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The Aztec diamond



The Aztec diamond 2

An Aztec diamond of size N = 10

Figure by Sunil Chhita



The Aztec diam 2

An Aztec diamond of size N = 200

Figure by Sunil Chhita



The Aztec diamond: some results 3

The border of the random region, as the size N — oc:

@ has a circular limit shape
Jockush, Propp, Shor’98

o the border of red frozen region has fluctuations O(N'/3) and
(GUE) Tracy-Widom distributed

@ As a process, it converges to the Airyy process on the
(N2/3 N/3) scale Johansson’ 05



The Aztec diamond: line ensemble representation 4

An Aztec diamond of size N = 10

Figure by Sunil Chhita



The Aztec diamond: line ensemble representation 4

Lines of an Aztec diamond of size N = 10

Figure by Sunil Chhita
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The Aztec diamond

Lines of an Aztec diamond of size N = 200

Figure by Sunil Chhita




The Aztec diamond: limit process 5

@ Let x — h(x, N) be the bottom curve of the Aztec diamond
of size N (the origin is the south corner of the Aztec
diamond).

@ The rescaled height function is given by

h(2~Y6uN?/3 N) — N(1 —1/v/2)

hiy(u) = —9-5/6 N'1/3

@ Asymptotic results:

lim PR\ < s) = Fgur(s),
N—ro0
with Fgug the (GUE) Tracy-Widom distribution and

lim h5S¢ = Ag(u) — u?,
N—o00

with As the Airyy process.



The Aztec diamond: dynamics §)

@ For the uniform measure, an Aztec diamond of size N can be
obtained from the one of size N — 1 by the well-known
shuffling algorithm Elkies,Kuperbert,Larsen,Propp’92

aao

@ This gives a discrete time Markov chain



Relation with TASEP 7

@ TASEP: Totally Asymmetric Simple Exclusion Process

o Configurations Py o 7
1, if j is occupied,
n = {nj}jez. nj = { 0, if j is empty. 1001 7
@ Dynamics: discrete time parallel update
Select all particles whose right neighboring Proba = 1/2
site is empty. Independently move them by N
one to the right with probability 1/2. o



TASEP and height function 8

= Particles are ordered: position of particle k is z¥(N)
e Step initial condition is z*(0) = —k, k > 1.
o Height function hTASEP (2 N') with ATASEP (1, 0) = |z|.

V;\

Height function
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TASEP and height function 8

= Particles are ordered: position of particle k is z¥(N)
e Step initial condition is z*(0) = —k, k > 1.
o Height function hTASEP (2 N') with ATASEP (1, 0) = |z|.




Aztec and discrete time TASEP 9

@ The Aztec height function and the discrete time TASEP
height function are the same object:

RTASEP (2 N') = h(z, N)

also as process in time.

@ The distribution of h(x, N) can be also written in terms of a
last passage percolation with geometric weights.

@ Spatial correlations are governed by the Airys process.

Q: What can one say about space-time correlations of the
height function?



The Kardar-Parisi-Zhang universality class

KPZ class



KPZ models

@ Surface described by a height function h(x,t), x € R the
space, t € R the time. Set wlog h(0,0) = 0.

h /> T h(x,ta), ta > tq
v ! \
\ ! / —-/\ 1z, t1)

@ Models with local growth 4+ smoothing mechanism
= macroscopic growth velocity v is a function of the slope only:

Oth = v(Vh)
In terms of p = VA we have the PDE
Oyp — V(v(p)) =0

KPZ class




Fixed time scaling

e KPZ class +» v"(Vh) # 0.

interfaces at 1 =2,7,12,---,27sec

@ Limit shape: 1000
500 N
_ h(vt,t) N
hmacro(v) = tliglo T o 34 LA f/j,s_,-‘;
s00] e
@ Fluctuation exponent: 1/3 -1000 :
@ Spatial correlation exponent: 2/3 gl : 1900

If {(z =wt,t),t > 0} is a characteristic line of
Dip—V(v(p)) = 0
= Rescaled height function around macroscopic position v,

vesey oy (Wt + &) — thinaero (v + E671/3
hy™4(€) = ( ) +1/3 ( )

KPZ class



Limit processes at fixed time

KPZ class



Universality in one dimension

vescy oy (0t + €73 8) — thinaero(v + €7 1/3
hi™(§) = ( ) +1/3 ( )

@ Universality conjecture: take a v such that d%hmacm(v) exists.
Then
lim 7;%(§) = ko A(E/Kn)

t—o00
with k,, K, model-dependent coefficients (depending on v)

@ The limit process A still depends on subclasses of initial
conditions/boundary conditions

KPZ class



Universality in one dimension: predictions

Analysis of exactly solvable models gives

@ curved limit shape

lim Aj%(€) = kypA2(E/kn)

t—o00

with As the Airyy process.

o flat limit shape with non-random initial condition

lim h;®(€) = kpA1(&/kn)

t—o00

with A; the Airy; process.

