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Let us consider the following singular Liouville-type problem{
−∆u = λV (x)eu − 4πNδ0 in Ω

u = 0 on ∂Ω
(1)

where

Ω ⊂ R2 smooth and bounded, 0 ∈ Ω;

λ > 0;

V ∈ C2(Ω), ı́nfΩ V > 0;

N ∈ N.

Liouville-type equations arise in several physical models: in particular,
problem (1) occurs in the study of vortices in the Chern-Simons theory.

Problem (1) has been widely studied: there are many papers investigating the
existence of solutions with multiple concentration as λ→ 0+.
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Some notation

In the following G(x , y) is the Dirichlet Green’s function of −∆ over Ω:{
−∆x G(x , y) = δy (x) x ∈ Ω

G(x , y) = 0 x ∈ ∂Ω
,

and H(x , y) is its regular part:

H(x , y) = G(x , y)− 1
2π

log
1

|x − y | .

H is a smooth function in Ω× Ω.
H(x , x) is the Robin’s function and satisfies

H(x , x)→ −∞ as dist(x , ∂Ω)→ 0.
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Previous work. Concentration away from 0.

Nagasaki-Suzuki (’90), Brezis-Merle (’91), Suzuki (’92), Li-Shafrir (’94),
Baraket-Pacard (’98), Ma-Wei (’01)... :
If uλ is an unbounded family of solutions of (1) s.t. λ

∫
Ω

V (x)euλ ≤ C and
uλ uniformly bounded in a neighborhood of 0, then (up to a
subsequence) necessarily

λ

∫
Ω

V (x)euλdx → 8πm as λ→ 0

for some m ≥ 1. Moreover there are distinct points ξ1, . . . , ξm ∈ Ω \ {0}
such that (up to a subsequence)

λV (x)euλ → 8π
m∑

j=1

δξj (2)

in the measure sense. Besides ξ = (ξ1, . . . , ξm) corresponds to a critical
point of

Ψ(ξ) =
1
2

m∑
j=1

(
H(ξj , ξj ) +

log V (ξj )

4π

)
+

1
2

m∑
j,k=1
j 6=k

G(ξj , ξk )− N
2

m∑
j=1

G(ξj , 0).
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Previous work. Concentration at 0.

Bartolucci-Tarantello (’02), Bartolucci-Chen-Lin-Tarantello (’04),
Tarantello (’04, ’05), Esposito (’05)... :
If uλ is an unbounded family of solutions of (1) for which
λ
∫

Ω
V (x)euλ ≤ C and uλ is unbounded in any neighborhood of 0, then

(up to a subsequence) necessarily

λ

∫
Ω

V (x)euλdx → 8πm + 8π(1 + N) as λ→ 0

for some m ≥ 0. Moreover there are distinct points ξ1, . . . , ξm ∈ Ω \ {0}
such that

λV (x)euλ → 8π
m∑

j=1

δξj + 8π(1 + N)δ0 (3)

in the measure sense.
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Previous work. Construction of solutions.

Weston (’78), Chen-Lin (’91), Baraket-Pacard (’98), Del
Pino-Kowalczyk-Musso (’05), Esposito-Grossi-Pistoia (’05): solution
single or multiple concentration is constructed if N = 0;

Del Pino-Kowalczyk-Musso (’05): a solution blowing up at m distinct
points in Ω \ {0} does exists as long as m < 1 + N;

D. (’13): multiplicity results in the case of several sources;

Esposito (’05): a solution concentrating at 0 exists under the additional
assumption N ∈ (0,+∞) \ N;

Del Pino-Esposito-Musso (’10): if N ∈ N then there exists a suitable
p ∈ Ω (depending on λ) such that a solution blowing up at N + 1 points at
the vertices of a small polygon centered at p does exist for the problem{

−∆u = λeu − 4πNδp in Ω

u = 0 on ∂Ω
.
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The limiting problem

For any N ∈ N, we can associate to (4) a limiting problem of Liouville type:

−∆w = |x |2New in R2,

∫
R2
|x |2New(x)dx < +∞.

