The Hull-Strominger system and holomorphic string algebroids

Mario Garcia-Fernandez

Universidad Autónoma de Madrid Instituto de Ciencias Matemáticas

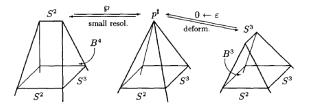
Bridging the gap between Kähler and non-Kähler complex geometry

Banff, 28th October 2019

Joint work with Rubio, Shahbazi, and Tipler arXiv:1803.01873, arXiv:1807.10329, and to appear.

The Hull-Strominger system and Reid's fantasy

In complex dimension three, a natural source of compact non-Kähler manifolds can be found via **surgeries in algebraic geometry** (*transitions* and *flops*)



Reid's Fantasy: there could perhaps be a single moduli space of non-Kähler threefolds with trivial canonical bundle, such that the few thousand algebraic Calabi-Yau threefolds known at present arise as 'boundary phenomena' for the elements in this family

• M. Reid, Math. Ann. **278** (1987) 329--334

X smooth projective, simply-connected, Calabi-Yau 3-fold with k embedded disjoint smooth rational curves $C = \bigcup_{i} C_{j}$, with normal bundle

 $\mathcal{O}_{\mathbb{CP}^1}(-1)\oplus\mathcal{O}_{\mathbb{CP}^1}(-1)$

and $0 = \sum_j n_j[C_j] \in H^4(X, \mathbb{C})$, with $n_j \neq 0$.

Contracting C, we obtain a singular X_0 with double-point singularities, modelled locally on

 $\{z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0\} \subset \mathbb{C}^4.$

There exists a smoothing $X_0 \rightsquigarrow X_t$ with trivial canonical bundle, which may be non-Kählerian (e.g. $\sharp_k(S^3 \times S^3)$ for any $k \ge 2$).

Example:

 $\begin{cases} (x_2^4 + x_4^4 - x_5^4)y_1 + (x_1^4 + x_3^4 + x_5^4)y_2 = 0 \\ x_1y_1 + x_2y_2 = 0 \end{cases} \xrightarrow{5} (x_2^4 + x_4^4 - x_5^4)x_2 - (x_1^4 + x_3^4 + x_5^4)x_1 = 0$

 $\rightsquigarrow (x_2^4 + x_4^4 - x_5^4)x_2 - (x_1^4 + x_3^4 + x_5^4)x_1 = t \sum_{i=1}^{k_1} x_i^5 \rightsquigarrow \dots \rightsquigarrow \sharp_{k \ge 2} (S^3 \times S^3)$

X smooth projective, simply-connected, Calabi-Yau 3-fold with k embedded disjoint smooth rational curves $C = \bigcup_i C_j$, with normal bundle

 $\mathcal{O}_{\mathbb{CP}^1}(-1)\oplus\mathcal{O}_{\mathbb{CP}^1}(-1)$

and $0 = \sum_j n_j [C_j] \in H^4(X, \mathbb{C})$, with $n_j \neq 0$.

Contracting C, we obtain a singular X_0 with double-point singularities, modelled locally on

$$\{z_1^2+z_2^2+z_3^2+z_4^2=0\}\subset \mathbb{C}^4.$$

There exists a *smoothing* $X_0 \rightsquigarrow X_t$ with trivial canonical bundle, which may be non-Kählerian (e.g. $\sharp_k(S^3 \times S^3)$ for any $k \ge 2$).

Example:

 $\begin{cases} (x_2^4 + x_4^4 - x_5^4)y_1 + (x_1^4 + x_3^4 + x_5^4)y_2 = 0 \\ x_1y_1 + x_2y_2 = 0 \end{cases} \xrightarrow{(x_2^4 + x_4^4 - x_5^4)x_2 - (x_1^4 + x_3^4 + x_5^4)x_1 = 0}$

 $\rightsquigarrow (x_2^4 + x_4^4 - x_5^4)x_2 - (x_1^4 + x_3^4 + x_5^4)x_1 = t \sum_{i=1}^{5} x_i^5 \rightsquigarrow \ldots \rightsquigarrow \sharp_{k \ge 2}(S^3 \times S^3)$

X smooth projective, simply-connected, Calabi-Yau 3-fold with k embedded disjoint smooth rational curves $C = \bigcup_i C_j$, with normal bundle

 $\mathcal{O}_{\mathbb{CP}^1}(-1)\oplus\mathcal{O}_{\mathbb{CP}^1}(-1)$

and $0 = \sum_j n_j[C_j] \in H^4(X, \mathbb{C})$, with $n_j \neq 0$.

Contracting C, we obtain a singular X_0 with double-point singularities, modelled locally on

$$\{z_1^2+z_2^2+z_3^2+z_4^2=0\}\subset \mathbb{C}^4.$$

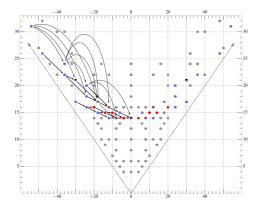
There exists a *smoothing* $X_0 \rightsquigarrow X_t$ with trivial canonical bundle, which may be non-Kählerian (e.g. $\sharp_k(S^3 \times S^3)$ for any $k \ge 2$).

Example:

$$\begin{cases} (x_2^4 + x_4^4 - x_5^4)y_1 + (x_1^4 + x_3^4 + x_5^4)y_2 = 0 \\ x_1y_1 + x_2y_2 = 0 \end{cases} \rightarrow (x_2^4 + x_4^4 - x_5^4)x_2 - (x_1^4 + x_3^4 + x_5^4)x_1 = 0 \\ \rightsquigarrow (x_2^4 + x_4^4 - x_5^4)x_2 - (x_1^4 + x_3^4 + x_5^4)x_1 = t \sum_{i=1}^5 x_i^5 \rightsquigarrow \ldots \implies \sharp_{k \ge 2} (S^3 \times S^3) \end{cases}$$

Strikingly, transitions (flops) can be regarded as a smooth process in string theory.

- P. Aspinwall, B. Greene, and D. Morrison, Nucl. Phys. B 416 (1994)
- B. Greene, D. Morrison, and A. Strominger, Nucl. Phys. B 451 (1995)



Question: What happens with the Calabi-Yau metric after the transition?

The exploration of this question has lead to important advances:

٩	V. Tosatti, J. Eur. Ma	th. Soc.	11 (2009)
٩	Rong and Zhang, J. Diff	er. Geom.	89 (2011)
٩	J. Song, Commun. Math.	Phys. 33	34 (2015)
٩	H. Hein, S. Sun, Publ.	Math. IH	ES 126 (2017)

From 'Quanta Magazine'

Nonetheless, these results use the full power of algebraic and Kähler geometry, and do not provide any understanding of the passage from Kähler to non-Kähler complex manifolds

$$z_1(z_1^4 + z_3^4 + z_5^4) - z_2(z_2^4 + z_4^4 - z_5^4) = 0 \iff \ldots \iff \sharp_{k \geqslant 2}(S^3 \times S^3)$$

To solve this puzzle, S.-T. Yau has proposed the **Hull-Strominger system** of partial differential equations:

$$F \wedge \omega^2 = 0$$
 $F^{2,0} = F^{0,2} = 0$

 $d(\|\Omega\|\omega^2) = 0$ $dd^c\omega + \operatorname{tr} R \wedge R - \operatorname{tr} F \wedge F = 0$

These equations require an additional ingredient on top of our Calabi-Yau X: a holomorphic vector bundle E satisfying $c_1(E) = 0, c_2(E) = c_2(X)$.

- Very active topic of research in mathematics in the last 15 years: Yau, Li, Fu, Tseng, Fei, Fernandez, Ivanov, Ugarte, Villacampa, Fino, Vezzoni, Andreas, GF, Fei, Phong, Picard, Zhang, ...
- Two alternative approaches to the existence and uniqueness problem: anomaly flow and dilaton functional
- D.-H. Phong, S. Picard, and X. Zhang, Math. Z. (2017)
- Garcia-Fernandez, Rubio, Shahbazi, Tipler, arXiv:1803.01873 (2018)

In the context of heterotic string theory, physicists think of the Calabi-Yau metric g on X as a solution of ('standard embedding')

 $d^*\omega = d^c \log \|\Omega\|_{\omega},$ $dd^c \omega = \operatorname{tr} R_g^2 - \operatorname{tr} R_g^2$ $R_{g}\wedge\omega^{2}=0$

After transitions, TX should produce on X_t a holomorphic bundle $V_t \rightarrow X_t$ with $c_2(X_t) = c_2(V_t)$ and a solution of the Hull-Strominger system:

$$\begin{split} F_{h_V} \wedge \omega^2 = 0, \qquad d^* \omega = d^c \log \|\Omega\|_{\omega} \qquad R_{h_{TX}} \wedge \omega^2 = 0 \\ dd^c \omega = \operatorname{tr} R_{h_{TX}}^2 - \operatorname{tr} F_{h_V}^2 \end{split}$$

Expected: 'Hull-Strominger geometries' host some generalization of mirror symmetry, where role of Calabi-Yau manifolds is played by (naively) pairs (X, V).

