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Prescribing curvatures on surfaces

We consider the following PDE on compact surface with boundary

{ —Av+ 2Ky =2Ke" in X

v . P
d,v +2hg =2he>  on JT (Prn)

@ K, is the Gaussian curvature associated to g;
@ hg is the geodesic curvature associated to g;

@ K and h are given smooth functions on ¥, %, respectively.
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Prescribing curvatures on surfaces

We consider the following PDE on compact surface with boundary

{—Av+2Kg:2Ke" in X (P 1)
K.h

0,V +2hg = 2he*  on 9%

@ K, is the Gaussian curvature associated to g;
@ hg is the geodesic curvature associated to g;

@ K and h are given smooth functions on ¥, %, respectively.

Problem (Pk ) is equivalent to the following geometric problem:

Prescribed curvatures problem

Is there a conformal metric g = e”g whose Gaussian and
geodesic curvatures are respectively K, = K and hy = h?
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Prescribing curvatures on surfaces

If X is closed, namely 9% = (), (Pxk_p) is reduced to the very-well
known Liouville-type PDE

— Av + 2K, = 2Ke" in X, (Pk)

which has been intensively studied under different approaches.
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Prescribing curvatures on surfaces

If X is closed, namely 9% = (), (Pxk_p) is reduced to the very-well
known Liouville-type PDE

— Av + 2K, = 2Ke" in X, (Pk)
which has been intensively studied under different approaches.

On the other hand, there are only few results concerning (P ) in
the general case:
o (Chang-Yang '88) when h = 0;
@ (Chang-Liu '96), (Li-Liu '05), (Liu-Huang '05) when K = 0;
o (Brendle '02) in the case K = Ky, h = hg via parabolic flow;
@ (Cruz, Ruiz '18) on ¥ = ID under symmetry assumptions;
o (Lépez-Soriano, Malchiodi, Ruiz) under assumptions on K, h.
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Mean-field approach

Problem (Pk) has an equivalent mean-field formulation

KeY

pN

in ¥ (MF,)
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Mean-field approach

Problem (Pk) has an equivalent mean-field formulation

KeY

pN

in ¥ (MF,)

v solves (Px) = v solves (MF,) with p = / Ke";
px

u solves (MF,) = u+log solves (Pk).

p
Js Ket
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Mean-field approach

Problem (Pk) has an equivalent mean-field formulation

KeY

pN

in ¥ (MF,)

v solves (Px) = v solves (MF,) with p = / Ke";
px
p

u solves (MF,) = u—i—logf P
b

solves (Pk).
Mean field problem (MF,) has the advantage of being variational
on HY(X); with the energy functional being
1 2 u
Tp(u) =z [ |Vul*+2 | Keu—2plog| [ Ke
2 Js by s
which can be handled using Moser-Trudinger type inequalities.
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Mean-field approach

We then introduce a double mean-field formulation for (P j):

u
—Au+2K; = 2pK7e in
J5 Kev
, he? ; (MFp,pr)
Oyu+2hg =2p T h = on Jx
ox €2

it has the similar energy functional

1
Tppr(u) = 2/2]Vu]2—|—2/ngu—2p|og

/ he?
o%
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b2

+ 2/ hgu — 4p' log
o)X




Mean-field approach

However, problems (P ) and (MF, ) are not equivalent:

v solves (Px,,) = vsolves (MF, ), p= / Ke, p' :/ he?;
b ox

usolves (MF, ) =  u+log P solves (Pk.ch)
7 Jx Ke®
Ket /
with c—[I2Ke
P Jox he?
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Mean-field approach

However, problems (P ) and (MF, ) are not equivalent:

v solves (Px,,) = vsolves (MF, ), p= / Ke, p' :/ he?;
b

o%
usolves (MF, ) =  u+log P solves (Pk ch)
7 Js Ke ’
Keu /
with ¢ = 7[): i 7
P Jox he?

