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Let us consider the following singular Liouville-type problem

—Au=2AV(x)e" —47Ns; inQ
u=0 on 02

Teresa D’Aprile Non simple blow-up



Let us consider the following singular Liouville-type problem

—Au=2AV(x)e" —47Ns; inQ
u=0 on 02

where
@ Q c R? smooth and bounded, 0 € Q;
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@ Q c R? smooth and bounded, 0 € Q;
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@ Ve C¥Q),infq V> 0;

@ NeN.

Liouville-type equations arise in several physical models: in particular,
problem (1) occurs in the study of vortices in the Chern-Simons theory.
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Let us consider the following singular Liouville-type problem

—Au=\V(x)e"' —4xN§, inQ
{ u=20 on 909
where
@ Q c R? smooth and bounded, 0 € Q;
@ \>0;
@ Ve C¥Q),infq V> 0;

@ NeN.

Liouville-type equations arise in several physical models: in particular,
problem (1) occurs in the study of vortices in the Chern-Simons theory.

Problem (1) has been widely studied: there are many papers investigating the
existence of solutions with multiple concentration as A — 0.
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In the following G(x, y) is the Dirichlet Green’s function of —A over Q:

—AG(x,y)=0y(x) x€Q
G(x,y) =0 x€on’
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In the following G(x, y) is the Dirichlet Green’s function of —A over Q:
—AG(x,y)=0y(x) x€Q
G(x,y) =0 x€on’

and H(x, y) is its regular part:

]
Ix —yl’

1
H(x,y) = G(x,y) - 5, 109
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H is a smooth function in Q x Q.
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In the following G(x, y) is the Dirichlet Green’s function of —A over Q:

—AG(x,y)=0y(x) x€Q
G(x,y) =0 x€on’
and H(x, y) is its regular part:

]
Ix —yl’

1
H(x,y) = G(x,y) - 5, 109

H is a smooth function in Q x Q.
H(x, x) is the Robin’s function and satisfies

H(x,x) - —oo as dist(x,00) — 0.
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Previous work. Asymptotic analysis.
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@ Nagasaki-Suzuki ('90), Brezis-Merle ("91), Suzuki ('92), Li-Shafrir ('94),
Baraket-Pacard ('98), Ma-Wei ('01)... :
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Previous work. Concentration away from O.

@ Nagasaki-Suzuki ('90), Brezis-Merle ('91), Suzuki ('92), Li-Shafrir ('94),
Baraket-Pacard ('98), Ma-Wei ('01)... :
If uy is an unbounded family of solutions of (1) s.t. A [, V(x)e"* < C and
uy uniformly bounded in a neighborhood of 0,
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Previous work. Concentration away from O.

@ Nagasaki-Suzuki ('90), Brezis-Merle ('91), Suzuki ('92), Li-Shafrir ('94),
Baraket-Pacard ('98), Ma-Wei ('01)... :
If uy is an unbounded family of solutions of (1) s.t. A [, V(x)e"* < C and
uy uniformly bounded in a neighborhood of 0, then (up to a
subsequence) necessarily

)\/ V(x)e"*dx — 8mm as A — 0
Q

for some m > 1.
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Previous work. Concentration away from O.

@ Nagasaki-Suzuki ('90), Brezis-Merle ("91), Suzuki ('92), Li-Shafrir ('94),

Baraket-Pacard ('98), Ma-Wei ('01)... :

If uy is an unbounded family of solutions of (1) s.t. A [, V(x)e"* < C and
uy uniformly bounded in a neighborhood of 0, then (up to a
subsequence) necessarily

)\/ V(x)e"*dx — 8mm as A — 0
Q

for some m > 1. Moreover there are distinct points &1,...,&m € Q\ {0}
such that (up to a subsequence)

AV(x)e™ — 81 ) " &, )
j=1

in the measure sense.
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Previous work. Concentration away from O.

@ Nagasaki-Suzuki ('90), Brezis-Merle ("91), Suzuki ('92), Li-Shafrir ('94),

Baraket-Pacard ('98), Ma-Wei ('01)...

If uy is an unbounded family of solutlons of (1) s.t. X [, V(x)e*» < Cand
uy uniformly bounded in a neighborhood of 0 then (uptoa
subsequence) necessarily

)\/ V(x)e"*dx — 8mm as A — 0
Q

for some m > 1. Moreover there are distinct points &1,...,&m € Q\ {0}
such that (up to a subsequence)
m
AV(x)e™ — 81 ) " &, )
j=1
in the measure sense. Besides &€ = (&1,...,&m) corresponds to a critical

point of

e = 33 (M e)+ 0 1DY L TS a6 - 226(@@)

j=1 jok=1
i#k
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Previous work. Concentration at 0.
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Previous work. Concentration at 0.

@ Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04),
Tarantello ('04, '05), Esposito ('05)... :
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Previous work. Concentration at 0.

@ Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04),
Tarantello ('04, '05), Esposito ('05)... :

If uy is an unbounded family of solutions of (1) for which
A fq V(x)e" < C and uy is unbounded in any neighborhood of 0,
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@ Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04),
Tarantello ('04, '05), Esposito ('05)... :

If uy is an unbounded family of solutions of (1) for which
A [o V(x)e" < C and uy is unbounded in any neighborhood of 0, then
(up to a subsequence) necessarily

A/ V(x)e" dx — 8rm+8x(1+ N) as A =0
Q

for some m > 0.
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Previous work. Concentration at 0.

@ Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04),
Tarantello ('04, '05), Esposito ('05)... :

If uy is an unbounded family of solutions of (1) for which
A [o V(x)e" < C and uy is unbounded in any neighborhood of 0, then
(up to a subsequence) necessarily

A/ V(x)e" dx — 8rm+8x(1+ N) as A =0
Q

for some m > 0. Moreover there are distinct points &1,...,&m € Q\ {0}
such that .
AV(x)e™ — 87 8¢, + 87 (1 + N)do 3)
j=1
in the measure sense.
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Previous work. Construction of solutions.

@ Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del
Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution
single or multiple concentration is constructed if N = 0;
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@ Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del
Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution
single or multiple concentration is constructed if N = 0;

@ Del Pino-Kowalczyk-Musso ('05): a solution blowing up at m distinct
points in 2\ {0} does exists aslongas m < 1+ N;
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@ Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del
Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution
single or multiple concentration is constructed if N = 0;

@ Del Pino-Kowalczyk-Musso ('05): a solution blowing up at m distinct
points in 2\ {0} does exists aslongas m < 1+ N;

[=)

D. ('13): multiplicity results in the case of several sources;

(=)

Esposito ('05): a solution concentrating at 0 exists under the additional
assumption N € (0, +00) \ N;

Teresa D’Aprile Non simple blow-up



Previous work. Construction of solutions.

@ Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del
Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution
single or multiple concentration is constructed if N = 0;

Del Pino-Kowalczyk-Musso ('05): a solution blowing up at m distinct
points in 2\ {0} does exists aslongas m < 1+ N;

D. ('13): multiplicity results in the case of several sources;

Esposito ('05): a solution concentrating at 0 exists under the additional
assumption N € (0, +00) \ N;

) ) ) &

Del Pino-Esposito-Musso ('10): if N € N then there exists a suitable
p € Q (depending on ) such that a solution blowing up at N+ 1 points at
the vertices of a small polygon centered at p does exist for the problem

—Au=Xe"'—47N§, inQ
u=0 onoQ’
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The limiting problem
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The limiting problem

Forany N € N, we can associate to (4) a limiting problem of Liouville type:

—Aw = |x*e" in R? / Ix?Ne"™Madx < +o0.
R2
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The limiting problem

Forany N € N, we can associate to (4) a limiting problem of Liouville type:

—Aw = |x*e" in R? / Ix?Ne"™Madx < +o0.
R2

All solutions of this problem are given, in complex notation, by the
three-parameter family of functions

8(N + 1)252N+D
Wsb(X) := log (32(N+1) 1 [xN+T — p[2)2

0>0,becC.

(Prajapat-Tarantello '01)
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The limiting problem

Forany N € N, we can associate to (4) a limiting problem of Liouville type:

—Aw = |x*e" in R? / Ix?Ne"™Madx < +o0.
R2

All solutions of this problem are given, in complex notation, by the
three-parameter family of functions

8(N + 1)252N+D
(52(N+1) + ‘XN+1 _ b‘z)z

ws,5(x) == log §>0,beC.

(Prajapat-Tarantello '01)
The following quantization property holds:

/ IX[2V 560 lx — Bre(N + 1).
R2
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Our problem

Let us consider the singular Liouville-type problem

—Au=)e"— 47TN>\50 in Q
u=20 on 90N
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Our problem

Let us consider the singular Liouville-type problem

—Au=)e"— 47TN>\50 in Q
u=20 on 90N

where N, — N € N. From now on we all assume that
(A1) Qis (N + 1)-symmetric;
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Our problem

Let us consider the singular Liouville-type problem

—Au=)e"— 47TN>\50 in Q
u=20 on 90N

where N, — N € N. From now on we all assume that
(A1) Qis (N + 1)-symmetric;
(A2) the function

N N
b A(b) = > H(Bi,8)— N> _ H(5:,0)
i,j=0 i=0

has a nondegenerate maximum at 0,
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Our problem

Let us consider the singular Liouville-type problem

—Au=)e"— 47TN>\50 in Q
u=20 on 90N

where N, — N € N. From now on we all assume that
(A1) Qis (N + 1)-symmetric;
(A2) the function

