
Nonexistence results for elliptic problems

in contractible domains

Riccardo Molle
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Main problem - outline of the talk

(P ) −∆u = f(u) in Ω u = 0 on ∂Ω u 6≡ 0

Ω ⊂⊂ R
n, n ≥ 3, f supercritical and regular

♦ model case f(u) = |u|p−2u, p > 2∗ := 2n
n−2
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(P ) −∆u = f(u) in Ω u = 0 on ∂Ω u 6≡ 0

Ω ⊂⊂ R
n, n ≥ 3, f supercritical and regular

♦ model case f(u) = |u|p−2u, p > 2∗ := 2n
n−2

• known facts

• existence results in nearly star-shaped domains

• new nonexistence results

• extensions to the q-Laplace operator

• work in progress

.



Well-known facts

• f has subcritical growth =⇒ a (positive) solution exists

• f(u) = |u|p−2u, p > 2∗, Ω star-shaped =⇒ no solution:

Pohozaev identity

1
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∫

∂Ω

|Du|2 x · ν dσ = −
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2

)∫

Ω

|Du|2dx+
n

p

∫

Ω

|u|pdx
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• f(u) = |u|p−2u, p > 2∗, Ω star-shaped =⇒ no solution:

Pohozaev identity

1
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∫

∂Ω

|Du|2 x · ν dσ = −

(
n− 2

2

)∫

Ω

|Du|2dx+
n

p

∫

Ω

|u|pdx

• If f(u) = |u|p−2u, p > 2, Ω an annulus =⇒ infinitely many

[Kazdan - Warner (1975)]

Is the nontriviality of the topology of the domain sufficient or necessary

for the existence of solutions?

.
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Known facts

• Nonexistence results in contractible domains (solid-tori) for n ≥ 4
and p >

2(n−1)
n−3

=: 2∗n−1 [Passaseo (1993)]

• For every p > 2∗, existence results in contractible domains (“near”

non-contractible domains) [Passaseo (1998)]

In the supercritical case the geometry of the domain affect the existence

of solutions

[Dancer, Del Pino, Felmer, Guo, Micheletti, M.,

Musso, Pacard, Pistoia, Passaseo, Struwe, Wei, Yan,

...]

[Wei - Yan (2011)]: existence of infinitely many positive solutions in

suitable contractible domains for f(u) = |u|p−2u with

p = 2∗n−k :=
2(n−k)
(n−k)−2

.



There exists solutions in nearly star-shaped domains?

Definition [M. - Passaseo (2002)]

σ(Ω) = sup
x0∈Ω

inf

{
x− x0

|x− x0|
· ν(x) : x ∈ ∂Ω

}

ν(x) is the outward normal to ∂Ω.

• Ω strictly star-shaped ↔ σ(Ω) > 0
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Definition [M. - Passaseo (2002)]

σ(Ω) = sup
x0∈Ω

inf

{
x− x0

|x− x0|
· ν(x) : x ∈ ∂Ω

}

ν(x) is the outward normal to ∂Ω.

• Ω strictly star-shaped ↔ σ(Ω) > 0

• “Ω nearly star-shaped ! σ(Ω)− = max{0,−σ(Ω)} small”

In [Dancer - Zhang (2000)] a different definition of nearly

star-shaped domains

.



Existence results

• Theorem (2002) For every η > 0 there exists Ωη ⊂ R
n and

εη > 0 such that σ(Ω)− < η and problem

−∆u = u2
∗
−1+ε in Ωη u = 0 on ∂Ωη

has multiple positive solutions for every ε ∈ (0, εη).
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• Theorem (2002) For every η > 0 there exists Ωη ⊂ R
n and

εη > 0 such that σ(Ω)− < η and problem

−∆u = u2
∗
−1+ε in Ωη u = 0 on ∂Ωη

has multiple positive solutions for every ε ∈ (0, εη).

• Theorem (2006) For every η > 0 there exists Ωη ⊂ R
n and

pη > 0 such that σ(Ω)− < η and problem

−∆u = up in Ωη u = 0 on ∂Ωη

has multiple positive solutions for every p > pη.

What about nonexistence in domains far from star-shaped ones?

.