Such an issue has been tackled by (Cruz-Ruiz '18) as follows.
By the Gauss-Bonnet theorem,

p+p’:/Ke“+/ hegz/Kg+/ hg = 2mx(X);
px 0% pu 0%

therefore, unlike the case OX = (), p is not prescribed.
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Mean-field approach

We may look for solutions to (MF, /) with p such that c =1, i.e.:

( Ke .
—AU + 2Kg = 2PW in >
he?
Opu~+2h; =2(2mx(X) — p) r onJdx
f?z hez '
r(s) — 2 (Joxhe?)
d fz Ke
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Mean-field approach

We may look for solutions to (MF, /) with p such that c =1, i.e.:

( Ke .
—AU + 2Kg = 2PW in >
he?
Opu~+2h; =2(2mx(X) — p) 7 onJX
f?z hez
r(s) — 2 (Joxhe?)
d fz Ke

We still have a convenient variational formulation with

/ Ke"
b2

+2/ hgu + F(p)
ox

1
I(u,p) = 2/ quy2+2/Kgu—2p|og
p >

/ he?
ox

= Jpanx(x)-p(u) + F(p)-
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Mean-field approach

In (Cruz-Ruiz '18) solutions are found studying J, »ry(x)—p(t) and
then the behavior of critical points u, on varying p.
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Mean-field approach

In (Cruz-Ruiz '18) solutions are found studying J, »ry(x)—p(t) and
then the behavior of critical points u, on varying p.

Anyway the argument seems to work only with minimizing solutions

Luca Battaglia



Mean-field approach

In (Cruz-Ruiz '18) solutions are found studying J, »ry(x)—p(t) and
then the behavior of critical points u, on varying p.

Anyway the argument seems to work only with minimizing solutions

Therefore, we will study (MF,, /) with generic K, hg,p,

It will not be restrictive to take hy =0 and K; = p’—;‘p namely
2(p+0') Ke" .
A =2p PN
TR T ke "
h u
Oyu=2p e . on 0¥
Jox he2

We will only consider constantly-signed K, h with

sgn(K) = sgn(p) sgn(h) = sgn(p').
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Blow-up analysis

Blow-up phenomena for problem (MF, ) are similar to the ones
for standard Liouville equation, though with some differences.
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Blow-up analysis

Blow-up phenomena for problem (MF, ) are similar to the ones
for standard Liouville equation, though with some differences.

Bao, Wang, Zhou '05; Lopez-Soriano, Malchiodi, Ruiz; B., L.-S.

Let {u,} be a sequence of solutions to (MF,, ).
Then, up to constants and to sub-sequences:

o Either {u,}nen is compact in HY(X);
@ Or There exists a finite blow-up set S # ) such that

K,e!n
pnf: Knetn n—j—oo 4 Z %+ Z p0p

peESNY. pPESNOZ
hpe?
;1 2 up — E (27T - aP)(SP + H,
f h.e2 n—+oo
>n pESNOX

with a, € R, p € LY(9X) and = 0 if SN OX # 0.
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Blow-up analysis

The blow-up at p € SN Y is essentially the same as the standard
Liouville equation, the limiting profile being

)2 ~AU=2eY inR?
U(x) = log ——F— U :
(14 X2|x]?) e” < +00
R2
therefore, in case of internal blow-up the local mass is / eV = ar.
R2
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Blow-up analysis

The blow-up at p € SN Y is essentially the same as the standard
Liouville equation, the limiting profile being

)2 ~AU=2eY inR?
U(x) = log ——F— U :
(14 X2|x]?) e” < +00
R2
therefore, in case of internal blow-up the local mass is / eV = ar.
R2

In case of blow up at p € S N 0L, the limiting profile solves

—AU = 2aeV in Ri
0,U = 2ce? in OR2

U v
e” + e2 < 400
R2 OR2
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Blow-up analysis

Such entire solutions have been classified by (Zhang '03).
Depending on sgn(K(p)), we have:

4)?
a=1lceR = U(x)=log L
(142 [x+(0,9))
2
a=0,c>0 = U(x)=2lopg———;
At (0,5)°
4)\2

a=-1,c>1 = U(x)=log

(2t .5)F-1)"
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Blow-up analysis

Such entire solutions have been classified by (Zhang '03).
Depending on sgn(K(p)), we have:

4)?
a=1lceR = U(x)=log L
(142 [x+(0,9))
2
a=0,c>0 = U(x)=2lopg———;
At (0,5)°
4)\2

a=-1,c>1 = U(x)=log

(22 ]x+ (0,§)\2—1)2’

N\c

In all cases, the sum of the local masses is / e +/
2 6R2
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Blow-up analysis

Therefore, if SN OL = (), then p = 47xM for some M € N.
On the other hand, if SN OX # (), then p + p' = 27N for N € N.
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Blow-up analysis

Therefore, if SN OL = (), then p = 47xM for some M € N.
On the other hand, if SN OX # (), then p + p' = 27N for N € N.

Conversely, blow-up cannot occur if (p,p') € T:

F={(p,p)) €R%®: pcarNor p+p € 2zN}L
N
\

N

/

Figure: The set ' of non-compactness values for (p, p').
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Moser-Trudinger inequality

We look for solutions to (MF, ) as critical points of

2 u
Tp,pr (U /|V 1>+ (p+p)/u—2p|og‘/ Ke" / he>
xl s a ox

To this purpose, we need some Moser-Trudinger-type inequalities.

—4p' log
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Moser-Trudinger inequality

We look for solutions to (MF, ) as critical points of

2 u
Tp,pr (U /|V 1>+ (p+p)/u—2p|og‘/ Ke" / he>
xl s a ox

To this purpose, we need some Moser-Trudinger-type inequalities.

—4p' log

Original Moser-Trudinger’s inequality on closed surfaces reads as

Trudinger '68; Moser '71

1
87r|og/e“87r/u§/ |Vul]® + C, Yue HY(X).
3 Xl Js T 2Js
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Moser-Trudinger inequality

On surfaces with boundary 0% # () we get

Chang, Yang '38
4 1
47r|og/e“—7r u§/]Vu]2+C, Vue HY(T).
b Xl Js T 2Js

Li, Liu '05

87r|og/ e2 — / /\vu\2+ C, Vue HY(T).
ox [ z
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Moser-Trudinger inequality

On surfaces with boundary 0% # () we get

Chang, Yang '38
47r|og/ / < /quy2+ C, Vue HY(T).
£ = 2 |

8 Iog/ e2 — / |Vul? + C, Vue HY(T).
ox |Z\

By interpolating the inequalities we get, if p,p’ > 0,p + p’ < 27,

2p|og/e”+4p/|og/ ez — p+p)/ < /|Vu|2+C
x oy A 2
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Moser-Trudinger inequality

Therefore J,  is:  bounded from below if p,p >0,p+p <2m;
coercive if p,p) >0,p+p < 2m.
In particular, in the latter case there exist minimizers to T, -

\\ N
\\
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Moser-Trudinger inequality

Therefore J,  is:  bounded from below if p,p >0,p+p <2m;
coercive if p,p) >0,p+p < 2m.
In particular, in the latter case there exist minimizers to T, -

§ N

We can improve the result to get coercivity for p < 4w, p+p’ < 27.
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Moser-Trudinger inequality

Arguing as (Jost, Wang '01) for Liouville systems, we apply
blow-up analysis to minimizers: if p < 4w, p+ p' < 2w, blow-up is
excluded, hence coercivity holds.
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Moser-Trudinger inequality

Arguing as (Jost, Wang '01) for Liouville systems, we apply
blow-up analysis to minimizers: if p < 4w, p+ p' < 2w, blow-up is
excluded, hence coercivity holds.