In the context of heterotic string theory, physicists think of the Calabi-Yau metric g on X as a solution of ('standard embedding')

 $R_{\sigma} \wedge \omega^2 = 0$

 $d^*\omega = d^c \log \|\Omega\|_\omega,$ $dd^c \omega = \operatorname{tr} R_g^2 - \operatorname{tr} R_g^2$

After transitions, *TX* should produce on X_t a holomorphic bundle $V_t \to X_t$ with $c_2(X_t) = c_2(V_t)$ and a solution of the *Hull-Strominger* system:

 $F_{h_V} \wedge \omega^2 = 0, \qquad d^* \omega = d^c \log \|\Omega\|_{\omega} \qquad R_{h_{TX}} \wedge \omega^2 = 0$ $dd^c \omega = \operatorname{tr} R_{h_{TX}}^2 - \operatorname{tr} F_{h_V}^2$

Expected: 'Hull-Strominger geometries' host some generalization of mirror symmetry, where role of Calabi-Yau manifolds is played by (naively) pairs (X, V).

In the context of heterotic string theory, physicists think of the Calabi-Yau metric g on X as a solution of ('standard embedding')

$$\begin{split} d^* \omega &= d^c \log \|\Omega\|_{\omega}, \qquad \qquad R_g \wedge \omega^2 = 0 \\ dd^c \omega &= \mathrm{tr} \, R_g^2 - \mathrm{tr} \, R_g^2 \end{split}$$

After transitions, *TX* should produce on X_t a holomorphic bundle $V_t \rightarrow X_t$ with $c_2(X_t) = c_2(V_t)$ and a solution of the *Hull-Strominger* system:

$$\begin{split} F_{h_V} \wedge \omega^2 &= 0, \qquad \qquad d^* \omega = d^c \log \|\Omega\|_{\omega} \qquad \qquad R_{h_{TX}} \wedge \omega^2 &= 0 \\ dd^c \omega &= \operatorname{tr} R_{h_{TX}}^2 - \operatorname{tr} F_{h_V}^2 \end{split}$$

Expected: 'Hull-Strominger geometries' host some generalization of mirror symmetry, where role of Calabi-Yau manifolds is played by (naively) pairs (X, V).

Gauge Theory and the Calabi problem

• In the 1950s, E. Calabi asked the question of whether one can prescribe the volume form of a Kähler metric g on a compact complex manifold X.

For metrics on a fixed Kähler class $[\omega_0] \in H^2(M, \mathbb{R})$, the *Calabi Problem* with smooth volume form μ reduces to the Complex Monge-Ampère equation

 $(\omega_0 + 2i\partial \bar{\partial} arphi)^n = n!\mu$

for a smooth function φ on X.

• In the 1950s, E. Calabi asked the question of whether one can prescribe the volume form of a Kähler metric g on a compact complex manifold X.

For metrics on a fixed Kähler class $[\omega_0] \in H^2(M, \mathbb{R})$, the *Calabi Problem* with smooth volume form μ reduces to the Complex Monge-Ampère equation

$$(\omega_0+2i\partialar\partialarphi)^n=n!\mu$$

for a smooth function φ on X.

In the 1970s, Yau solved the problem using the continuity method:

Theorem (Yau 1977)

Let X be a compact Kähler manifold with smooth volume μ . Then there exists a unique Kähler metric with $\omega^n = n!\mu$ in any Kähler class.

Provided that X admits a holomorphic volume form Ω

 $K_X := \Lambda^n T^* X \cong_{\Omega} \mathcal{O}_X,$

the condition

$$\omega^n = (-1)^{\frac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega}$$

reduces the holonomy of the metric further to *SU*(*n*) (Calabi-Yau metric). In particular, it is Kähler and Ricci flat. In the 1970s, Yau solved the problem using the continuity method:

Theorem (Yau 1977)

Let X be a compact Kähler manifold with smooth volume μ . Then there exists a unique Kähler metric with $\omega^n = n!\mu$ in any Kähler class.

Provided that X admits a holomorphic volume form Ω

 $K_X := \Lambda^n T^* X \cong_{\Omega} \mathcal{O}_X,$

the condition

$$\omega^n = (-1)^{rac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega}$$

reduces the holonomy of the metric further to SU(n) (Calabi-Yau metric). In particular, it is Kähler and Ricci flat.

In 2011, J. Fine gave a moment-map interpretation of the Calabi conjecture using a gauge theory framework.

 Fine, The Hamiltonian geometry of the space of unitary connections with symplectic curvature, J. Symp. Geom. 12, 2011.

X compact complex manifold of dimension n, endowed with smooth hermitian line bundle (L, h). Let $\mathcal{A}^{1,1}$ the space of integrable, positive, unitary connections

$$\mathcal{A}^{1,1} = \{ A \text{ unitary s.t. } \omega_A \in \Omega^{1,1}, \omega_A > 0 \},$$

endowed with the Kähler structure

$$\frac{1}{(n-1)!}\int_X (\delta A_1 \wedge \delta A_2) \wedge \omega_A^{n-1}.$$

For any choice of smooth volume form μ on X, the unitary gauge group \mathcal{G} of (L,h) acts in a Hamiltonian way on $\mathcal{A}^{1,1}$ with moment map $A \to \omega_A/n! - \mu$.

Solutions of the Calabi problem $\omega_A^n/n! = \mu$ are zeros of a moment map.

In 2011, J. Fine gave a moment-map interpretation of the Calabi conjecture using a gauge theory framework.

 Fine, The Hamiltonian geometry of the space of unitary connections with symplectic curvature, J. Symp. Geom. 12, 2011.

X compact complex manifold of dimension n, endowed with smooth hermitian line bundle (L, h). Let $\mathcal{A}^{1,1}$ the space of integrable, positive, unitary connections

$$\mathcal{A}^{1,1} = \{ A \text{ unitary s.t. } \omega_A \in \Omega^{1,1}, \omega_A > 0 \},$$

endowed with the Kähler structure

$$\frac{1}{(n-1)!}\int_X (\delta A_1 \wedge \delta A_2) \wedge \omega_A^{n-1}.$$

For any choice of smooth volume form μ on X, the unitary gauge group \mathcal{G} of (L, h) acts in a Hamiltonian way on $\mathcal{A}^{1,1}$ with moment map $A \to \omega_A/n! - \mu$.

Solutions of the Calabi problem $\omega_A^n/n! = \mu$ are zeros of a moment map.

From a complex point of view, the moment interpretation dictates a natural functional $F_0: \mathcal{H} \to \mathbb{R}$ (the *Kempf functional*) on the space of Kähler potentials for a fixed Kähler class $[\omega_0] \in H^2(X, \mathbb{R})$

$$\mathcal{H} = \{ \varphi \in C^{\infty}(X) \mid \omega = \omega_0 + 2i\partial \bar{\partial} \varphi > 0 \}$$

whose variation is given by

$$\delta F_0 = \int_X \delta \varphi(\omega^n/n! - \mu).$$

Observation: F_0 is convex along straight lines on \mathcal{H} , and therefore there exists at most one solution of $\omega^n/n! = \mu$ on each Kähler class.

Theorem (Cao-Keller '11, Fang-Lai-Ma '09)

The downward gradient flow of F_0 exists for all time

$$\frac{\partial \omega}{\partial t} = \frac{i}{2\pi} \partial \bar{\partial} (\omega^n / \mu).$$

and converges at infinity to the solution of the Calabi problem.

From a complex point of view, the moment interpretation dictates a natural functional $F_0: \mathcal{H} \to \mathbb{R}$ (the *Kempf functional*) on the space of Kähler potentials for a fixed Kähler class $[\omega_0] \in H^2(X, \mathbb{R})$

$$\mathcal{H} = \{ \varphi \in C^{\infty}(X) \mid \omega = \omega_0 + 2i\partial \bar{\partial} \varphi > 0 \}$$

whose variation is given by

$$\delta F_0 = \int_X \delta \varphi(\omega^n/n! - \mu).$$

Observation: F_0 is convex along straight lines on \mathcal{H} , and therefore there exists at most one solution of $\omega^n/n! = \mu$ on each Kähler class.

