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The Hull-Strominger system and Reid’s fantasy



In complex dimension three, a natural source of compact non-Kähler manifolds

can be found via surgeries in algebraic geometry (transitions and flops)

Reid’s Fantasy: there could perhaps be a single moduli space of
non-Kähler threefolds with trivial canonical bundle, such that the few

thousand algebraic Calabi-Yau threefolds known at present arise as
‘boundary phenomena’ for the elements in this family

• M. Reid, Math. Ann. 278 (1987) 329--334



X smooth projective, simply-connected, Calabi-Yau 3-fold with k
embedded disjoint smooth rational curves C =

⋃
j Cj , with normal bundle

OCP1(−1)⊕OCP1(−1)

and 0 =
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j nj [Cj ] ∈ H4(X ,C), with nj 6= 0.

Contracting C , we obtain a singular X0 with double-point singularities,
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Strikingly, transitions (flops) can be regarded as a smooth process in string theory.

P. Aspinwall, B. Greene, and D. Morrison, Nucl. Phys. B 416 (1994)

B. Greene, D. Morrison, and A. Strominger, Nucl. Phys. B 451 (1995)

Question: What happens with the Calabi-Yau metric after the transition?



The exploration of this question has lead to important advances:

V. Tosatti, J. Eur. Math. Soc. 11 (2009)

Rong and Zhang, J. Differ. Geom. 89 (2011)

J. Song, Commun. Math. Phys. 334 (2015)

H. Hein, S. Sun, Publ. Math. IHES 126 (2017)

From ‘Quanta Magazine’

Nonetheless, these results use the full power of algebraic and Kähler geometry,
and do not provide any understanding of the passage from Kähler to non-Kähler
complex manifolds
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To solve this puzzle, S.-T. Yau has proposed the Hull-Strominger system of

partial differential equations:

F ∧ ω2 = 0

d(‖Ω‖ω2) = 0

F 2,0 = F 0,2 = 0

ddcω + trR ∧ R − tr F ∧ F = 0

These equations require an additional ingredient on top of our Calabi-Yau X : a

holomorphic vector bundle E satisfying c1(E ) = 0, c2(E ) = c2(X ).

Very active topic of research in mathematics in the last 15 years: Yau,

Li, Fu, Tseng, Fei, Fernandez, Ivanov, Ugarte, Villacampa, Fino, Vezzoni,

Andreas, GF, Fei, Phong, Picard, Zhang, ...

Two alternative approaches to the existence and uniqueness problem:
anomaly flow and dilaton functional

D.-H. Phong, S. Picard, and X. Zhang, Math. Z. (2017)

Garcia-Fernandez, Rubio, Shahbazi, Tipler, arXiv:1803.01873 (2018)



Question: What happens with the Calabi-Yau metric after the transition?

In the context of heterotic string theory, physicists think of the Calabi-Yau
metric g on X as a solution of (‘standard embedding’)

d∗ω = dc log ‖Ω‖ω, Rg ∧ ω2 = 0

ddcω = trR2
g − trR2

g

After transitions, TX should produce on Xt a holomorphic bundle Vt → Xt

with c2(Xt) = c2(Vt) and a solution of the Hull-Strominger system:

FhV ∧ ω2 = 0, d∗ω = dc log ‖Ω‖ω RhTX ∧ ω2 = 0

ddcω = trR2
hTX − tr F 2

hV

Expected: ‘Hull-Strominger geometries’ host some generalization of mirror

symmetry, where role of Calabi-Yau manifolds is played by (naively) pairs (X ,V ).
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Gauge Theory and the Calabi problem



In the 1950s, E. Calabi asked the question of whether one can
prescribe the volume form of a Kähler metric g on a compact
complex manifold X .

For metrics on a fixed Kähler class [ω0] ∈ H2(M,R), the Calabi Problem
with smooth volume form µ reduces to the Complex Monge-Ampère
equation

(ω0 + 2i∂∂̄ϕ)n = n!µ

for a smooth function ϕ on X .
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In the 1970s, Yau solved the problem using the continuity method:

Theorem (Yau 1977)

Let X be a compact Kähler manifold with smooth volume µ. Then there
exists a unique Kähler metric with ωn = n!µ in any Kähler class.