N N
b A(b) = > H(Bi,8)— N> _ H(5:,0)
i,j=0 i=0

has a nondegenerate maximum at 0, where 3N = b, g; # f for i # h.
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Non simple blow-up




Assume that hypotheses (A1) — (A2) hold and, in addition
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Assume that hypotheses (A1) — (A2) hold and, in addition
Ny — N=0(\")

for some n > 0.
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Theorem
Assume that hypotheses (A1) — (A2) hold and, in addition

Ny — N = O(\")

for some n > 0. Then, for X sufficiently small the problem

—Au=2Xe"—4nN\é6y inQ
u=20 on 022

has a family of solutions uy blowing up at0 as A — 0*.
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Theorem
Assume that hypotheses (A1) — (A2) hold and, in addition

Ny — N = O(\")

for some n > 0. Then, for X sufficiently small the problem

—Au=2Xe"—4nN\é6y inQ
u=20 on 022

has a family of solutions u, blowing up at0 as A\ — 0". More precisely

xe™* — 8n(1 + N)do in the measure sense.
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Theorem (D.-Wei, 2019)

Teresa D’Aprile Non simple blow-up



Theorem (D.-Wei, 2019)
Assume that hypotheses (A1) — (A2) hold and, in addition
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Theorem (D.-Wei, 2019)
Assume that hypotheses (A1) — (A2) hold and, in addition

chlog? A < Ny — N < CX"

for somen > 0,c,C > 0.
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Theorem (D.-Wei, 2019)
Assume that hypotheses (A1) — (A2) hold and, in addition

chlog? A < Ny — N < CX"

for somen > 0, ¢, C > 0. Then, for \ sufficiently small the problem

—Au=Xe"—47N\é6p inQ
u=20 on 022

has a family of solutions u
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Theorem (D.-Wei, 2019)
Assume that hypotheses (A1) — (A2) hold and, in addition

chlog? A < Ny — N < CX"

for somen > 0, ¢, C > 0. Then, for \ sufficiently small the problem

—Au=Xe"—47N\é6p inQ
u=20 on 022

has a family of solutions u, satisfying

xe”* — 8w (1 + N)do in the measure sense.
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Theorem (D.-Wei, 2019)
Assume that hypotheses (A1) — (A2) hold and, in addition

chlog? A < Ny — N < CX"
forsomen > 0,c,C > 0. Then, for X sufficiently small the problem
{ —Au=Xe"—47N\é6p inQ
u=20 on 092
has a family of solutions u, satisfying
xe”* — 8w (1 + N)do in the measure sense.

More precisely

N
u 8/1«2 P
A _
LEDD E T —BpE 0"t @

i=0
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Theorem (D.-Wei, 2019)
Assume that hypotheses (A1) — (A2) hold and, in addition

chlog? A < Ny — N < CX"
forsomen > 0,c,C > 0. Then, for X sufficiently small the problem
{ —Au=Xe"—47N\é6p inQ
u=20 on 092
has a family of solutions u, satisfying
xe”* — 8w (1 + N)do in the measure sense.

More precisely

N
u 8/1«2 P
A _
LEDD E T —BpE 0"t @

i=0

where j ~ —2—, /A[log A| < |b] < AT V| log Al

|b| N+1
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IfQ is (N + 1)-symmetric:

;2w
X € Q< xe'"V1 € Q,
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Remark

IfQ is (N + 1)-symmetric:
X €Q <« xe™ € Q,

then the new domain
Qnir = (X" [ x e Q)

is smooth
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Remark

IfQ is (N + 1)-symmetric:
X €Q <« xe™ € Q,

then the new domain
Qnir = (X" [ x e Q)

is smooth and
A(b) = (N + 1)Hni1(b, b) — NHn41(b,0) Vb € Qnit.

where Hy. 1 is the regular part of the Green’s function of — A in Qu.1.
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Remark

IfQ is (N + 1)-symmetric:
X €Q <« xe™ € Q,

then the new domain
Qnir = (X" [ x e Q)

is smooth and
A(b) = (N + 1)Hni1(b, b) — NHn41(b,0) Vb € Qnit.

where Hy. 1 is the regular part of the Green’s function of — A in Qu.1.
In particular, if Q@ = B(0, 1), then

Qni = Q, Hni1 = H
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Remark

IfQ is (N + 1)-symmetric:
XEQ = xeNT €Q,

then the new domain
Qnir = (X" [ x e Q)

is smooth and
A(b) = (N + 1)Hni1(b, b) — NHn41(b,0) Vb € Qnit.

where Hy. 1 is the regular part of the Green’s function of — A in Qu.1.
In particular, if Q@ = B(0, 1), then

Qni = Q, Hni1 = H

and
N +1

2
which has a nondegenerate maximum at 0.