Theorem (Cao-Keller '11, Fang-Lai-Ma '09)

The downward gradient flow of F_0 exists for all time

$$\frac{\partial \omega}{\partial t} = \frac{i}{2\pi} \partial \bar{\partial} (\omega^n / \mu).$$

and converges at infinity to the solution of the Calabi problem.

From a complex point of view, the moment interpretation dictates a natural functional $F_0: \mathcal{H} \to \mathbb{R}$ (the *Kempf functional*) on the space of Kähler potentials for a fixed Kähler class $[\omega_0] \in H^2(X, \mathbb{R})$

$$\mathcal{H} = \{ \varphi \in C^{\infty}(X) \mid \omega = \omega_0 + 2i\partial \bar{\partial} \varphi > 0 \}$$

whose variation is given by

$$\delta F_0 = \int_X \delta \varphi(\omega^n/n! - \mu).$$

Observation: F_0 is convex along straight lines on \mathcal{H} , and therefore there exists at most one solution of $\omega^n/n! = \mu$ on each Kähler class.

Theorem (Cao-Keller '11, Fang-Lai-Ma '09)

The downward gradient flow of F_0 exists for all time

$$\frac{\partial \omega}{\partial t} = \frac{i}{2\pi} \partial \bar{\partial} (\omega^n / \mu).$$

and converges at infinity to the solution of the Calabi problem.

Holomorphic string algebroids

X compact complex manifold, $A \rightarrow X$ a holomorphic Lie algebroid

Definition: A holomorphic Courant algebroid with underlying Lie algebroid *A* is given by data (plus axioms):

- a holomorphic sequence $0 \rightarrow T^*X \rightarrow Q \rightarrow A \rightarrow 0$,
- holomorphic metric (\cdot, \cdot) on Q,
- bracket $[\cdot, \cdot]$ on \mathcal{O}_Q .

We are interested in a particular class of holomorphic Courant algebroids, relevant for Hull-Strominger: holomorphic string algebroids.

Let V, W holomorphic vector bundles over X with $c_1(V) = c_1(W) = 0$. Set $E = V \oplus W$ and consider the holomorphic Atiyah algebroid A_E of E:

 $0 \rightarrow End \ V \oplus End \ W \rightarrow A_E \rightarrow TX \rightarrow 0.$

Definition: A holomorphic string algebroid with underlying bundle *E* is a holomorphic Courant algebroid such that $A = A_E$.

X compact complex manifold, $A \rightarrow X$ a holomorphic Lie algebroid

Definition: A holomorphic Courant algebroid with underlying Lie algebroid *A* is given by data (plus axioms):

- a holomorphic sequence $0 \rightarrow T^*X \rightarrow Q \rightarrow A \rightarrow 0$,
- holomorphic metric (\cdot, \cdot) on Q,
- bracket $[\cdot, \cdot]$ on \mathcal{O}_Q .

We are interested in a particular class of holomorphic Courant algebroids, relevant for Hull-Strominger: holomorphic string algebroids.

Let V, W holomorphic vector bundles over X with $c_1(V) = c_1(W) = 0$. Set $E = V \oplus W$ and consider the holomorphic Atiyah algebroid A_E of E:

$$0 \rightarrow End \ V \oplus End \ W \rightarrow A_E \rightarrow TX \rightarrow 0.$$

Definition: A holomorphic string algebroid with underlying bundle *E* is a holomorphic Courant algebroid such that $A = A_E$.

Holomorphic string algebroids: $E = V \oplus W$ and

- holomorphic sequence $0 \rightarrow T^*X \rightarrow Q \rightarrow A_E \rightarrow 0$
- holomorphic metric (\cdot, \cdot) on Q,
- bracket $[\cdot, \cdot]$ on \mathcal{O}_Q .

Hull-Strominger: V = TX.

Example: when rank E = 0, exact holomorphic Courant algebroid

 $0 \rightarrow T^*X \rightarrow Q \rightarrow TX \rightarrow 0$

Motivation: in the smooth category, a string algebroid can be understood as the Atiyah Lie algebroid of a *String*(*r*)-principal bundle

 $String(r) \longrightarrow Spin(r) \longrightarrow SO(r) \longrightarrow O(r),$

Sheng, Xu, Zhu, IMRN (2016)

Observe: a solution of the Hull-Strominger system determines a *real string class*.

<u>Idea:</u> holomorphic string algebroids are constructed via a gluing procedure using holomorphic gauge transformations of 'holomorphic string principal bundles'.

Holomorphic string algebroids: $E = V \oplus W$ and

- holomorphic sequence $0 \rightarrow T^*X \rightarrow Q \rightarrow A_E \rightarrow 0$
- holomorphic metric (\cdot, \cdot) on Q,
- bracket $[\cdot, \cdot]$ on \mathcal{O}_Q .

Hull-Strominger: V = TX.

Example: when rank E = 0, exact holomorphic Courant algebroid

 $0 \to T^*X \to Q \to TX \to 0$

Motivation: in the smooth category, a string algebroid can be understood as the Atiyah Lie algebroid of a String(r)-principal bundle

$$String(r) \longrightarrow Spin(r) \longrightarrow SO(r) \longrightarrow O(r),$$

Sheng, Xu, Zhu, IMRN (2016)

Observe: a solution of the Hull-Strominger system determines a real string class.

<u>Idea:</u> holomorphic string algebroids are constructed via a gluing procedure using holomorphic gauge transformations of 'holomorphic string principal bundles'.

Holomorphic string algebroids: $E = V \oplus W$ and

- holomorphic sequence $0 \rightarrow T^*X \rightarrow Q \rightarrow A_E \rightarrow 0$
- holomorphic metric (\cdot, \cdot) on Q,
- bracket $[\cdot, \cdot]$ on \mathcal{O}_Q .

Hull-Strominger: V = TX.

Example: when rank E = 0, exact holomorphic Courant algebroid

 $0 \to T^*X \to Q \to TX \to 0$

Motivation: in the smooth category, a string algebroid can be understood as the Atiyah Lie algebroid of a String(r)-principal bundle

$$String(r) \longrightarrow Spin(r) \longrightarrow SO(r) \longrightarrow O(r),$$

Sheng, Xu, Zhu, IMRN (2016)

Observe: a solution of the Hull-Strominger system determines a real string class.

<u>Idea:</u> holomorphic string algebroids are constructed via a gluing procedure using holomorphic gauge transformations of 'holomorphic string principal bundles'.

X complex manifold, G complex Lie group with quadratic Lie algebra $(\mathfrak{g}, \langle, \rangle_{\mathfrak{g}})$, and holomorphic Cartan (3,0)-form on G

$$\sigma^{3,0} = -\frac{1}{6} \langle \cdot, [\cdot, \cdot] \rangle_{\mathfrak{g}}.$$

Consider the holomorphic sheaf S of non-abelian groups $(U \subset X \text{ open})$ $S(U) = \{(B,g) \in \Omega^{2,0}(U) \times O(U,G) \text{ satisfying } dB = g^* \sigma^{3,0}\}.$

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by gluing, via its action on $TU \oplus \mathfrak{g} \oplus T^*U$ with Courant structure

$$\langle X + r + \xi, Y + r + \xi \rangle = i_X \xi + \langle r, r \rangle_{\mathfrak{g}} [X + r + \xi, Y + t + \eta] = [X, Y] + i_X dt - i_Y dr + L_X \eta - i_Y d\xi + 2\langle dr, t \rangle_{\mathfrak{g}}$$

Example: (Hull-Strominger) $G = SL(3, \mathbb{C}) \times SL(k, \mathbb{C})$, and $\langle, \rangle_{\mathfrak{g}} = \operatorname{tr}_{\mathfrak{sl}(n,\mathbb{C})} - \operatorname{tr}_{\mathfrak{sl}(k,\mathbb{C})}$.