Provided that X admits a holomorphic volume form Ω

KX := ΛnT ∗X ∼=Ω OX ,

the condition
ωn = (−1)

n(n−1)
2 inΩ ∧ Ω

reduces the holonomy of the metric further to SU(n) (Calabi-Yau metric).
In particular, it is Kähler and Ricci flat.
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In 2011, J. Fine gave a moment-map interpretation of the Calabi conjecture using
a gauge theory framework.

Fine, The Hamiltonian geometry of the space of unitary connections with symplectic curvature, J.

Symp. Geom. 12, 2011.

X compact complex manifold of dimension n, endowed with smooth hermitian
line bundle (L, h). Let A1,1 the space of integrable, positive, unitary connections

A1,1 = {A unitary s.t. ωA ∈ Ω1,1, ωA > 0},

endowed with the Kähler structure

1

(n − 1)!

∫
X

(δA1 ∧ δA2) ∧ ωn−1
A .

For any choice of smooth volume form µ on X , the unitary gauge group G of

(L, h) acts in a Hamiltonian way on A1,1 with moment map A→ ωA/n!− µ.

Solutions of the Calabi problem ωn
A/n! = µ are zeros of a moment map.
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From a complex point of view, the moment interpretation dictates a natural

functional F0 : H → R (the Kempf functional) on the space of Kähler potentials

for a fixed Kähler class [ω0] ∈ H2(X ,R)

H = {ϕ ∈ C∞(X ) | ω = ω0 + 2i∂∂̄ϕ > 0}

whose variation is given by

δF0 =

∫
X
δϕ(ωn/n!− µ).

Observation: F0 is convex along straight lines on H, and therefore there exists at

most one solution of ωn/n! = µ on each Kähler class.

Theorem (Cao-Keller ’11, Fang-Lai-Ma ’09)

The downward gradient flow of F0 exists for all time

∂ω

∂t
=

i

2π
∂∂̄(ωn/µ).

and converges at infinity to the solution of the Calabi problem.
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Holomorphic string algebroids



X compact complex manifold, A→ X a holomorphic Lie algebroid

Definition: A holomorphic Courant algebroid with underlying Lie
algebroid A is given by data (plus axioms):

a holomorphic sequence 0→ T ∗X → Q → A→ 0,

holomorphic metric (·, ·) on Q,

bracket [·, ·] on OQ .

We are interested in a particular class of holomorphic Courant algebroids,
relevant for Hull-Strominger: holomorphic string algebroids.

Let V ,W holomorphic vector bundles over X with c1(V ) = c1(W ) = 0.
Set E = V ⊕W and consider the holomorphic Atiyah algebroid AE of E :

0→ End V ⊕ End W → AE → TX → 0.

Definition: A holomorphic string algebroid with underlying bundle E is a
holomorphic Courant algebroid such that A = AE .
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Holomorphic string algebroids: E = V ⊕W and

holomorphic sequence 0→ T ∗X → Q → AE → 0

holomorphic metric (·, ·) on Q,

bracket [·, ·] on OQ .

Hull-Strominger: V = TX .

Example: when rank E = 0, exact holomorphic Courant algebroid

0→ T ∗X → Q → TX → 0

Motivation: in the smooth category, a string algebroid can be understood as the
Atiyah Lie algebroid of a String(r)-principal bundle

String(r) −→ Spin(r) −→ SO(r) −→ O(r),

Sheng, Xu, Zhu, IMRN (2016)

Observe: a solution of the Hull-Strominger system determines a real string class.

Idea: holomorphic string algebroids are constructed via a gluing procedure using
holomorphic gauge transformations of ‘holomorphic string principal bundles’.
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Gluing

X complex manifold, G complex Lie group with quadratic Lie algebra
(g, 〈, 〉g), and holomorphic Cartan (3, 0)-form on G

σ3,0 = −1

6
〈·, [·, ·]〉g.