Borodin,Ferrari, Johansson,Prdhofer,Sasamoto,Spohn’03-07

KPZ class



Universality in one dimension: properties

One-point distribution

o P(Ax(§) < s) = Faur(s)

° P(Al(f) < s) = FGOE(QS)
are called the GUE/GOE Tracy-Widom distribution functions,
discovered in random matrix theory Tracy,Widom’94-’96

nof

KPZ class



Beyond spatial correlations: space-time scaling

Time correlations



Last passage percolation

@ Set L={i+j =0} (or L=1{(0,0)}) and end-point &£
® {wi;j}j)>c iid. exp(1) random variables
@ On £ we can add some random variables (initial condition)
@ Directed path m composed of — and 1 s.t. 7(0) € £ and
w(n) €&
@ Last passage time L = max Wy
o o Al il og%n .

.‘rrg

Time correlations




Stochastic growth model

e lllustration for £ = {(0,0)}.
One can define the height function at time ¢ by

x> h(2,t) = Loy (t4140)/2,(t+1—2) /2

J t i
/}’(‘3’;S,\’\/\/"(—l-,ﬁ\li\, /ir(1<,4\)if> /h(a 4)\
O s hes o t=3
///h(—l.\Qj):,‘::/:/ h(LQ\)\\ ,,,,,,,,,,,,,,,,,,, t—=9
’//,,( ), 1) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, t=1
— L -

@ This corresponds to the dynamics defined by
h(z,t 4+ 1) = max{h(z — 1,t), h(x,t), h(z + 1,t)} + w(x,t)
with w(z,t) =w((t+14+2)/2,(t +1—2)/2).



Different space-time cuts 2

o Cut at 7+ j = t: height function at fixed time ¢
o Cut ati=j, i.e., x = 0 is a characteristic direction

Figure by Michael Pr&hofer

Time correlations



Different space-time cuts

Applet

start

Not coarse grained ~ || Tagged particle at0

Current atihe origin 0

Nb Particles (5000
JumpProba (05

Particles Size |4

Speed =100
[ 50 100

Set the parameters

Reset

Time correlations



Different space-time cuts

Applet

‘ stop|

Not coarse grained Tagged particle at 1701

Current atine origin 849
Nb Particles (5000
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Particles Size |4

Speed =100
[

50 100
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Reset

Time correlations



A simulation

Height function not along a characteristic line
VS.

Height function along a characteristic line

MJMNWW\WWWA
LN A,

Time correlations




Slow decorrelation

e Spatial correlation length is O(t%/3)

@ For space-time points on a characteristic line: non-trivial
correlations over macroscopic scale, i.e. O(t)

Ferrari’08;Corwin,Ferrari,Péché’10

m n m

Characteristic lines for the point-to-line(s) (left) and for
point-to-point (right)

Time correlations



Beyond spatial correlations: results

Time correlations



A few geometries

@ The initial height function is hg on £
e Point-to-point: L*(m,n) L ={(0,0)} hp=0
e Point-to-line (flat IC): L™ (m,n) L={i+j=0} hg=0

Time correlations



A few geometries

@ The initial height function is hg on £
e Point-to-point: L*(m,n) L ={(0,0)} hp=0
e Point-to-line (flat IC): L™ (m,n) L={i+j=0} hg=0
@ Point-to-random line (random IC): L7 (m,n)
L={i+j=0},
2 =1 (Xke = Vi) v >1
ho(x,—z) =040 =0

- Zg:z—i—l(Xk -Y) x<-1

{ Xk, Yi}rez i-i.d. Exp(1/2)
@ 0 =0 is the flat IC, 0 = 1 is the stationary IC.

Time correlations



A few geometries

@ For the mentioned cases {(0,t),t > 0} is a characteristic line

@ We are interested in the limit process

. o LA(rtu(26)23, 7t — u(26)1/3) — 4rt
(u,7) = X*(u,7) = tliglo YVENSYE

e Fixed time known results: A*(u) = X*(u, 1)

° JQ'(U) =:¢42(u)-—fu2 Pré&hofer,Spohn’02
° JI\(U) =:¢41(u) Sasamoto’05
o A= (u) = Agpatr(u) Baik,Ferrari,Péché’09
o A%(0) = max,cr{V20B(v) + Az (v) — v}

Chhita,Ferrari,Spohn’17
o &pr = A7=1(0) = max,er{v2B(v) + Az(v) — v?}, with Egr
the Baik-Rains distribution function Baik,Rains’00

Time correlations



Goal: time-time covariance

@ Restrict here to u = 0 (for the talk only). The rescaled
process is

L*(tt,1t) — 47t
* IRT )
T ) = i

@ Goal: determine the covariance of the process at two times:
C*(7) = Cov(X*(7), X*(1))

with x = curved, flat, or random.

Time correlations



Stationary time-time covariance

Theorem
For the stationary case, i.e., x = o with o =1,

B 14723 —(1—71)%3

Cov (X*(1), X*(1)) 5

Var (gBR)

@ But, the process is not a fractional Brownian motion

@ Open question: what is the time-time process? s it related
with fractional Brownian motion with Hurst parameter 1/3?