X complex manifold, G complex Lie group with quadratic Lie algebra $(\mathfrak{g}, \langle, \rangle_{\mathfrak{g}})$, and holomorphic Cartan (3,0)-form on G

$$\sigma^{3,0} = -\frac{1}{6} \langle \cdot, [\cdot, \cdot] \rangle_{\mathfrak{g}}.$$

Consider the holomorphic sheaf S of non-abelian groups ($U \subset X$ open) $S(U) = \{(B,g) \in \Omega^{2,0}(U) \times O(U,G) \text{ satisfying } dB = g^* \sigma^{3,0}\}.$

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by gluing, via its action on $TU \oplus \mathfrak{g} \oplus T^*U$ with Courant structure

$$\langle X + r + \xi, Y + r + \xi \rangle = i_X \xi + \langle r, r \rangle_{\mathfrak{g}} [X + r + \xi, Y + t + \eta] = [X, Y] + i_X dt - i_Y dr + L_X \eta - i_Y d\xi + 2\langle dr, t \rangle_{\mathfrak{g}}$$

Example: (Hull-Strominger) $G = SL(3, \mathbb{C}) \times SL(k, \mathbb{C})$, and $\langle, \rangle_{\mathfrak{g}} = \operatorname{tr}_{\mathfrak{sl}(n,\mathbb{C})} - \operatorname{tr}_{\mathfrak{sl}(k,\mathbb{C})}$.

X complex manifold, G complex Lie group with quadratic Lie algebra $(\mathfrak{g}, \langle, \rangle_{\mathfrak{g}})$, and holomorphic Cartan (3,0)-form on G

$$\sigma^{3,0} = -\frac{1}{6} \langle \cdot, [\cdot, \cdot] \rangle_{\mathfrak{g}}.$$

Consider the holomorphic sheaf S of non-abelian groups ($U \subset X$ open) $S(U) = \{(B,g) \in \Omega^{2,0}(U) \times O(U,G) \text{ satisfying } dB = g^* \sigma^{3,0}\}.$

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by gluing, via its action on $TU \oplus \mathfrak{g} \oplus T^*U$ with Courant structure

$$\langle X + r + \xi, Y + r + \xi \rangle = i_X \xi + \langle r, r \rangle_{\mathfrak{g}} [X + r + \xi, Y + t + \eta] = [X, Y] + i_X dt - i_Y dr + L_X \eta - i_Y d\xi + 2\langle dr, t \rangle_{\mathfrak{g}}$$

Example: (Hull-Strominger) $G = SL(3, \mathbb{C}) \times SL(k, \mathbb{C})$, and $\langle, \rangle_{\mathfrak{g}} = tr_{\mathfrak{sl}(n,\mathbb{C})} - tr_{\mathfrak{sl}(k,\mathbb{C})}$.

X complex manifold, G complex Lie group with quadratic Lie algebra $(\mathfrak{g}, \langle, \rangle_{\mathfrak{g}})$, and holomorphic Cartan (3,0)-form on G

$$\sigma^{3,0} = -\frac{1}{6} \langle \cdot, [\cdot, \cdot] \rangle_{\mathfrak{g}}.$$

Consider the holomorphic sheaf S of non-abelian groups ($U \subset X$ open) $S(U) = \{(B,g) \in \Omega^{2,0}(U) \times O(U,G) \text{ satisfying } dB = g^*\sigma^{3,0}\}.$

A 1-cocycle for the sheaf S defines a holomorphic string algebroid Q by gluing, via its action on $TU \oplus \mathfrak{g} \oplus T^*U$ with Courant structure

$$\langle X + r + \xi, Y + r + \xi \rangle = i_X \xi + \langle r, r \rangle_{\mathfrak{g}} [X + r + \xi, Y + t + \eta] = [X, Y] + i_X dt - i_Y dr + L_X \eta - i_Y d\xi + 2\langle dr, t \rangle_{\mathfrak{g}}$$

Example: (Hull-Strominger) $G = SL(3, \mathbb{C}) \times SL(k, \mathbb{C})$, and

 $\langle,\rangle_{\mathfrak{g}} = \operatorname{tr}_{\mathfrak{sl}(n,\mathbb{C})} - \operatorname{tr}_{\mathfrak{sl}(k,\mathbb{C})}.$

By definition, a string algebroid determines a holomorphic vector bundle $E = V \oplus W$ on X, such that $c_2(V) = c_2(W)$.

Denote by \mathcal{A} the space of product integrable connections $\theta = \nabla \times A$ on $E = V \oplus W$ (i.e. $F_{\theta}^{0,2} = 0$).

Proposition (GF-Rubio-Tipler): The isomorphism classes of Q's with underlying bundle E are in bijection with

 $\{(H, \theta) \in \Omega^{3,0} \oplus \Omega^{2,1} \times \mathcal{A}_P \mid dH + \langle F_{\theta} \wedge F_{\theta} \rangle = 0\} / \sim,$

where $(H, \theta) \sim (H', \theta')$ if, for some $B \in \Omega^{2,0}$

 $H' = H + CS(\theta) - CS(\theta') - d\langle \theta \wedge \theta' \rangle + dB.$

(1)

<u>Notation</u>: $\langle F_{\theta} \wedge F_{\theta} \rangle = \operatorname{tr} R_{\nabla}^2 - \operatorname{tr} F_A^2$.

By definition, a string algebroid determines a holomorphic vector bundle $E = V \oplus W$ on X, such that $c_2(V) = c_2(W)$.

Denote by \mathcal{A} the space of product integrable connections $\theta = \nabla \times A$ on $E = V \oplus W$ (i.e. $F_{\theta}^{0,2} = 0$).

Proposition (GF-Rubio-Tipler): The isomorphism classes of Q's with underlying bundle E are in bijection with

$$\{(H, heta) \in \Omega^{3,0} \oplus \Omega^{2,1} imes \mathcal{A}_P \mid dH + \langle F_{ heta} \wedge F_{ heta}
angle = 0\} / \sim,$$

where $(H, \theta) \sim (H', \theta')$ if, for some $B \in \Omega^{2,0}$

$$H' = H + CS(\theta) - CS(\theta') - d\langle \theta \wedge \theta' \rangle + dB.$$

(1)

<u>Notation</u>: $\langle F_{\theta} \wedge F_{\theta} \rangle = \operatorname{tr} R_{\nabla}^2 - \operatorname{tr} F_A^2$.

By definition, a string algebroid determines a holomorphic vector bundle $E = V \oplus W$ on X, such that $c_2(V) = c_2(W)$.

Denote by \mathcal{A} the space of product integrable connections $\theta = \nabla \times A$ on $E = V \oplus W$ (i.e. $F_{\theta}^{0,2} = 0$).

Proposition (GF-Rubio-Tipler): The isomorphism classes of Q's with underlying bundle E are in bijection with

$$\{(H, heta) \in \Omega^{3,0} \oplus \Omega^{2,1} imes \mathcal{A}_P \mid dH + \langle F_{ heta} \wedge F_{ heta}
angle = 0\} / \sim,$$

where $(H, \theta) \sim (H', \theta')$ if, for some $B \in \Omega^{2,0}$

$$H' = H + CS(\theta) - CS(\theta') - d\langle \theta \wedge \theta' \rangle + dB.$$

(1)

<u>Notation</u>: $\langle F_{\theta} \wedge F_{\theta} \rangle = \operatorname{tr} R_{\nabla}^2 - \operatorname{tr} F_A^2$.

By definition, a string algebroid determines a holomorphic vector bundle $E = V \oplus W$ on X, such that $c_2(V) = c_2(W)$.

Denote by \mathcal{A} the space of product integrable connections $\theta = \nabla \times A$ on $E = V \oplus W$ (i.e. $F_{\theta}^{0,2} = 0$).

Proposition (GF-Rubio-Tipler): The isomorphism classes of Q's with underlying bundle E are in bijection with

$$\{(H, heta)\in \Omega^{3,0}\oplus \Omega^{2,1} imes \mathcal{A}_P\mid dH+\langle F_ heta\wedge F_ heta
angle=0\}/\sim,$$

where $(H, \theta) \sim (H', \theta')$ if, for some $B \in \Omega^{2,0}$

$$H' = H + CS(\theta) - CS(\theta') - d\langle \theta \wedge \theta' \rangle + dB.$$

(1)

<u>Notation</u>: $\langle F_{\theta} \wedge F_{\theta} \rangle = \operatorname{tr} R_{\nabla}^2 - \operatorname{tr} F_A^2$.

Bott-Chern algebroids and Aeppli classes

Goal: find analogue of $\partial \overline{\partial}$ -closed (1,1)-forms for Q.

Recall: $\, {\cal Q} \,$ is described by $\, {\cal H} \in \Omega^{3,0} \oplus \Omega^{2,1}$ and $\, heta =
abla imes A$ such that

$$dH + \langle F_{\theta} \wedge F_{\theta} \rangle = 0, \qquad F_{\theta}^{0,2} = 0.$$

Let $\mathcal R$ denote the space of product hermitian metrics on E. Define

 $B_Q = \{(\tau, h) \in \Omega^{1,1} \times \mathcal{R} \mid satisfying *\},\$

* $2i\partial au = H + CS(heta) - CS(heta_h) - d\langle heta \wedge heta_h \rangle + dB.$ (2 For some $B \in \Omega^{2,0}$ and $heta_h$ the Chern connection.