A(b) = (N + 1)H(b, b) = log(1 — |b]?)
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SKETCH OF THE PROOF

STEP 1. The variational structure
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SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:
v =u+ 47N G(x,0);
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STEP 1. The variational structure

Let us set:
v =u+ 47N G(x,0);

problem (1) is then equivalent to

—Av=A\xP"V(x)e" inQ
v=0 ondQ’
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STEP 1. The variational structure

Let us set:
v =u+ 47N G(x,0);

problem (1) is then equivalent to

—Av=A\xP"V(x)e" inQ
v=0 ondQ’

where
V(X) — g 4N H(x,0)
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SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:
v =u+ 47N G(x,0);

problem (1) is then equivalent to

—Av=A\xP"V(x)e" inQ
v=0 ondQ’

where
V(X) — g 4N H(x,0)

Problem (4) is the Euler Lagrange equation of the following functional

1) = 5 [ 19va = [ x V(e o
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SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:
v =u+ 47N G(x,0);

problem (1) is then equivalent to

—Av=A\xP"V(x)e" inQ
v=0 ondQ’

where
V(X) _ e—41rNH(x,0).
Problem (4) is the Euler Lagrange equation of the following functional

1) = 5 [ 19va = [ x V(e o

By the classical Moser-Trudinger inequality we get I € C'(H3(Q)).
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STEP 2. Construction of approximate solutions.
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STEP 2. Construction of approximate solutions.

We set
8(N +1 )262(N+1)
= log
(52(N+1) + |XN+1 _ b|2)2

W>\ = Wé,b(X) :
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STEP 2. Construction of approximate solutions.

We set 2 $2(N+1)
. 8(N + 1)2
W)\ = W(S,b(x) = |Og (62(N+1) ¥ |XN+1 — b|2)2
where
SEANH _ (5, p)2NH) S(N)\ P V(O)e&r’HNH(b,b)747r,cl—Ji‘17-LN+1(b,0)
_|_
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STEP 2. Construction of approximate solutions.

We set 2(N+1)
8(N +1)%5
Wy = ws p(x) := log (52N+1) - [xN+T — p|2)2
where
A
SN _ 5 A, AN . A 87 H 1(b,b)—4m 1y s 1(6.0)
(A, b) sv 1y (0e '

Consider the projections PW, onto the space H} () of W, where
P : H'(R?) — H}(Q) is defined as

APv=Av inQ, Pv=0 onoNQ.
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STEP 2. Construction of approximate solutions.

We set 2(N+1)
8(N +1)%5
Wy = ws p(x) := log (52N+1) - [xN+T — p|2)2
where
A
SN _ 5 A, AN . A 87 H 1(b,b)—4m 1y s 1(6.0)
(A, b) sv 1y (0e '

Consider the projections PW, onto the space H} () of W, where
P : H'(R?) — H}(Q) is defined as

APv=Av inQ, Pv=0 onoNQ.

The following asymptotic expansion holds:

N
PWy = Wy —log(8(N + 1)25*NV) + 87 Y~ H(x, 8;) + O(5*™*1).

i=0
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STEP 2. Construction of approximate solutions.

We set 2(N+1)
8(N +1)%5
Wy = ws p(x) := log (52N+1) - [xN+T — p|2)2
where
A
SN _ 5 A, AN . A 87 H 1(b,b)—4m 1y s 1(6.0)
(A, b) sv 1y (0e '

Consider the projections PW, onto the space H} () of W, where
P : H'(R?) — H}(Q) is defined as

APv=Av inQ, Pv=0 onoNQ.
The following asymptotic expansion holds:
N
PWy = Wy —log(8(N + 1)25*NV) + 87 Y~ H(x, 8;) + O(5*™*1).

i=0

We shall look for a solution of the form

vy = PW, + ¢, ¢ small.
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STEP 3. The reduced problem.
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STEP 3. The reduced problem.

Find a critical point b in a neighborhood of 0 for the reduced functional
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STEP 3. The reduced problem.

Find a critical point b in a neighborhood of 0 for the reduced functional

Jr(b) =87 (N 4 1)(1 + log X — log(8(N + 1)?)) + 327°A(b)

+87(N + 1)|b* " +h.o.t.
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STEP 3. The reduced problem.

Find a critical point b in a neighborhood of 0 for the reduced functional
Jr(b) =87 (N 4 1)(1 + log X — log(8(N + 1)?)) + 327°A(b)
+8r(N+ )b +hot.

If Nx > N, J, verifies

In(v/Ns — N) > sup{JA(b) 7V < b < v/Nx — N|log(Ns — }

[log(Nx —
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Thank you for your attention!
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