New nonexistence results

In our problem

(P ) −∆u = f(u) in Ω u = 0 on ∂Ω u 6≡ 0

we assume f a continuous function such that

(f) tf(t) ≥ p

∫ t

0

f(τ)dτ ≥ 0 ∀t ∈ R

for a given p > 2∗

♦ p can be arbitrarily chosen near 2∗

♦ no symmetry assumption will be required for Ω

Notation: F (t) =
∫ t

0
f(τ)dτ ∀t ∈ R

.



Nonexistence results

Construction of the tubular domains:

• γ ∈ C3([a, b],Rn) injective and s.t. γ′ 6= 0 in [a, b]

• Nε(t) = {ξ ∈ R
n : ξ · γ′(t) = 0, |ξ| < ε}

• ε so small that t1 6= t2 =⇒

[γ(t1) +Nε(t1)] ∩ [γ(t2) +Nε(t2)] = ∅

T γ
ε :=

⋃

t∈(a,b)

[γ(t) +Nε(t)]

.



Nonexistence results

Main result:

• Theorem (2019) If f ∈ C(R) satisfies

(f) tf(t) ≥ p

∫ t

0

f(τ)dτ ≥ 0 ∀t ∈ R

with p > 2∗ then problem

−∆u = f(u) in T γ
ε u = 0 on ∂T γ

ε u 6≡ 0

has no solution for ε small.

.



Nonexistence results

An integral identity:

• Lemma u a solution of (P ), V ∈ C1(Ω,Rn) =⇒

1

2

∫

∂Ω

|Du|2 V · ν dσ =

∫

Ω

dV [Du] ·Dudx+

∫

Ω

div V

(
F (u)−

1

2
|Du|2

)
dx

here dV [η] =
n∑

i=1

DiV ηi, ∀η ∈ R
n.
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An integral identity:

• Lemma u a solution of (P ), V ∈ C1(Ω,Rn) =⇒

1

2

∫

∂Ω

|Du|2 V · ν dσ =

∫

Ω

dV [Du] ·Dudx+

∫

Ω

div V

(
F (u)−

1

2
|Du|2

)
dx

here dV [η] =
n∑

i=1

DiV ηi, ∀η ∈ R
n.

proof: apply Gauss-Green to V ·DuDu and use (P )

♦ in Pohozaev V (x) = x

.
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The vector field:

V
(
γ(t) + ψ

)
= [1− ψ · γ′′(t)] t γ′(t) + ψ

Properties:

(1) V · ν > 0 on ∂T
γ

ε

(2) lim
ε→0

sup{|1− dV (x)[η] · η| : x ∈ T γ
ε , η ∈ R

n, |η| = 1} = 0

(3) lim
ε→0

sup{|n− div V (x)| : x ∈ T γ
ε } = 0

uε a solution of (P ) on T γ
ε =⇒

1
2

∫
∂T

γ

ε

|Duε|
2
V ·ν =

∫
T

γ

ε

dV [Duε] ·Duε+
∫
T

γ

ε

div V
(
F (uε)−

1
2 |Duε|

2
)

so

0 ≤
(
1−

n

2
+O(1)

)∫

T
γ

ε

|Duε|
2 + (n+O(1))

∫

T
γ

ε

F (uε)

.



Nonexistence results

End of the proof:

0 ≤
(
1−

n

2
+O(1)

)∫

T
γ

ε

|Duε|
2 dx+ (n+O(1))

∫

T
γ

ε

F (uε) dx

=⇒ (by assumption (f))

0 ≤
(
1−

n

2
+O(1)

)∫

T
γ

ε

|Duε|
2 dx+ (n+O(1))

1

p

∫

T
γ

ε

uεf(uε) dx



Nonexistence results

End of the proof:

0 ≤
(
1−

n

2
+O(1)

)∫

T
γ

ε

|Duε|
2 dx+ (n+O(1))

∫

T
γ

ε

F (uε) dx

=⇒ (by assumption (f))

0 ≤
(
1−

n

2
+O(1)

)∫

T
γ

ε

|Duε|
2 dx+ (n+O(1))

1

p

∫

T
γ

ε

uεf(uε) dx

=⇒ (since uε solves (P ))

0 ≤

(
1−

n

2
+
n

p
+O(1)