Let Q be a string algebroid over X, with underlying bundle $E = V \oplus W$. **Goal:** find analogue of $\partial \overline{\partial}$ -closed (1,1)-forms for Q. Recall: Q is described by $H \in \Omega^{3,0} \oplus \Omega^{2,1}$ and $\theta = \nabla \times A$ such that

$$dH + \langle F_{\theta} \wedge F_{\theta} \rangle = 0, \qquad F_{\theta}^{0,2} = 0.$$

Let ${\mathcal R}$ denote the space of product hermitian metrics on E. Define

 $B_Q = \{(au, h) \in \Omega^{1,1} imes \mathcal{R} \mid \textit{satisfying } *\},$

* $2i\partial \tau = H + CS(\theta) - CS(\theta_h) - d\langle \theta \wedge \theta_h \rangle + dB.$ (2 for some $B \in \Omega^{2,0}$ and θ_h the Chern connection.

Goal: find analogue of $\partial \overline{\partial}$ -closed (1,1)-forms for Q.

Recall: Q is described by $H \in \Omega^{3,0} \oplus \Omega^{2,1}$ and $\theta = \nabla \times A$ such that

$$dH + \langle F_{\theta} \wedge F_{\theta} \rangle = 0, \qquad F_{\theta}^{0,2} = 0.$$

Let ${\mathcal R}$ denote the space of product hermitian metrics on ${\it E}$. Define

 $B_Q = \{(au, h) \in \Omega^{1,1} imes \mathcal{R} \mid \textit{satisfying } *\},$

* $2i\partial \tau = H + CS(\theta) - CS(\theta_h) - d\langle \theta \wedge \theta_h \rangle + dB.$ (2 for some $B \in \Omega^{2,0}$ and θ_h the Chern connection.

Goal: find analogue of $\partial \overline{\partial}$ -closed (1,1)-forms for Q.

Recall: Q is described by $H \in \Omega^{3,0} \oplus \Omega^{2,1}$ and $\theta = \nabla \times A$ such that

$$dH + \langle F_{\theta} \wedge F_{\theta} \rangle = 0, \qquad F_{\theta}^{0,2} = 0.$$

Let \mathcal{R} denote the space of product hermitian metrics on E. Define

$$B_Q = \{(au, h) \in \Omega^{1,1} imes \mathcal{R} \mid \textit{satisfying } *\},$$

* $2i\partial \tau = H + CS(\theta) - CS(\theta_h) - d\langle \theta \wedge \theta_h \rangle + dB.$ (2) for some $B \in \Omega^{2,0}$ and θ_h the Chern connection.

Goal: find analogue of $\partial \overline{\partial}$ -closed (1,1)-forms for Q.

Recall: Q is described by $H \in \Omega^{3,0} \oplus \Omega^{2,1}$ and $\theta = \nabla \times A$ such that

$$dH + \langle F_{\theta} \wedge F_{\theta} \rangle = 0, \qquad F_{\theta}^{0,2} = 0.$$

Let \mathcal{R} denote the space of product hermitian metrics on E. Define

$$B_Q = \{(au, h) \in \Omega^{1,1} imes \mathcal{R} \mid \textit{satisfying } *\},$$

* $2i\partial \tau = H + CS(\theta) - CS(\theta_h) - d\langle \theta \land \theta_h \rangle + dB.$ (2)

for some $B \in \Omega^{2,0}$ and θ_h the Chern connection.

Definition: *Q* is Bott-Chern (BC) if $B_Q \neq \emptyset$.

 $B_Q = \{(\tau, h) \in \Omega^{1,1} \times \mathcal{R} \mid \text{satisfying } *\},$

*
$$2i\partial \tau = H + CS(\theta) - CS(\theta_h) - d\langle \theta \wedge \theta_h \rangle + dB.$$
 (3)

Proposition (GF-Rubio-Shahbazi-Tipler): the isomorphism classes of Bott-Chern algebroids Q with E fixed, form an affine space modelled on Im ∂

$$\partial \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) \cong \frac{\operatorname{Ker} d \colon \Omega^{3,0} \oplus \Omega^{2,1} \to \dots}{\operatorname{Im} d \colon \Omega^{2,0} \to \dots}$$

Observe: If X is $\partial \overline{\partial}$ -manifold, E determines Q uniquely.

Definition: *Q* is Bott-Chern (BC) if $B_Q \neq \emptyset$.

 $B_Q = \{(\tau, h) \in \Omega^{1,1} \times \mathcal{R} \mid \text{satisfying } *\},\$

*
$$2i\partial \tau = H + CS(\theta) - CS(\theta_h) - d\langle \theta \wedge \theta_h \rangle + dB.$$
 (3)

Proposition (GF-Rubio-Shahbazi-Tipler): the isomorphism classes of Bott-Chern algebroids Q with E fixed, form an affine space modelled on Im ∂

$$\partial \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) \cong \frac{\operatorname{Ker} d \colon \Omega^{3,0} \oplus \Omega^{2,1} \to \dots}{\operatorname{Im} d \colon \Omega^{2,0} \to \dots}$$

Observe: If X is $\partial \overline{\partial}$ -manifold, E determines Q uniquely.

Want analogue of Aeppli class for elements $(\tau, h) \in B_Q$... but

 $2i\partial\bar{\partial}\tau-\langle F_h\wedge F_h\rangle=0.$

Proposition (Donaldson '85): for $h_0, h_1 \in \mathcal{R}$, there exists

 $R(h_1,h_0)\in \Omega^{1,1}/\operatorname{Im}(\partial\oplus\overline{\partial})$

with the following properties:

- **(**) $R(h_0, h_0) = 0$, and $R(h_2, h_0) = R(h_2, h_1) + R(h_1, h_0)$,
- 3 $2i\partial \partial R(h_1,h_0) = \langle F_{h_1} \wedge F_{h_1} \rangle \langle F_{h_0} \wedge F_{h_0} \rangle.$

Want analogue of Aeppli class for elements $(\tau, h) \in B_Q$... but $2i\partial \bar{\partial} \tau - \langle F_h \wedge F_h \rangle = 0.$

Proposition (Donaldson '85): for $h_0, h_1 \in \mathcal{R}$, there exists

 $R(h_1, h_0) \in \Omega^{1,1} / \operatorname{Im}(\partial \oplus \overline{\partial})$

with the following properties:

- **1** $R(h_0, h_0) = 0$, and $R(h_2, h_0) = R(h_2, h_1) + R(h_1, h_0)$,
- $(3) 2i\partial \bar{\partial} R(h_1,h_0) = \langle F_{h_1} \wedge F_{h_1} \rangle \langle F_{h_0} \wedge F_{h_0} \rangle.$

Want analogue of Aeppli class for elements $(\tau, h) \in B_Q$... but

 $2i\partial\bar{\partial}\tau-\langle F_h\wedge F_h\rangle=0.$

Proposition (Donaldson '85): for $h_0, h_1 \in \mathcal{R}$, there exists

 $R(h_1, h_0) \in \Omega^{1,1} / \operatorname{Im}(\partial \oplus \overline{\partial})$

(4)

with the following properties:

- **1** $R(h_0, h_0) = 0$, and $R(h_2, h_0) = R(h_2, h_1) + R(h_1, h_0)$,
- $2 \frac{d}{dt} R(h_t, h_0) = i \langle h^{-1} \dot{h}, F_h \rangle,$
- $\Im 2i\partial \bar{\partial} R(h_1,h_0) = \langle F_{h_1} \wedge F_{h_1} \rangle \langle F_{h_0} \wedge F_{h_0} \rangle.$

Proposition (GF-Rubio-Shahbazi-Tipler): there is a well-defined map

 $Ap\colon B_Q\times B_Q\to H^{1,1}_A(X)$

where

$$Ap((\tau_1, h_1), (\tau_0, h_0)) = [\tau_1 - \tau_0 - R(h_1, h_0)].$$

There is an affine space Σ_Q modelled on Ker ∂

$$\partial \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) = \frac{\operatorname{Ker} d \colon \Omega^{3,0} \oplus \Omega^{2,1} \to \dots}{\operatorname{Im} d \colon \Omega^{2,0} \to \dots}$$

and a decomposition $B_Q = \bigsqcup_{\sigma \in \Sigma_Q} B_Q^{\sigma}$.

