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The Aztec diamond
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The Aztec diamond 2

An Aztec diamond of size N = 10

Figure by Sunil Chhita
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The Aztec diamond 2

An Aztec diamond of size N = 200

Figure by Sunil Chhita
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The Aztec diamond: some results 3

The border of the random region, as the size N →∞:

has a circular limit shape
Jockush, Propp, Shor’98

the border of red frozen region has fluctuations O(N1/3) and
(GUE) Tracy-Widom distributed

As a process, it converges to the Airy2 process on the
(N2/3, N1/3) scale Johansson’05
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The Aztec diamond: line ensemble representation 4

An Aztec diamond of size N = 10

Figure by Sunil Chhita
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The Aztec diamond: line ensemble representation 4

Lines of an Aztec diamond of size N = 10

Figure by Sunil Chhita
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The Aztec diamond: line ensemble representation 4

Lines of an Aztec diamond of size N = 200

Figure by Sunil Chhita
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The Aztec diamond: limit process 5

Let x 7→ h(x,N) be the bottom curve of the Aztec diamond
of size N (the origin is the south corner of the Aztec
diamond).

The rescaled height function is given by

hrescN (u) =
h(2−1/6uN2/3, N)−N(1− 1/

√
2)

−2−5/6N1/3

Asymptotic results:

lim
N→∞

P(hrescN ≤ s) = FGUE(s),

with FGUE the (GUE) Tracy-Widom distribution and

lim
N→∞

hrescN = A2(u)− u2,

with A2 the Airy2 process.
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The Aztec diamond: dynamics 6

For the uniform measure, an Aztec diamond of size N can be
obtained from the one of size N − 1 by the well-known
shuffling algorithm Elkies,Kuperbert,Larsen,Propp’92

This gives a discrete time Markov chain
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Relation with TASEP 7

TASEP: Totally Asymmetric Simple Exclusion Process

Configurations

η = {ηj}j∈Z, ηj =

{
1, if j is occupied,
0, if j is empty.

Dynamics: discrete time parallel update
Select all particles whose right neighboring
site is empty. Independently move them by
one to the right with probability 1/2.

Proba = 1/2
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TASEP and height function 8

⇒ Particles are ordered: position of particle k is xk(N)

Step initial condition is xk(0) = −k, k ≥ 1.

Height function hTASEP(x,N) with hTASEP(x, 0) = |x|.
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Aztec and discrete time TASEP 9

The Aztec height function and the discrete time TASEP
height function are the same object:

hTASEP(x,N) = h(x,N)

also as process in time.

The distribution of h(x,N) can be also written in terms of a
last passage percolation with geometric weights.

Spatial correlations are governed by the Airy2 process.
Q: What can one say about space-time correlations of the
height function?
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The Kardar-Parisi-Zhang universality class
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KPZ models 11

Surface described by a height function h(x, t), x ∈ R the
space, t ∈ R the time. Set wlog h(0, 0) = 0.

Models with local growth + smoothing mechanism

⇒ macroscopic growth velocity v is a function of the slope only:

∂th = v(∇h)

In terms of ρ = ∇h we have the PDE

∂tρ−∇(v(ρ)) = 0
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Fixed time scaling 12

KPZ class ↔ v′′(∇h) 6= 0.

Limit shape:

hmacro(v) := lim
t→∞

h(vt, t)

t

Fluctuation exponent: 1/3

Spatial correlation exponent: 2/3

If {(x = vt, t), t ≥ 0} is a characteristic line of

∂tρ−∇(v(ρ)) = 0

⇒ Rescaled height function around macroscopic position v,

hresct (ξ) =
h(vt+ ξt2/3, t)− thmacro(v + ξt−1/3)

t1/3
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Limit processes at fixed time
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Universality in one dimension 14

hresct (ξ) =
h(vt+ ξt2/3, t)− thmacro(v + ξt−1/3)

t1/3

Universality conjecture: take a v such that d
dvhmacro(v) exists.

Then
lim
t→∞

hresct (ξ) = κvA(ξ/κh)

with κv, κh model-dependent coefficients (depending on v)

The limit process A still depends on subclasses of initial
conditions/boundary conditions
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Universality in one dimension: predictions 15

Analysis of exactly solvable models gives

curved limit shape

lim
t→∞

hresct (ξ) = κvA2(ξ/κh)

with A2 the Airy2 process.

flat limit shape with non-random initial condition

lim
t→∞

hresct (ξ) = κvA1(ξ/κh)

with A1 the Airy1 process.