Consider the holomorphic sheaf S of non-abelian groups (U ⊂ X open)

S(U) = {(B, g) ∈ Ω2,0(U)×O(U,G ) satisfying dB = g∗σ3,0}.

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by
gluing, via its action on TU ⊕ g⊕ T ∗U with Courant structure

〈X + r + ξ,Y + r + ξ〉 = iX ξ + 〈r , r〉g
[X + r + ξ,Y + t + η] = [X ,Y ] + iXdt − iY dr

+ LXη − iY dξ + 2〈dr , t〉g.

Example: (Hull-Strominger) G = SL(3,C)× SL(k ,C), and

〈, 〉g = trsl(n,C)− trsl(k,C) .



Gluing

X complex manifold, G complex Lie group with quadratic Lie algebra
(g, 〈, 〉g), and holomorphic Cartan (3, 0)-form on G

σ3,0 = −1

6
〈·, [·, ·]〉g.

Consider the holomorphic sheaf S of non-abelian groups (U ⊂ X open)

S(U) = {(B, g) ∈ Ω2,0(U)×O(U,G ) satisfying dB = g∗σ3,0}.

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by
gluing, via its action on TU ⊕ g⊕ T ∗U with Courant structure

〈X + r + ξ,Y + r + ξ〉 = iX ξ + 〈r , r〉g
[X + r + ξ,Y + t + η] = [X ,Y ] + iXdt − iY dr

+ LXη − iY dξ + 2〈dr , t〉g.

Example: (Hull-Strominger) G = SL(3,C)× SL(k ,C), and

〈, 〉g = trsl(n,C)− trsl(k,C) .



Gluing

X complex manifold, G complex Lie group with quadratic Lie algebra
(g, 〈, 〉g), and holomorphic Cartan (3, 0)-form on G

σ3,0 = −1

6
〈·, [·, ·]〉g.

Consider the holomorphic sheaf S of non-abelian groups (U ⊂ X open)

S(U) = {(B, g) ∈ Ω2,0(U)×O(U,G ) satisfying dB = g∗σ3,0}.

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by
gluing, via its action on TU ⊕ g⊕ T ∗U with Courant structure

〈X + r + ξ,Y + r + ξ〉 = iX ξ + 〈r , r〉g
[X + r + ξ,Y + t + η] = [X ,Y ] + iXdt − iY dr

+ LXη − iY dξ + 2〈dr , t〉g.

Example: (Hull-Strominger) G = SL(3,C)× SL(k ,C), and

〈, 〉g = trsl(n,C)− trsl(k,C) .



Gluing

X complex manifold, G complex Lie group with quadratic Lie algebra
(g, 〈, 〉g), and holomorphic Cartan (3, 0)-form on G

σ3,0 = −1

6
〈·, [·, ·]〉g.

Consider the holomorphic sheaf S of non-abelian groups (U ⊂ X open)

S(U) = {(B, g) ∈ Ω2,0(U)×O(U,G ) satisfying dB = g∗σ3,0}.

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by
gluing, via its action on TU ⊕ g⊕ T ∗U with Courant structure

〈X + r + ξ,Y + r + ξ〉 = iX ξ + 〈r , r〉g
[X + r + ξ,Y + t + η] = [X ,Y ] + iXdt − iY dr

+ LXη − iY dξ + 2〈dr , t〉g.

Example: (Hull-Strominger) G = SL(3,C)× SL(k ,C), and

〈, 〉g = trsl(n,C)− trsl(k,C) .



Classification

By definition, a string algebroid determines a holomorphic vector bundle
E = V ⊕W on X , such that c2(V ) = c2(W ).

Denote by A the space of product integrable connections θ = ∇× A on
E = V ⊕W (i.e. F 0,2

θ = 0).