Time correlations



Stationary case: numerics

1.0

0.8} o

0.6¢

0.4}

0.2F

0.0t 0.01 0.1 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure: Plot of 7 — Cov (X5 (), X% (1))/ Var(Xs'?*(1)). The
top-left inset is the log-log plot around 7 = 0 and the right-bottom inset
is the log-log plot around 7 = 1. The fit is made with the function
T %(1 + 723 — (1 — T)2/3). Ferrari,Spohn’16

Time correlations




Behavior for 7 — 1

Theorem (Universal behavior for 7 — 1)

For x € {8, \, 0} the covariance of the limiting height function for
T—1is

1+ 72/3

Cov (X*(1), X*(1)) Var (X*(1))

JRYY .
- %VM (¢sr)+O(1—1)".

Time correlations



Analogue statement for the Aztec diamond

@ Space-time scaling

h(27YSuN?/3 7N) — TN(1 - 1/V/2)
_9-5/6 N1/3

B (u,7) =

o Let H(7) = limn_00 A\°°(0, 7). Then the result from LPP
would rewrites as

2/3
Cov (H(7),H(1)) = L+ Var ({quk)
— (1_;)2/3 Var (égr) + O(1 — 7)1

Time correlations



Strategy of the proof

o Consider two paths with ending y
points

>

E; = (tt,7t) and E; = (t,t).

e Concatenation property: let
I(u) = 7t(1,1) + u (27)¥3(1, -1),
then

L*(By) = max{ I (1) + L),

Time correlations



Strategy of the proof

>

o Consider two paths with ending y
points

E; = (tt,7t) and E; = (t,t).

e Concatenation property: let
I(u) = 7t(1,1) + u (27)¥3(1, -1),
then

L*(By) = max{ I (1) + L),

o Taking t — oo we gets

X (1) = Iggﬁ({Tl/sA*(sz/?)u) F(1—7)YBA(1 - 1)"2Bu)}

and
X*(1) = /3 A(0)

Time correlations




Strategy of the proof

@ Use the decomposition

Cov(X*(1), X*(7)) = % Var(z'\,’*(l))—i—% Var(X*(T))—% Var(X*(1)—2*(7))

@ Thus need to control the variance of
X*(1)—-Xx*(r) = mealéi{rl/?’[A*(T_2/3u)—.A*(O)]+(1—T)1/3A°((1—7)_2/3u)}
o Recall: A*(u) = Az(u) —u®. With u = (1 —7)%/30;

X (1)=X*(7) = (1=7)"* max{ (;55) VLA (555) ) = A (0) [+ Ax (v) 0%}

Time correlations




Strategy of the proof

@ Using the comparison with stationarity Cator,Pimentel’15

(1) P LAR ((5)% o) — A% (0)] = V2B(v)

T—r
as T — 1, i.e.,

XH(1)=2"() = (1= max{ VB )+ Aa() =} 2 ton

e Using (exponential) tail estimates on the X*(1) (all of them

can be obtained from the point-to-point tails with some work)
we prove

Var(X*(1) — X*(1)) = (1 — 7)¥3 Var(égr) + O((1 — 7))

Time correlations



Point-to-point: numerics
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Figure: Plot of 7+ Cov(X*(7), X*(1))/ Var(X*(1)).

Cov(X*(7), X*(1)) ~ 7%/% for 7 — 0.

Ferrari,Spohn’16; Ferrari,Occelli’18; Basu,Ganguly’18

Prefactor in front of 72/3 is known LeDoussal’17, Johansson’19

Time correlations




Flat IC: numerics

1.Op 1
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0.0 0.2 0.4 0.6 0.8 1.0
Figure: Plot of 7 — Cov(X™\(7), X\ (1))/ Var(X™N(1)).
Cov(X N (1), XN (1)) ~ 743 for 7 — 0. Ferrari,Spohn’16

Time correlations



Related results

Experimental results:

@ Takeuchi (2012-2016): Experiments on turbulent liquid
crystals and off-lattice Eden simulations

Mathematical results

e Baik-Liu (2017-), Johansson (2017-2018): Joint distribution
function at two times (point-to-point)

@ Johansson-Rahmann (2019): Joint distribution function at
n > 2 times (point-to-point)

Time correlations



Related results

Experimental results:
@ Takeuchi (2012-2016): Experiments on turbulent liquid
crystals and off-lattice Eden simulations
Mathematical results
e Baik-Liu (2017-), Johansson (2017-2018): Joint distribution
function at two times (point-to-point)
@ Johansson-Rahmann (2019): Joint distribution function at
n > 2 times (point-to-point)
e Basu-Ganguly (2018): O(7%/3) for 7 — 0 and O((1 — 7)%/3)
for 7 — 1 for point-to-point. Uses less inputs from exactly
solvable (no Airy processes); estimates uniform in ¢.

e Corwin-Ghosal-Hammond (2019): similar results as
Basu-Ganguly for KPZ equation with narrow-wedge initial
condition

Time correlations
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