Borodin,Ferrari,Johansson,Prähofer,Sasamoto,Spohn’03-07
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Universality in one dimension: properties 16

One-point distribution

P(A2(ξ) ≤ s) = FGUE(s)

P(A1(ξ) ≤ s) = FGOE(2s)

are called the GUE/GOE Tracy-Widom distribution functions,
discovered in random matrix theory Tracy,Widom’94-’96
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Beyond spatial correlations: space-time scaling
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Last passage percolation 18

Set L = {i+ j = 0} (or L = {(0, 0)}) and end-point E
{ωi,j}(i,j)>L iid. exp(1) random variables

On L we can add some random variables (initial condition)

Directed path π composed of → and ↑ s.t. π(0) ∈ L and
π(n) ∈ E
Last passage time LL→E = max

π:A→E
A∈L,E∈E

∑
0≤k≤n

ωπ(k)
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Stochastic growth model 19

Illustration for L = {(0, 0)}.
One can define the height function at time t by

x 7→ h(x, t) := LL→(t+1+x)/2,(t+1−x)/2

This corresponds to the dynamics defined by

h(x, t+ 1) = max{h(x− 1, t), h(x, t), h(x+ 1, t)}+ w(x, t)

with w(x, t) = ω((t+ 1 + x)/2, (t+ 1− x)/2).
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Different space-time cuts 20

Cut at i+ j = t: height function at fixed time t

Cut at i = j, i.e., x = 0 is a characteristic direction

Figure by Michael Prähofer
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Different space-time cuts 21
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Different space-time cuts 21
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A simulation 22

Height function not along a characteristic line

vs.

Height function along a characteristic line

Aztec KPZ class Time correlations



Slow decorrelation 23

Spatial correlation length is O(t2/3)

For space-time points on a characteristic line: non-trivial
correlations over macroscopic scale, i.e. O(t)

Ferrari’08;Corwin,Ferrari,Péché’10

Characteristic lines for the point-to-line(s) (left) and for
point-to-point (right)
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Beyond spatial correlations: results
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A few geometries 25

The initial height function is h0 on L
Point-to-point: L•(m,n) L = {(0, 0)} h0 = 0

Point-to-line (flat IC): L�(m,n) L = {i+ j = 0} h0 = 0

Point-to-random line (random IC): Lσ(m,n)
L = {i+ j = 0},

h0(x,−x) = σ


∑x

k=1(Xk − Yk) x ≥ 1

0 x = 0

−
∑0

k=x+1(Xk − Yk) x ≤ −1

{Xk, Yk}k∈Z i. i. d. Exp(1/2)

σ = 0 is the flat IC, σ = 1 is the stationary IC.

Aztec KPZ class Time correlations



A few geometries 25

The initial height function is h0 on L
Point-to-point: L•(m,n) L = {(0, 0)} h0 = 0

Point-to-line (flat IC): L�(m,n) L = {i+ j = 0} h0 = 0

Point-to-random line (random IC): Lσ(m,n)
L = {i+ j = 0},

h0(x,−x) = σ


∑x

k=1(Xk − Yk) x ≥ 1

0 x = 0

−
∑0

k=x+1(Xk − Yk) x ≤ −1

{Xk, Yk}k∈Z i. i. d. Exp(1/2)

σ = 0 is the flat IC, σ = 1 is the stationary IC.

Aztec KPZ class Time correlations



A few geometries 26

For the mentioned cases {(0, t), t ≥ 0} is a characteristic line

We are interested in the limit process

(u, τ) 7→ X ?(u, τ) = lim
t→∞

L?(τt+ u(2t)2/3, τ t− u(2t)1/3)− 4τt

24/3t1/3

Fixed time known results: A?(u) = X ?(u, 1)

A•(u) = A2(u)− u2 Prähofer,Spohn’02

A�(u) = A1(u) Sasamoto’05

Aσ=1(u) = Astat(u) Baik,Ferrari,Péché’09

Aσ(0) = maxv∈R{
√

2σB(v) +A2(v)− v2}
Chhita,Ferrari,Spohn’17

ξBR = Aσ=1(0) = maxv∈R{
√

2B(v) +A2(v)− v2}, with ξBR

the Baik-Rains distribution function Baik,Rains’00
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Goal: time-time covariance 27

Restrict here to u = 0 (for the talk only). The rescaled
process is

τ 7→ X ?(τ) = lim
t→∞

L?(τt, τ t)− 4τt

24/3t1/3

Goal: determine the covariance of the process at two times:

C?(τ) = Cov(X ?(τ),X ?(1))

with ? = curved, flat, or random.
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Stationary time-time covariance 28

Theorem

For the stationary case, i.e., ? = σ with σ = 1,

Cov (X ?(τ),X ?(1)) =
1 + τ2/3 − (1− τ)2/3

2
Var (ξBR)

But, the process is not a fractional Brownian motion

Open question: what is the time-time process? Is it related
with fractional Brownian motion with Hurst parameter 1/3?
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Stationary case: numerics 29

Figure: Plot of τ 7→ Cov(X stat(τ),X stat(1))/Var(X stat(1)). The
top-left inset is the log-log plot around τ = 0 and the right-bottom inset
is the log-log plot around τ = 1. The fit is made with the function
τ 7→ 1

2 (1 + τ2/3 − (1− τ)2/3). Ferrari,Spohn’16
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Behavior for τ → 1 30

Theorem (Universal behavior for τ → 1)

For ? ∈ {•,�, σ} the covariance of the limiting height function for
τ → 1 is

Cov (X ?(τ),X ?(1)) =
1 + τ2/3

2
Var (X ?(1))

− (1− τ)2/3

2
Var (ξBR) +O(1− τ)1

−
.