All solutions of this problem are given, in complex notation, by the
three-parameter family of functions

wδ,b(x) := log
8(N + 1)2δ2(N+1)

(δ2(N+1) + |xN+1 − b|2)2 δ > 0, b ∈ C.
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Our problem

Let us consider the singular Liouville-type problem{
−∆u = λeu − 4πNλδ0 in Ω

u = 0 on ∂Ω

where Nλ → N ∈ N. From now on we all assume that

(A1) Ω is (N + 1)-symmetric;

(A2) the function

b 7−→ Λ(b) :=
N∑

i,j=0

H(βi , βj )− N
N∑

i=0

H(βi , 0)

has a nondegenerate maximum at 0, where βN+1
i = b, βi 6= βh for i 6= h.
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Theorem

Assume that hypotheses (A1)− (A2) hold and, in addition

Nλ − N = O(λη)

for some η > 0. Then, for λ sufficiently small the problem{
−∆u = λeu − 4πNλδ0 in Ω

u = 0 on ∂Ω

has a family of solutions uλ blowing up at 0 as λ→ 0+. More precisely

λeuλ → 8π(1 + N)δ0 in the measure sense.
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Theorem (D.-Wei, 2019)

Assume that hypotheses (A1)− (A2) hold and, in addition

cλ log2 λ ≤ Nλ − N ≤ Cλη

for some η > 0, c,C > 0. Then, for λ sufficiently small the problem{
−∆u = λeu − 4πNλδ0 in Ω

u = 0 on ∂Ω

has a family of solutions uλ satisfying

λeuλ → 8π(1 + N)δ0 in the measure sense.

More precisely

λeuλ −
N∑

i=0

8µ2

(µ2 + |x − βi |2)2 → 0 in L1(Ω)

where µ ∼
√
λ

|b|
N

N+1
,
√
λ| logλ| ≤ |b| ≤ λ

η
4(N+1)

√
| logλ|.
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Remark

If Ω is (N + 1)-symmetric:

x ∈ Ω⇐⇒ xei 2π
N+1 ∈ Ω,

then the new domain
ΩN+1 := {xN+1 | x ∈ Ω}

is smooth and

Λ(b) = (N + 1)HN+1(b, b)− NHN+1(b, 0) ∀b ∈ ΩN+1.

where HN+1 is the regular part of the Green’s function of −∆ in ΩN+1.
In particular, if Ω = B(0, 1), then

ΩN+1 = Ω, HN+1 = H

and
Λ(b) = (N + 1)H(b, b) =

N + 1
2π

log(1− |b|2)

which has a nondegenerate maximum at 0.
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SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:
v = u + 4πN G(x , 0);

problem (1) is then equivalent to{
−∆v = λ|x |2N Ṽ (x)ev in Ω

v = 0 on ∂Ω
, (4)

where
Ṽ (x) = e−4πN H(x,0).

Problem (4) is the Euler Lagrange equation of the following functional

I(v) =
1
2

∫
Ω

|∇v |2dx − λ
∫

Ω

|x |2N Ṽ (x)ev dx .

By the classical Moser-Trudinger inequality we get I ∈ C1(H1
0 (Ω)).
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STEP 2. Construction of approximate solutions.

We set

Wλ = wδ,b(x) := log
8(N + 1)2δ2(N+1)

(δ2(N+1) + |xN+1 − b|2)2

where

δ2(N+1) = δ(λ, b)2(N+1) :=
λ

8(N + 1)2 V (0)e8πHN+1(b,b)−4π Nλ
N+1HN+1(b,0)

Consider the projections PWλ onto the space H1
0 (Ω) of Wλ, where

P : H1(R2)→ H1
0 (Ω) is defined as

∆Pv = ∆v in Ω, Pv = 0 on ∂Ω.