Analogue: the space of $\partial \overline{\partial}$ -closed (1,1)-forms on X decomposes as disjoint union of sets labelled by $H^{1,1}_A(X)$.

We will call Σ_Q the space of Aeppli classes of Q.

Proposition (GF-Rubio-Shahbazi-Tipler): there is a well-defined map

 $Ap\colon B_Q\times B_Q\to H^{1,1}_A(X)$

where

$$Ap((\tau_1, h_1), (\tau_0, h_0)) = [\tau_1 - \tau_0 - R(h_1, h_0)].$$

There is an affine space Σ_Q modelled on Ker ∂

$$\partial \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) = \frac{\operatorname{Ker} d \colon \Omega^{3,0} \oplus \Omega^{2,1} \to \dots}{\operatorname{Im} d \colon \Omega^{2,0} \to \dots}$$

and a decomposition $B_Q = \bigsqcup_{\sigma \in \Sigma_Q} B_Q^{\sigma}$.

Analogue: the space of $\partial \overline{\partial}$ -closed (1, 1)-forms on X decomposes as disjoint union of sets labelled by $H^{1,1}_A(X)$.

We will call Σ_Q the space of Aeppli classes of Q.

Proposition (GF-Rubio-Shahbazi-Tipler): there is a well-defined map

 $Ap\colon B_Q\times B_Q\to H^{1,1}_A(X)$

where

$$Ap((\tau_1, h_1), (\tau_0, h_0)) = [\tau_1 - \tau_0 - R(h_1, h_0)].$$

There is an affine space Σ_Q modelled on Ker ∂

$$\partial \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) = \frac{\operatorname{Ker} d \colon \Omega^{3,0} \oplus \Omega^{2,1} \to \dots}{\operatorname{Im} d \colon \Omega^{2,0} \to \dots}$$

and a decomposition $B_Q = \bigsqcup_{\sigma \in \Sigma_Q} B_Q^{\sigma}$.

Analogue: the space of $\partial \overline{\partial}$ -closed (1, 1)-forms on X decomposes as disjoint union of sets labelled by $H^{1,1}_A(X)$.

We will call Σ_Q the space of Aeppli classes of Q.

Assume for a moment rank E = 0. Then Q is exact

 $0 \to T^*X \to Q \to TX \to 0,$

determined by a closed $H \in \Omega^{3,0} \oplus \Omega^{2,1}$, and

$$B_Q = \left\{ \tau \in \Omega^{1,1} \mid 2i\partial \tau = H + dB \text{ for } B \in \Omega^{2,0} \right\}.$$

Furthermore, the affine space of Aeppli classes is $\Sigma_Q=\partial_H^{-1}(0)$

 $\partial_H \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) \colon [\tau] \to [2i\partial \tau - H]$

Example: $X = \mathbb{C}^2 \setminus \{0\} / \mathbb{Z}$ Hopf surface. Then $H^1(\Omega_{cl}^{2,0}) \cong \mathbb{C}$, $\Sigma_Q = \{\bullet\}$.

Assume for a moment rank E = 0. Then Q is exact

 $0 \to T^*X \to Q \to TX \to 0,$

determined by a closed $H \in \Omega^{3,0} \oplus \Omega^{2,1}$, and

$$B_Q = \left\{ \tau \in \Omega^{1,1} \mid 2i\partial \tau = H + dB \text{ for } B \in \Omega^{2,0}
ight\}.$$

Furthermore, the affine space of *Aeppli classes* is $\Sigma_Q = \partial_H^{-1}(0)$

$$\partial_H \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) \colon [\tau] \to [2i\partial \tau - H]$$

Example: $X = \mathbb{C}^2 \setminus \{0\} / \mathbb{Z}$ Hopf surface. Then $H^1(\Omega_{cl}^{2,0}) \cong \mathbb{C}$, $\Sigma_Q = \{\bullet\}$.

Assume for a moment rank E = 0. Then Q is exact

 $0 \to T^*X \to Q \to TX \to 0,$

determined by a closed $H \in \Omega^{3,0} \oplus \Omega^{2,1}$, and

$$B_Q = \left\{ \tau \in \Omega^{1,1} \mid 2i\partial \tau = H + dB \text{ for } B \in \Omega^{2,0}
ight\}.$$

Furthermore, the affine space of *Aeppli classes* is $\Sigma_Q = \partial_H^{-1}(0)$

$$\partial_H \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) \colon [\tau] \to [2i\partial \tau - H]$$

Example: $X = \mathbb{C}^2 \setminus \{0\} / \mathbb{Z}$ Hopf surface. Then $H^1(\Omega_{cl}^{2,0}) \cong \mathbb{C}$, $\Sigma_Q = \{\bullet\}$.

Assume for a moment rank E = 0. Then Q is exact

 $0 \to T^*X \to Q \to TX \to 0,$

determined by a closed $H \in \Omega^{3,0} \oplus \Omega^{2,1}$, and

$$B_Q = \left\{ \tau \in \Omega^{1,1} \mid 2i\partial \tau = H + dB \text{ for } B \in \Omega^{2,0}
ight\}.$$

Furthermore, the affine space of *Aeppli classes* is $\Sigma_Q = \partial_H^{-1}(0)$

$$\partial_H \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}) \colon [\tau] \to [2i\partial \tau - H]$$

Example: $X = \mathbb{C}^2 \setminus \{0\} / \mathbb{Z}$ Hopf surface. Then $H^1(\Omega_{cl}^{2,0}) \cong \mathbb{C}$, $\Sigma_Q = \{\bullet\}$.

Metrics

X compact complex manifold, Q string algebroid over X, with underlying bundle E.

Definition: a hermitian metric on Q is $(\tau, h) \in B_Q$ such that

 $\omega = \operatorname{Re} \tau > 0.$

The space of hermitian metrics on Q will be denoted by B_Q^+ .

Lemma (GF-Rubio-Shahbazi-Tipler): given $(\tau_0, h_0) \in B_Q^+$ with Aeppli class σ , any other metric (τ, h) with class σ satisfies (for suitable path $h_t \in \mathcal{R}$ joining h_0 and h):

$$\omega = \omega_0 + (d\xi)^{1,1} + \int_0^1 i \langle h_t^{-1} \dot{h}_t, F_{h_t} \rangle dt.$$

for a suitable real 1-form ξ on X.

Observe: a solution of the Hull-Strominger system determines a Bott-Chern algebroid endowed with a hermitian metric (and Aeppli class).

Metrics

X compact complex manifold, Q string algebroid over X, with underlying bundle E.

Definition: a hermitian metric on Q is $(\tau, h) \in B_Q$ such that

 $\omega = \operatorname{Re} \tau > 0.$

The space of hermitian metrics on Q will be denoted by B_Q^+ .

Lemma (GF-Rubio-Shahbazi-Tipler): given $(\tau_0, h_0) \in B_Q^+$ with Aeppli class σ , any other metric (τ, h) with class σ satisfies (for suitable path $h_t \in \mathcal{R}$ joining h_0 and h):

$$\omega = \omega_0 + (d\xi)^{1,1} + \int_0^1 i \langle h_t^{-1} \dot{h}_t, F_{h_t} \rangle dt.$$

for a suitable real 1-form ξ on X.

Observe: a solution of the Hull-Strominger system determines a Bott-Chern algebroid endowed with a hermitian metric (and Aeppli class).

Fixing (X, E), solutions of Hull-Strominger are parametrized by isomorphism classes of Bott-Chern algebroids Q and Aeppli classes in Σ_Q $H^{1,1}_{\Delta}(X) \cong \operatorname{Ker} \partial \oplus \operatorname{Im} \partial$

Example: X nilmanifold \mathfrak{h}_3 . M. Fernandez, et al. found 8-parameter amily of solutions of Hull-Strominger system. Normalization (SU(n) condition) gives 8 - 1 = 7.

And dim $H^{1,1}_A(X) = 7$

Fixing (X, E), solutions of Hull-Strominger are parametrized by isomorphism classes of Bott-Chern algebroids Q and Aeppli classes in Σ_Q

 $H^{1,1}_A(X) \cong \operatorname{Ker} \partial \oplus \operatorname{Im} \partial$

Example: X nilmanifold \mathfrak{h}_3 . M. Fernandez, et al. found 8-parameter family of solutions of Hull-Strominger system. Normalization (SU(n) condition) gives 8 - 1 = 7.