Aztec KPZ class Time correlations



Analogue statement for the Aztec diamond 31

Space-time scaling

hrescN (u, τ) =
h(2−1/6uN2/3, τN)− τN(1− 1/

√
2)

−2−5/6N1/3

Let H(τ) = limN→∞ h
resc
N (0, τ). Then the result from LPP

would rewrites as

Cov (H(τ), H(1)) =
1 + τ2/3

2
Var (ξGUE)

− (1− τ)2/3

2
Var (ξBR) +O(1− τ)1−δ
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Strategy of the proof 32

Consider two paths with ending
points

Eτ = (τt, τ t) and E1 = (t, t).

Concatenation property: let
I(u) = τt(1, 1) + u (2τ)2/3(1,−1),
then

L?(E1) = max
u∈R
{L?(I(u))+L•I(u)→E1

}

Taking t→∞ we gets

X ?(1) = max
u∈R
{τ1/3A?(τ−2/3u) + (1− τ)1/3A•((1− τ)−2/3u)}

and
X ?(τ) = τ1/3A?(0)
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Strategy of the proof 33

Use the decomposition

Cov(X ?(1),X ?(τ)) =
1

2
Var(X ?(1))+

1

2
Var(X ?(τ))−1

2
Var(X ?(1)−X ?(τ))

Thus need to control the variance of

X ?(1)−X ?(τ) = max
u∈R
{τ1/3[A?(τ−2/3u)−A?(0)]+(1−τ)1/3A•((1−τ)−2/3u)}

Recall: A•(u) = A2(u)− u2. With u = (1− τ)2/3v:

X ?(1)−X ?(τ) = (1−τ)1/3 max
v∈R
{( τ

1−τ )1/3[A?(( 1−τ
τ )2/3v)−A?(0)]+A2(v)−v2}
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Strategy of the proof 34

Using the comparison with stationarity Cator,Pimentel’15

( τ
1−τ )1/3[A?((1−ττ )2/3v)−A?(0)] '

√
2B(v)

as τ → 1, i.e.,

X ?(1)−X ?(τ) ' (1−τ)1/3 max
v∈R
{
√

2B(v)+A2(v)−v2} (d)
= ξBR

Using (exponential) tail estimates on the X ?(1) (all of them
can be obtained from the point-to-point tails with some work)
we prove

Var(X ?(1)−X ?(τ)) = (1− τ)2/3 Var(ξBR) +O((1− τ)1
−

)
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Point-to-point: numerics 35

Figure: Plot of τ 7→ Cov(X •(τ),X •(1))/Var(X •(1)).
Cov(X •(τ),X •(1)) ∼ τ2/3 for τ → 0.
Ferrari,Spohn’16; Ferrari,Occelli’18; Basu,Ganguly’18

Prefactor in front of τ2/3 is known LeDoussal’17,Johansson’19
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Flat IC: numerics 36

Figure: Plot of τ 7→ Cov(X�(τ),X�(1))/Var(X�(1)).
Cov(X�(τ),X�(1)) ∼ τ4/3 for τ → 0. Ferrari,Spohn’16
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Related results 37

Experimental results:

Takeuchi (2012-2016): Experiments on turbulent liquid
crystals and off-lattice Eden simulations

Mathematical results

Baik-Liu (2017-), Johansson (2017-2018): Joint distribution
function at two times (point-to-point)

Johansson-Rahmann (2019): Joint distribution function at
n ≥ 2 times (point-to-point)

Basu-Ganguly (2018): O(τ2/3) for τ → 0 and O((1− τ)2/3)
for τ → 1 for point-to-point. Uses less inputs from exactly
solvable (no Airy processes); estimates uniform in t.

Corwin-Ghosal-Hammond (2019): similar results as
Basu-Ganguly for KPZ equation with narrow-wedge initial
condition

Aztec KPZ class Time correlations



Related results 37

Experimental results:

Takeuchi (2012-2016): Experiments on turbulent liquid
crystals and off-lattice Eden simulations

Mathematical results

Baik-Liu (2017-), Johansson (2017-2018): Joint distribution
function at two times (point-to-point)

Johansson-Rahmann (2019): Joint distribution function at
n ≥ 2 times (point-to-point)

Basu-Ganguly (2018): O(τ2/3) for τ → 0 and O((1− τ)2/3)
for τ → 1 for point-to-point. Uses less inputs from exactly
solvable (no Airy processes); estimates uniform in t.

Corwin-Ghosal-Hammond (2019): similar results as
Basu-Ganguly for KPZ equation with narrow-wedge initial
condition

Aztec KPZ class Time correlations


	Aztec
	KPZ class
	Time correlations