The following asymptotic expansion holds:

PWλ = Wλ − log(8(N + 1)2δ2(N+1)) + 8π
N∑

i=0

H(x , βi ) + O(δ2(N+1)).

We shall look for a solution of the form

vλ = PWλ + φλ, φλ small.
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PWλ = Wλ − log(8(N + 1)2δ2(N+1)) + 8π
N∑

i=0

H(x , βi ) + O(δ2(N+1)).

We shall look for a solution of the form

vλ = PWλ + φλ, φλ small.

Teresa D’Aprile Non simple blow-up



STEP 2. Construction of approximate solutions.
We set

Wλ = wδ,b(x) := log
8(N + 1)2δ2(N+1)

(δ2(N+1) + |xN+1 − b|2)2

where

δ2(N+1) = δ(λ, b)2(N+1) :=
λ

8(N + 1)2 V (0)e8πHN+1(b,b)−4π Nλ
N+1HN+1(b,0)

Consider the projections PWλ onto the space H1
0 (Ω) of Wλ, where

P : H1(R2)→ H1
0 (Ω) is defined as

∆Pv = ∆v in Ω, Pv = 0 on ∂Ω.

The following asymptotic expansion holds:

PWλ = Wλ − log(8(N + 1)2δ2(N+1)) + 8π
N∑

i=0

H(x , βi ) + O(δ2(N+1)).

We shall look for a solution of the form

vλ = PWλ + φλ, φλ small.

Teresa D’Aprile Non simple blow-up



STEP 2. Construction of approximate solutions.
We set

Wλ = wδ,b(x) := log
8(N + 1)2δ2(N+1)

(δ2(N+1) + |xN+1 − b|2)2

where

δ2(N+1) = δ(λ, b)2(N+1) :=
λ

8(N + 1)2 V (0)e8πHN+1(b,b)−4π Nλ
N+1HN+1(b,0)

Consider the projections PWλ onto the space H1
0 (Ω) of Wλ, where

P : H1(R2)→ H1
0 (Ω) is defined as

∆Pv = ∆v in Ω, Pv = 0 on ∂Ω.

The following asymptotic expansion holds:

PWλ = Wλ − log(8(N + 1)2δ2(N+1)) + 8π
N∑

i=0

H(x , βi ) + O(δ2(N+1)).

We shall look for a solution of the form

vλ = PWλ + φλ, φλ small.

Teresa D’Aprile Non simple blow-up



STEP 2. Construction of approximate solutions.
We set

Wλ = wδ,b(x) := log
8(N + 1)2δ2(N+1)

(δ2(N+1) + |xN+1 − b|2)2

where

δ2(N+1) = δ(λ, b)2(N+1) :=
λ

8(N + 1)2 V (0)e8πHN+1(b,b)−4π Nλ
N+1HN+1(b,0)

Consider the projections PWλ onto the space H1
0 (Ω) of Wλ, where

P : H1(R2)→ H1
0 (Ω) is defined as

∆Pv = ∆v in Ω, Pv = 0 on ∂Ω.

The following asymptotic expansion holds:

PWλ = Wλ − log(8(N + 1)2δ2(N+1)) + 8π
N∑

i=0

H(x , βi ) + O(δ2(N+1)).

We shall look for a solution of the form

vλ = PWλ + φλ, φλ small.

Teresa D’Aprile Non simple blow-up



STEP 3. The reduced problem.

Find a critical point b in a neighborhood of 0 for the reduced functional

Jλ(b) =8π(N + 1)(1 + logλ− log(8(N + 1)2)) + 32π2Λ(b)

+ 8π(N + 1)|b|2
Nλ−N

N+1 + h.o.t.

If Nλ > N, Jλ verifies

Jλ(
√

Nλ − N) > sup
{

Jλ(b)
∣∣∣ √

Nλ − N
| log(Nλ − N)| < |b| <

√
Nλ − N| log(Nλ − N)|

}
.
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Thank you for your attention!
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