And dim $H^{1,1}_A(X) = 7$

Fixing (X, E), solutions of Hull-Strominger are parametrized by isomorphism classes of Bott-Chern algebroids Q and Aeppli classes in Σ_Q

 $H^{1,1}_A(X) \cong \operatorname{Ker} \partial \oplus \operatorname{Im} \partial$

Example: X nilmanifold \mathfrak{h}_3 . M. Fernandez, et al. found 8-parameter family of solutions of Hull-Strominger system. Normalization (SU(n) condition) gives 8 - 1 = 7.

And dim $H^{1,1}_{A}(X) = 7$

The Lie algebra \mathfrak{h}_3 admits a real basis such that

$$de_j = 0, \ j = 1, \dots, 5,$$
 $de_6 = -2(e^{12} - e^{34})$

and a (balanced) integrable almost complex structure

$$J^-e^1 = -e^2, \ J^-e^3 = -e^4, \ J^-e^5 = -e^6.$$

We have a 9 dimensional real Lie group of automorphisms

$$\operatorname{Aut}(\mathfrak{h}3, J^{-}) = \left\{ \begin{bmatrix} re^{i\alpha_{1}} & \rho e^{i(\alpha_{1}+\theta)} & 0\\ \rho e^{i(\alpha_{2}-\theta)} & re^{i\alpha_{2}} & 0\\ a & b & r^{2}-\rho^{2} \end{bmatrix}, \text{ satisfying}(*) \right\}$$

(*) $(a,b) \in \mathbb{C}^2, \rho, r \ge 0, \rho \neq r, (\alpha_1, \alpha_2, \theta) \in \mathbb{R}^3$

The Lie algebra \mathfrak{h}_3 admits a real basis such that

$$de_j = 0, \ j = 1, \dots, 5, \qquad de_6 = -2(e^{12} - e^{34})$$

and a (balanced) integrable almost complex structure

$$J^-e^1 = -e^2, \ J^-e^3 = -e^4, \ J^-e^5 = -e^6.$$

We have a 9 dimensional real Lie group of automorphisms

$$\operatorname{Aut}(\mathfrak{h}3, J^{-}) = \left\{ \begin{bmatrix} re^{i\alpha_{1}} & \rho e^{i(\alpha_{1}+\theta)} & 0\\ \rho e^{i(\alpha_{2}-\theta)} & re^{i\alpha_{2}} & 0\\ a & b & r^{2}-\rho^{2} \end{bmatrix}, \text{ satisfying}(*) \right\}$$

(*) $(a,b) \in \mathbb{C}^2, \rho, r \ge 0, \rho \neq r, (\alpha_1, \alpha_2, \theta) \in \mathbb{R}^3$

The action of $Aut(\mathfrak{h}3, J^-)$ on a the 1-parameter family of solutions of Hull-Strominger, with hermitian form

$$\omega_t = \frac{i}{2}(\omega^{1\overline{1}} + \omega^{2\overline{2}} + t\omega^{3\overline{3}}),$$

where $\omega^{j} = e^{j} + ie^{j+1}$, gives a 7-dimensional family of solutions after SU(3)-normalization).

Proposition (GF-Rubio-Tipler, '19): Let Q be the holomorphic string algebroid of the solution with t = 1. Then, the Aeppli classes on Σ_Q of the family of solutions above spans an open subset in

$$H^{1,1}_{A}(\mathfrak{h}_{3},J^{-}) = \{ [\omega^{1\overline{1}} + \omega^{2\overline{2}}], [\omega^{1\overline{3}}], [\omega^{3\overline{1}}], [\omega^{2\overline{1}}], [\omega^{1\overline{2}}], [\omega^{2\overline{3}}], [\omega^{3\overline{2}}] \}.$$

The dilaton functional

Definition: Fix a smooth volume form μ on X. Given $(\tau, h) \in B_Q^+$, we define the *dilaton function* $f_{\omega} \in C^{\infty}(X)$ by

$$\omega^n/n! = e^{4f_\omega}\mu, \qquad \omega = Re\ \tau.$$

The dilaton functional is

$$M\colon B^+_Q\to\mathbb{R}\colon(\omega,h)\mapsto\int_X e^{-2f_\omega}\omega^n/n!$$

Proposition (GF-Rubio-Shahbazi-Tipler): the critical points of *M* for metrics in Aeppli class $\sigma \in \Sigma_{O}$ solve the *Calabi system*

$$F_h \wedge \omega^{n-1} = 0, \qquad d(e^{-2f_\omega}\omega^{n-1}) = 0.$$

Definition: Fix a smooth volume form μ on X. Given $(\tau, h) \in B_Q^+$, we define the *dilaton function* $f_{\omega} \in C^{\infty}(X)$ by

$$\omega^n/n! = e^{4f_\omega}\mu, \qquad \omega = \operatorname{Re}\tau.$$

The dilaton functional is

$$M\colon B^+_Q\to\mathbb{R}\colon (\omega,h)\mapsto \int_X e^{-2f_\omega}\omega^n/n!$$

Proposition (GF-Rubio-Shahbazi-Tipler): the critical points of *M* for metrics in Aeppli class $\sigma \in \Sigma_Q$ solve the *Calabi system*

$$F_h \wedge \omega^{n-1} = 0, \qquad d(e^{-2f_\omega}\omega^{n-1}) = 0.$$

Definition: Fix a smooth volume form μ on X. Given $(\tau, h) \in B_Q^+$, we define the *dilaton function* $f_{\omega} \in C^{\infty}(X)$ by

$$\omega^n/n! = e^{4f_\omega}\mu, \qquad \omega = \operatorname{Re} \tau.$$

The *dilaton functional* is

$$M\colon B^+_Q\to\mathbb{R}\colon (\omega,h)\mapsto \int_X e^{-2f_\omega}\omega^n/n!$$

Proposition (GF-Rubio-Shahbazi-Tipler): the critical points of *M* for metrics in Aeppli class $\sigma \in \Sigma_Q$ solve the *Calabi system*

$$F_h \wedge \omega^{n-1} = 0, \qquad d(e^{-2f_\omega}\omega^{n-1}) = 0.$$

Definition: Fix a smooth volume form μ on X. Given $(\tau, h) \in B_Q^+$, we define the *dilaton function* $f_{\omega} \in C^{\infty}(X)$ by

$$\omega^n/n! = e^{4f_\omega}\mu, \qquad \omega = \operatorname{Re} \tau.$$

The dilaton functional is

$$M\colon B^+_Q\to\mathbb{R}\colon(\omega,h)\mapsto\int_X e^{-2f_\omega}\omega^n/n!$$

Proposition (GF-Rubio-Shahbazi-Tipler): the critical points of *M* for metrics in Aeppli class $\sigma \in \Sigma_Q$ solve the *Calabi system*

$$F_h \wedge \omega^{n-1} = 0, \qquad d(e^{-2f_\omega}\omega^{n-1}) = 0.$$

Lemma (GF-Rubio-Shahbazi-Tipler): the dilaton functional is concave along paths $(\omega_t, h_t) \in B_Q^+$ with fixed Aeppli class $\sigma \in \Sigma_Q$, solving

$$\Lambda_{\omega_{t}}(\partial \ddot{\xi}_{t}^{0,1} + \overline{\partial \ddot{\xi}_{t}^{0,1}}) = \frac{2-n}{2n} |\Lambda_{\omega_{t}}(ic(h_{t}^{-1}\dot{h}_{t}, F_{h_{t}}) + \partial \dot{\xi}_{t}^{0,1} + \overline{\partial \dot{\xi}_{t}^{0,1}})|^{2} (5) - \Lambda_{\omega_{t}}\left(ic(h_{t}^{-1}\dot{h}_{t}, \overline{\partial}\partial^{h_{t}}(h_{t}^{-1}\dot{h}_{t})) + ic(\partial_{t}(h_{t}^{-1}\dot{h}_{t}), F_{h_{t}})\right).$$

Analogy: geodesic equation in Kähler geometry.

Proposition (GF-Rubio-Shahbazi-Tipler): If (ω_0, h_0) and (ω_1, h_1) are two solutions of the Calabi system

$$F_h \wedge \omega^{n-1} = 0, \qquad d(e^{-2f_\omega}\omega^{n-1}) = 0.$$

with Aeppli class σ that can be joined by a solution (ω_t, h_t) of (5) depending analytically on t, then $\omega_1 = k\omega_0$ for some constant k, and h_1 is related to h_0 by an automorphism of E. Furthermore, when $d\omega_0 \neq 0$, we must have k = 1.