)∫

T
γ

ε

|Duε|
2 dx

contrary to 1− n
2
+ n

p
< 0 (i.e. p > 2∗), for small ε

�
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Tubular neighbourhood of closed circuit

(-) In previous result γ(a) 6= γ(b)

(-) γ closed curve ⇒ V
(
γ(a) + ψ

)
6= V

(
γ(b) + ψ

)

(-) for p ∈ (2∗, 2∗n−1) solutions can exist

• Theorem Let γ ∈ C2([a, b],Rn) be a regular curve such that

γ(a) = γ(b) and γ′(a) = γ′(b).
If f ∈ C(R) satisfies (f) with p > 2∗

n−1
then problem

−∆u = f(u) in T γ
ε u = 0 on ∂T γ

ε u 6≡ 0

has no solution for ε small.

.
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Higher dimensional tubular domains - ∃ results

• γk : R
k → R

n the stereographic projection on a k-dim. sphere

• Γr
k = {γk(x) : |x| < r}

• Tε̄(Γ
r
k) an ε̄-normal tubular neighbourhood of Γr

k

Here: 2 ≤ k ≤ n− 1 and 2∗n−k+1 =

{
2(n−k+1)
n−k−1

if k < n− 1

∞ if k = n− 1
f(u) = |u|p−2u
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• γk : R
k → R

n the stereographic projection on a k-dim. sphere

• Γr
k = {γk(x) : |x| < r}

• Tε̄(Γ
r
k) an ε̄-normal tubular neighbourhood of Γr

k

Here: 2 ≤ k ≤ n− 1 and 2∗n−k+1 =

{
2(n−k+1)
n−k−1

if k < n− 1

∞ if k = n− 1
f(u) = |u|p−2u

(a) Fixed p ∈ [2∗, 2∗n−k+1), there exists r̄ > 0 s.t. (P ) has solution in

Tε̄(Γ
r
k), ∀r > r̄.

(b) Fixed r > 1, there exists p̃ > 2∗ such that (P ) has solution in

Tε̄(Γ
r
k), ∀p ∈ (2∗, p̃).

(c) Fixed r > 1, there exists p̄ < 2∗n−k+1 such that (P ) has solution in

Tε̄(Γ
r
k), ∀p ∈ (p̄, 2∗n−k+1).

.
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Higher dimensional tubular domains - 6 ∃ results

(-) Γk a smooth, compact, k-dimensional submanifold in R
n

(-) Tε(Γk) the tubular neighbourhood of Γk of size ε

• Theorem Let 1 ≤ k < n− 2 and assume that f ∈ C(R) satisfies

(f) with p > 2∗

n−k
then problem

(P ) −∆u = f(u) in Tε(Γk) u = 0 on ∂Tε(Γk) u 6≡ 0

has no solution for ε small.

♦ k ≥ n− 2 or k < n− 2 and p < 2∗n−k ⇒ if Γk is a

k-dimensional sphere then (P ) has solution

.



Nonexistence results for the q-laplacian

(-) γ ∈ C3([a, b],R2) injective and s.t. γ′ 6= 0 in [a, b]

(-) T γ
ε the ε-neighbourhood of γ([a, b])

• Theorem q ∈ (1, 2). If f ∈ C(R) satisfies (f) with p > q∗ = 2q
2−q

then problem

(q) − div(|Du|q−2Du) = f(u) in T γ
ε u = 0 on ∂T γ

ε u 6≡ 0

has no solution for ε > 0 small.



Nonexistence results for the q-laplacian

(-) γ ∈ C3([a, b],R2) injective and s.t. γ′ 6= 0 in [a, b]

(-) T γ
ε the ε-neighbourhood of γ([a, b])

• Theorem q ∈ (1, 2). If f ∈ C(R) satisfies (f) with p > q∗ = 2q
2−q

then problem

(q) − div(|Du|q−2Du) = f(u) in T γ
ε u = 0 on ∂T γ

ε u 6≡ 0

has no solution for ε > 0 small.

♦ Similar results in R
n with n ≥ 3

♦ Nonexistence results on contractible neighbourhood of graphs in R
2

♦ Conjecture: nonexistence of solutions in contractible domains in R
2

♦ . . . . . .
.
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