Proposition (GF-Rubio-Tipler): The isomorphism classes of Q’s with underlying
bundle E are in bijection with

{(H, θ) ∈ Ω3,0 ⊕ Ω2,1 ×AP | dH + 〈Fθ ∧ Fθ〉 = 0}/ ∼,

where (H, θ) ∼ (H ′, θ′) if, for some B ∈ Ω2,0

H ′ = H + CS(θ)− CS(θ′)− d〈θ ∧ θ′〉+ dB. (1)

Notation: 〈Fθ ∧ Fθ〉 = trR2
∇ − tr F 2

A.

Remark: Any solution of the Hull-Strominger system on (X ,E )
determines a holomorphic string algebroid via (2i∂ω,∇× A).
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Bott-Chern algebroids
and Aeppli classes



Let Q be a string algebroid over X , with underlying bundle E = V ⊕W .

Goal: find analogue of ∂∂̄-closed (1, 1)-forms for Q.

Recall: Q is described by H ∈ Ω3,0 ⊕ Ω2,1 and θ = ∇× A such that

dH + 〈Fθ ∧ Fθ〉 = 0, F 0,2
θ = 0.

Let R denote the space of product hermitian metrics on E . Define

BQ = {(τ, h) ∈ Ω1,1 ×R | satisfying ∗},

∗ 2i∂τ = H + CS(θ)− CS(θh)− d〈θ ∧ θh〉+ dB. (2)

for some B ∈ Ω2,0 and θh the Chern connection.

Definition: Q is Bott-Chern (BC) if BQ 6= ∅.
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BQ = {(τ, h) ∈ Ω1,1 ×R | satisfying ∗},

∗ 2i∂τ = H + CS(θ)− CS(θh)− d〈θ ∧ θh〉+ dB. (3)

Proposition (GF-Rubio-Shahbazi-Tipler): the isomorphism classes of Bott-Chern
algebroids Q with E fixed, form an affine space modelled on Im ∂

∂ : H1,1
A (X )→ H1(Ω2,0

cl ) ∼=
Ker d : Ω3,0 ⊕ Ω2,1 → . . .

Im d : Ω2,0 → . . .

Observe: If X is ∂∂-manifold, E determines Q uniquely.
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Want analogue of Aeppli class for elements (τ, h) ∈ BQ ... but

2i∂∂̄τ − 〈Fh ∧ Fh〉 = 0.

Proposition (Donaldson ’85): for h0, h1 ∈ R, there exists

R(h1, h0) ∈ Ω1,1/ Im(∂ ⊕ ∂) (4)

with the following properties:

1 R(h0, h0) = 0, and R(h2, h0) = R(h2, h1) + R(h1, h0),

2 d
dtR(ht , h0) = i〈h−1ḣ,Fh〉,

3 2i∂∂̄R(h1, h0) = 〈Fh1 ∧ Fh1〉 − 〈Fh0 ∧ Fh0〉.

Donaldson, Proc. London Math. Soc., 1985
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Proposition (GF-Rubio-Shahbazi-Tipler): there is a well-defined map

Ap : BQ × BQ → H1,1
A (X )

where
Ap((τ1, h1), (τ0, h0)) = [τ1 − τ0 − R(h1, h0)].

There is an affine space ΣQ modelled on Ker ∂

∂ : H1,1
A (X )→ H1(Ω2,0

cl ) =
Ker d : Ω3,0 ⊕ Ω2,1 → . . .

Im d : Ω2,0 → . . .

and a decomposition BQ =
⊔
σ∈ΣQ

BσQ .

Analogue: the space of ∂∂̄-closed (1, 1)-forms on X decomposes as
disjoint union of sets labelled by H1,1

A (X ).

We will call ΣQ the space of Aeppli classes of Q.
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Exact case

Assume for a moment rank E = 0. Then Q is exact

0→ T ∗X → Q → TX → 0,

determined by a closed H ∈ Ω3,0 ⊕ Ω2,1, and

BQ =

{
τ ∈ Ω1,1 | 2i∂τ = H + dB for B ∈ Ω2,0

}
.

