proof when S is a point \\ Towards the proof of the general case \\ A proof of the main theorem \\ The case where the fibre is a point: the liptic theory \\ References \\ Referenc$

 $\label{eq:constraint} Introduction \\ Exotic Hodge theories \\ The RRG theorem: two trivial cases \\ The proof when S is a point \\ Towards the proof of the general case \\ A proof of the main theorem \\ The case where the fibre is a point: the liptic theory \\ References \\ Referenc$

The case where fibre is a point

• Pick an arbitrary (1, 1) form ω^S on S = M.

- Pick an arbitrary (1,1) form ω^S on S = M.
- Reproduce formally the construction of superconnection forms.

- Pick an arbitrary (1,1) form ω^S on S = M.
- Reproduce formally the construction of superconnection forms.
- The forms α_t given by $\alpha_t = \exp\left(-i\frac{\overline{\partial}^S\partial^S\omega^S}{4\pi^2t}\right)$.

- Pick an arbitrary (1,1) form ω^S on S = M.
- Reproduce formally the construction of superconnection forms.
- The forms α_t given by α_t = exp (-i delta S a start delta S a sta

The case where fibre is a point

- Pick an arbitrary (1,1) form ω^S on S = M.
- Reproduce formally the construction of superconnection forms.
- The forms α_t given by $\alpha_t = \exp\left(-i\frac{\overline{\partial}^S \partial^S \omega^S}{4\pi^2 t}\right)$.

•
$$\alpha_t = 1 \text{ in } H_{\text{BC}}^{(=)}(S, \mathbf{C}).$$

• As $t \to 0$, α_t does not converge except if $\overline{\partial}^S \partial^S \omega^S = 0$ (implied by ω^S closed).

 $\label{eq:constraint} Introduction \\ Exotic Hodge theories \\ The RRG theorem: two trivial cases \\ The proof when S is a point \\ Towards the proof of the general case \\ A proof of the main theorem \\ The case where the fibre is a point: the liptic theory \\ References \\ \end{array}$

- Pick an arbitrary (1,1) form ω^S on S = M.
- Reproduce formally the construction of superconnection forms.
- The forms α_t given by $\alpha_t = \exp\left(-i\frac{\overline{\partial}^S \partial^S \omega^S}{4\pi^2 t}\right)$.

•
$$\alpha_t = 1 \text{ in } H_{\text{BC}}^{(=)}(S, \mathbf{C}).$$

- As $t \to 0$, α_t does not converge except if $\overline{\partial}^S \partial^S \omega^S = 0$ (implied by ω^S closed).
- The term $\overline{\partial}^S \partial^S \omega^S$ appears 'because' it is a Laplacian in the exotic Hodge theory of S.

The liptic theory

The liptic theory

• Assume again M = S: fibre is a point.

The liptic theory

- Assume again M = S: fibre is a point.
- ω^S a (1,1) form on S = M.

The liptic theory

- Assume again M = S: fibre is a point.
- ω^S a (1,1) form on S = M.
- Fundamental equality $|Y|_{g^{\widehat{TX}}}^2 \omega^S = 0.$

The liptic theory

• Assume again M = S: fibre is a point.

•
$$\omega^S$$
 a (1,1) form on $S = M$.

• Fundamental equality
$$|Y|^2_{g^{\widehat{TX}}} \omega^S = 0.$$

•
$$\alpha_t = \exp\left(-i\frac{\overline{\partial}^{\widehat{\chi}}\partial^{\widehat{\chi}}}{4\pi^2 t} |Y|_{g^{\widehat{TX}}}^2 \omega^S\right).$$

The liptic theory

• Assume again M = S: fibre is a point.

•
$$\omega^S$$
 a (1,1) form on $S = M$.

• Fundamental equality $|Y|_{g^{\widehat{TX}}}^2 \omega^S = 0.$

•
$$\alpha_t = \exp\left(-i\frac{\overline{\partial}^{\widehat{\chi}}\partial^{\widehat{\chi}}}{4\pi^2 t} |Y|_{g^{\widehat{TX}}}^2 \omega^S\right).$$

•
$$\alpha_t = 1$$
, so that as $t \to 0$, $\alpha_t \to 1$.

The liptic theory

• Assume again M = S: fibre is a point.

•
$$\omega^S$$
 a (1,1) form on $S = M$.

• Fundamental equality $|Y|_{g^{\widehat{TX}}}^2 \omega^S = 0.$

•
$$\alpha_t = \exp\left(-i\frac{\overline{\partial}^{\widehat{\chi}}\partial^{\widehat{\chi}}}{4\pi^2 t} |Y|_{g^{\widehat{TX}}}^2 \omega^S\right).$$

- $\alpha_t = 1$, so that as $t \to 0$, $\alpha_t \to 1$.
- The general proof gives us 1 = 1 even when M = S!

The liptic theory

• Assume again M = S: fibre is a point.

•
$$\omega^S$$
 a $(1,1)$ form on $S = M$.

• Fundamental equality $|Y|_{g^{\widehat{TX}}}^2 \omega^S = 0.$

•
$$\alpha_t = \exp\left(-i\frac{\overline{\partial}^{\hat{\chi}}\partial^{\hat{\chi}}}{4\pi^2 t} |Y|_{g^{\widehat{TX}}}^2 \omega^S\right).$$

- $\alpha_t = 1$, so that as $t \to 0$, $\alpha_t \to 1$.
- The general proof gives us 1 = 1 even when M = S!
- The family of fiberwise Hodge Laplacians is 0 acting on **C**!

- J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies, vol. 177, Princeton University Press, Princeton, NJ, 2011. MR 2828080
- _____, Index theory and the hypoelliptic Laplacian, Metric and differential geometry, Progress in Mathematics, no. 297, Birkhäuser/Springer, Basel, 2012, pp. 181–232. MR 3220444

> Hypoelliptic Laplacian and Bott-Chern cohomology, Progress in Mathematics, vol. 305, Birkhäuser/Springer, Cham, 2013, A theorem of Riemann-Roch-Grothendieck in complex geometry. MR 3099098