Lemma (GF-Rubio-Shahbazi-Tipler): the dilaton functional is concave along paths $(\omega_t, h_t) \in B_Q^+$ with fixed Aeppli class $\sigma \in \Sigma_Q$, solving

$$\Lambda_{\omega_{t}}(\partial \ddot{\xi}_{t}^{0,1} + \overline{\partial \ddot{\xi}_{t}^{0,1}}) = \frac{2-n}{2n} |\Lambda_{\omega_{t}}(ic(h_{t}^{-1}\dot{h}_{t}, F_{h_{t}}) + \partial \dot{\xi}_{t}^{0,1} + \overline{\partial \dot{\xi}_{t}^{0,1}})|^{2}$$
(5)
$$-\Lambda_{\omega_{t}}\left(ic(h_{t}^{-1}\dot{h}_{t}, \overline{\partial}\partial^{h_{t}}(h_{t}^{-1}\dot{h}_{t})) + ic(\partial_{t}(h_{t}^{-1}\dot{h}_{t}), F_{h_{t}})\right).$$

Analogy: geodesic equation in Kähler geometry.

Proposition (GF-Rubio-Shahbazi-Tipler): If (ω_0, h_0) and (ω_1, h_1) are two solutions of the Calabi system

$$F_h \wedge \omega^{n-1} = 0, \qquad d(e^{-2f_\omega}\omega^{n-1}) = 0.$$

with Aeppli class σ that can be joined by a solution (ω_t, h_t) of (5) depending analytically on t, then $\omega_1 = k\omega_0$ for some constant k, and h_1 is related to h_0 by an automorphism of E. Furthermore, when $d\omega_0 \neq 0$, we must have k = 1.

Lemma (GF-Rubio-Shahbazi-Tipler): the dilaton functional is concave along paths $(\omega_t, h_t) \in B_Q^+$ with fixed Aeppli class $\sigma \in \Sigma_Q$, solving

$$\Lambda_{\omega_{t}}(\partial \dot{\xi}_{t}^{0,1} + \overline{\partial \dot{\xi}_{t}^{0,1}}) = \frac{2-n}{2n} |\Lambda_{\omega_{t}}(ic(h_{t}^{-1}\dot{h}_{t}, F_{h_{t}}) + \partial \dot{\xi}_{t}^{0,1} + \overline{\partial \dot{\xi}_{t}^{0,1}})|^{2}$$

$$-\Lambda_{\omega_{t}}\left(ic(h_{t}^{-1}\dot{h}_{t}, \overline{\partial}\partial^{h_{t}}(h_{t}^{-1}\dot{h}_{t})) + ic(\partial_{t}(h_{t}^{-1}\dot{h}_{t}), F_{h_{t}})\right).$$
(5)

Analogy: geodesic equation in Kähler geometry.

Proposition (GF-Rubio-Shahbazi-Tipler): If (ω_0, h_0) and (ω_1, h_1) are two solutions of the Calabi system

$$F_h \wedge \omega^{n-1} = 0, \qquad d(e^{-2f_\omega}\omega^{n-1}) = 0.$$

with Aeppli class σ that can be joined by a solution (ω_t, h_t) of (5) depending analytically on t, then $\omega_1 = k\omega_0$ for some constant k, and h_1 is related to h_0 by an automorphism of E. Furthermore, when $d\omega_0 \neq 0$, we must have k = 1.

Fixing (X, E), solutions of Hull-Strominger are parametrized by isomorphism classes of Bott-Chern algebroids Q and Aeppli classes in Σ_Q

 $H^{1,1}_A(X) \cong \operatorname{Ker} \partial \oplus \operatorname{Im} \partial$

Theorem (GF-Rubio-Tipler, '19): Assume that the geodesic-like equation has short-time existence in any given direction in the Aeppli class at a given solution. Then, the quadratic form given by the Hessian of M is semi-negative, and the conjecture holds infinitesimally.

The moduli Kähler potential

4D physical analysis

Assuming dim_{$\mathbb{C}} X = 3$ and existence of a holomorphic volume form Ω ,</sub>

 $\omega^3/6 = e^{4f_\omega}i\Omega\wedge\overline{\Omega}$

implies that $e^{2f_{\omega}}$ is the 10-dimensional dilaton, and the dilaton functional is

$$M = \int_{X} e^{-2f_{\omega}} \omega^{n} / n! = \int_{X} \|\Omega\| \omega^{n} / n!$$
(6)

Remarkably, this coincides with a <u>universal formula</u> for the <u>4D dilaton</u> in the induced effective field theory

$$e^{-2\phi_4} = \int_X e^{-2\phi_{10}} vol_6$$

• Anguelova-Quigley-Sethi, JHEP10, 2010.

4D physical analysis

Assuming dim_{$\mathbb{C}} X = 3$ and existence of a holomorphic volume form Ω ,</sub>

 $\omega^3/6 = e^{4f_\omega}i\Omega\wedge\overline{\Omega}$

implies that $e^{2f_{\omega}}$ is the 10-dimensional dilaton, and the dilaton functional is

$$M = \int_{X} e^{-2f_{\omega}} \omega^{n} / n! = \int_{X} \|\Omega\| \omega^{n} / n!$$
(6)

Remarkably, this coincides with a <u>universal formula</u> for the <u>4D dilaton</u> in the induced effective field theory

$$e^{-2\phi_4} = \int_X e^{-2\phi_{10}} vol_6$$

• Anguelova-Quigley-Sethi, JHEP10, 2010.

4D physical analysis

Assuming dim_{$\mathbb{C}} X = 3$ and existence of a holomorphic volume form Ω ,</sub>

 $\omega^3/6 = e^{4f_\omega}i\Omega\wedge\overline{\Omega}$

implies that $e^{2f_{\omega}}$ is the 10-dimensional dilaton, and the dilaton functional is

$$M = \int_{X} e^{-2f_{\omega}} \omega^{n} / n! = \int_{X} \|\Omega\| \omega^{n} / n!$$
(6)

Remarkably, this coincides with a <u>universal formula</u> for the <u>4D dilaton</u> in the induced effective field theory

$$e^{-2\phi_4} = \int_X e^{-2\phi_{10}} vol_6$$

• Anguelova-Quigley-Sethi, JHEP10, 2010.

In 4-dimensional supergravity the gravitino mass can be written as

$$M_{3/2} = c_0 e^{K/2} W$$

for some universal constant $c_0 \in \mathbb{R}$. Here, W is the superpotential of the theory and e^{K} is the Kähler potential.

A *Gukov-type formula* for $M_{3/2}$ was derived by Lukas et al. (valid to first order in α' expansion):

$$M_{3/2} = \frac{\sqrt{8}e^{\phi^4}W}{4\int_X \|\Omega\|_{\omega}\frac{\omega^3}{6}}$$

where $e^{-2\phi^4}$ is the four-dimensional dilaton.

• Gurrieri, A. Lukas, and A. Micu, Phys. Rev. D70 (2004)

In 4-dimensional supergravity the gravitino mass can be written as

$$M_{3/2} = c_0 e^{K/2} W$$

for some universal constant $c_0 \in \mathbb{R}$. Here, W is the superpotential of the theory and e^{K} is the Kähler potential.

A *Gukov-type formula* for $M_{3/2}$ was derived by Lukas et al. (valid to first order in α' expansion):

$$M_{3/2} = \frac{\sqrt{8}e^{\phi^4}W}{4\int_X \|\Omega\|_{\omega}\frac{\omega^3}{6}},$$

where $e^{-2\phi^4}$ is the four-dimensional dilaton.

• Gurrieri, A. Lukas, and A. Micu, Phys. Rev. D70 (2004)

This leads to the following formula for the moduli Kähler potential

$$\mathcal{K} = -3\log \int_X \|\Omega\|_{\omega} \frac{\omega^3}{6} - 2\log c_0 - \log 2.$$

Conjecture - Physical prediction

The following formula defines the Kähler potential for a Kähler metric in the moduli space of solutions of the Hull-Strominger system

$$\mathcal{K} = -\log \int_X \|\Omega\|_\omega \frac{\omega^n}{n!}.$$

Conjecture - Physical prediction

The following formula defines the Kähler potential for a Kähler metric in the moduli space of solutions of the Hull-Strominger system

$$K = -\log \int_X \|\Omega\|_\omega \frac{\omega^n}{n!}.$$

Theorem (GF-Rubio-Tipler, '19): Assume that Conjecture holds. If $\delta\sigma$ and $\delta\mu$ are the variations of the Aeppli and balanced classes, respectively, along a non-constant path of solutions of Hull-Strominger on the Bott-Chern algebroid Q, then

$$\delta \sigma \cdot \delta \mu < \frac{1}{4M} (\delta \sigma \cdot \mu)^2.$$

Thank you!