Furthermore, the affine space of Aeppli classes is ΣQ = ∂−1
H (0)

∂H : H1,1
A (X )→ H1(Ω2,0

cl ) : [τ ]→ [2i∂τ − H]

Example: X = C2\{0}/Z Hopf surface. Then H1(Ω2,0
cl ) ∼= C, ΣQ = {•}.

Remark: If X is ∂∂-manifold, BQ 6= ∅ implies Q ∼= TX ⊕ T ∗X and
ΣQ
∼= H1,1

∂̄
(X ).
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Metrics

X compact complex manifold, Q string algebroid over X , with underlying
bundle E .

Definition: a hermitian metric on Q is (τ, h) ∈ BQ such that

ω = Re τ > 0.

The space of hermitian metrics on Q will be denoted by B+
Q .

Lemma (GF-Rubio-Shahbazi-Tipler): given (τ0, h0) ∈ B+
Q with Aeppli

class σ, any other metric (τ, h) with class σ satisfies (for suitable path
ht ∈ R joining h0 and h):

ω = ω0 + (dξ)1,1 +

∫ 1

0
i〈h−1

t ḣt ,Fht 〉dt.

for a suitable real 1-form ξ on X .

Observe: a solution of the Hull-Strominger system determines a Bott-Chern
algebroid endowed with a hermitian metric (and Aeppli class).
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Conjecture

Fixing (X ,E ), solutions of Hull-Strominger are parametrized by
isomorphism classes of Bott-Chern algebroids Q and Aeppli classes in ΣQ

H1,1
A (X ) ∼= Ker ∂ ⊕ Im ∂

Example: X nilmanifold h3. M. Fernandez, et al. found 8-parameter
family of solutions of Hull-Strominger system. Normalization (SU(n)
condition) gives 8− 1 = 7.

And dim H1,1
A (X ) = 7
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The Lie algebra h3 admits a real basis such that

dej = 0, j = 1, . . . , 5, de6 = −2(e12 − e34)

and a (balanced) integrable almost complex structure

J−e1 = −e2, J−e3 = −e4, J−e5 = −e6.

We have a 9 dimensional real Lie group of automorphisms

Aut(h3, J−) =

{ re iα1 ρe i(α1+θ) 0

ρe i(α2−θ) re iα2 0
a b r2 − ρ2

 , satisfying(∗)

}

(∗) (a, b) ∈ C2, ρ, r ≥ 0, ρ 6= r , (α1, α2, θ) ∈ R3
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The action of Aut(h3, J−) on a the 1-parameter family of solutions of
Hull-Strominger, with hermitian form

ωt =
i

2
(ω11 + ω22 + tω33),

where ωj = e j + ie j+1, gives a 7-dimensional family of solutions after
SU(3)-normalization).

Proposition (GF-Rubio-Tipler, ’19): Let Q be the holomorphic string
algebroid of the solution with t = 1. Then, the Aeppli classes on ΣQ of
the family of solutions above spans an open subset in

H1,1
A (h3, J

−) = {[ω11 + ω22], [ω13], [ω31], [ω21], [ω12], [ω23], [ω32]}.



The dilaton functional



X compact complex manifold, Q string algebroid over X , with underlying
bundle E and space of hermitian metrics B+

Q .

Definition: Fix a smooth volume form µ on X . Given (τ, h) ∈ B+
Q , we

define the dilaton function fω ∈ C∞(X ) by

ωn/n! = e4fωµ, ω = Re τ.

The dilaton functional is

M : B+
Q → R : (ω, h) 7→

∫
X
e−2fωωn/n!

Proposition (GF-Rubio-Shahbazi-Tipler): the critical points of M for metrics in
Aeppli class σ ∈ ΣQ solve the Calabi system

Fh ∧ ωn−1 = 0, d(e−2fωωn−1) = 0.

When X admits a holomorphic volume form Ω and µ = (−1)
n(n−1)

2 inΩ ∧ Ω, this is

equivalent to the Hull-Strominger system.
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X compact complex manifold, Q string algebroid over X , with underlying
bundle E and space of hermitian metrics B+

Q .

Lemma (GF-Rubio-Shahbazi-Tipler): the dilaton functional is concave along
paths (ωt , ht) ∈ B+

Q with fixed Aeppli class σ ∈ ΣQ , solving

Λωt (∂ξ̈
0,1
t + ∂ξ̈0,1

t ) =
2− n

2n
|Λωt (ic(h−1

t ḣt ,Fht ) + ∂ξ̇0,1
t + ∂ξ̇0,1

t )|2 (5)

− Λωt

(
ic(h−1

t ḣt , ∂̄∂
ht (h−1

t ḣt)) + ic(∂t(h
−1
t ḣt),Fht )

)
.

Analogy: geodesic equation in Kähler geometry.

Proposition (GF-Rubio-Shahbazi-Tipler): If (ω0, h0) and (ω1, h1) are two
solutions of the Calabi system

Fh ∧ ωn−1 = 0, d(e−2fωωn−1) = 0.

with Aeppli class σ that can be joined by a solution (ωt , ht) of (5) depending

analytically on t, then ω1 = kω0 for some constant k , and h1 is related to h0 by

an automorphism of E . Furthermore, when dω0 6= 0, we must have k = 1.
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Conjecture

Fixing (X ,E ), solutions of Hull-Strominger are parametrized by
isomorphism classes of Bott-Chern algebroids Q and Aeppli classes in ΣQ

H1,1
A (X ) ∼= Ker ∂ ⊕ Im ∂

Theorem (GF-Rubio-Tipler, ’19): Assume that the geodesic-like equation has

short-time existence in any given direction in the Aeppli class at a given solution.

Then, the quadratic form given by the Hessian of M is semi-negative, and the

conjecture holds infinitesimally.



The moduli Kähler potential



4D physical analysis

Assuming dimC X = 3 and existence of a holomorphic volume form Ω,

ω3/6 = e4fω iΩ ∧ Ω

implies that e2fω is the 10-dimensional dilaton, and the dilaton functional is

M =

∫
X
e−2fωωn/n! =

∫
X
‖Ω‖ωn/n! (6)

Remarkably, this coincides with a universal formula for the 4D dilaton in
the induced effective field theory

e−2φ4 =

∫
X
e−2φ10vol6

• Anguelova-Quigley-Sethi, JHEP10, 2010.
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In 4-dimensional supergravity the gravitino mass can be written as

M3/2 = c0e
K/2W

for some universal constant c0 ∈ R. Here, W is the superpotential of the
theory and eK is the Kähler potential.

A Gukov-type formula for M3/2 was derived by Lukas et al. (valid to first
order in α′ expansion):

M3/2 =

√
8eφ

4
W

4
∫
X ‖Ω‖ω

ω3

6

,

where e−2φ4
is the four-dimensional dilaton.

• Gurrieri, A. Lukas, and A. Micu, Phys. Rev. D70 (2004)
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This leads to the following formula for the moduli Kähler potential

K = −3 log

∫
X
‖Ω‖ω

ω3

6
− 2 log c0 − log 2.

Conjecture - Physical prediction

The following formula defines the Kähler potential for a Kähler metric in
the moduli space of solutions of the Hull-Strominger system

K = − log

∫
X
‖Ω‖ω

ωn

n!
.



Conjecture - Physical prediction

The following formula defines the Kähler potential for a Kähler metric in
the moduli space of solutions of the Hull-Strominger system

K = − log

∫
X
‖Ω‖ω

ωn

n!
.

Theorem (GF-Rubio-Tipler, ’19): Assume that Conjecture holds. If δσ
and δµ are the variations of the Aeppli and balanced classes, respectively,
along a non-constant path of solutions of Hull-Strominger on the
Bott-Chern algebroid Q, then

δσ · δµ < 1

4M
(δσ · µ)2.



Thank you!