Using test functions we also see that

Jpp is: not bounded from below if p > 4w or p+ p’ > 2m;
not coercive if p>4morp+p > 27
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Moser-Trudinger inequality

Arguing as (Jost, Wang '01) for Liouville systems, we apply
blow-up analysis to minimizers: if p < 4w, p+ p' < 2w, blow-up is
excluded, hence coercivity holds.

Using test functions we also see that

Jpp is: not bounded from below if p > 4w or p+ p’ > 2m;
not coercive if p>4morp+p > 27

Jp,pr may still be bounded from below if p = 47 or p+ p' = 2.
To see this, we need a sharper blow-up analysis of minimizers

Un = Up, ;1 S pp+ p, /2T OF py /4.
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Moser-Trudinger inequality

Arguing as (Jost, Wang '01) for Liouville systems, we apply
blow-up analysis to minimizers: if p < 4w, p+ p' < 2w, blow-up is
excluded, hence coercivity holds.

Using test functions we also see that

Jpp is: not bounded from below if p > 4w or p+ p’ > 2m;
not coercive if p>4morp+p > 27

Jp,pr may still be bounded from below if p = 47 or p+ p' = 2.
To see this, we need a sharper blow-up analysis of minimizers

Un = Up, ;1 S pp+ p, /2T OF py /4.

In view of the limiting profiles, we are able to show boundedness
from below in all cases except (47, —27):
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Moser-Trudinger inequality
NNAN

If p<am p+p <2morp<dn, p+p <2m, then

2p|og/e”—|—4p’|og/ e2 — p+p)/ < /|Vu]2—|—C
5 ox |1Z| 2
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Min-max solutions

If p < 4m, p+ p' < 2m coercivity yields minimizing solutions, but
for higher values we have to look for min-max solutions.
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Min-max solutions

If p < 4m, p+ p' < 2m coercivity yields minimizing solutions, but
for higher values we have to look for min-max solutions.

We get solutions from a change in the topology of sublevels.
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Min-max solutions

If p < 4m, p+ p' < 2m coercivity yields minimizing solutions, but
for higher values we have to look for min-max solutions.

We get solutions from a change in the topology of sublevels.

Non-compactness is excluded by assuming (p, p') €T, i.e.

4M7 < p < 4(M+1D)m, 2N < p+p’ < 2(N+1)T, M,N € N.
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Min-max solutions

L} is contractible for L > 0;
—L} is not contractible for L > 0.

From compactness we get {7, »
We need to show that {Top

VANRVAN
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Min-max solutions

From compactness we get {jpyp’ < L} is contractible for L > 0;
We need to show that {J,, < —L} isnot contractible for L > 0.

This will follow by finding a non-contractible X and maps

x3{g7,,<-1}3%x such that Vod~Idy.
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Min-max solutions

From compactness we get {jpyp’ < L} is contractible for L > 0;
We need to show that {J,, < —L} isnot contractible for L > 0.

This will follow by finding a non-contractible X and maps

x3{g7,,<-1}3%x such that Vod~Idy.

Ke"

J5 Ke*
concentrates at a finite number of points depending on p, p'.

To construct V, ¢, we see that if Jp7pz(u) < 0, then
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Min-max solutions

Barycenters are a model for concentration at finitely many points:

K K
(Q)K = {Z t,-(Sp,., Z ti=1, pi € Q} .
i=1 i=1
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Min-max solutions

Barycenters are a model for concentration at finitely many points:
K K
@ i {Zt,-épi, S -1 pe Q}.
i=1 i=1

In particular, we can construct maps W, ® using

~ - N
X = <Z)M M= N , for some deformation retract * € L.
(0X)y M<N
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Min-max solutions

Barycenters are a model for concentration at finitely many points:
K K
@ i {Zt,-épi, S -1 pe Q}.
i=1 i=1

In particular, we can construct maps W, ® using

(i)M M> N

X = , for some deformation retract ¥ € X.
(0X)y M<N

We need to verify whether X is contractible:

If M>N, (f)M is contractible <= ¥ is simply connected;
If M < N, (0X)p is always non-contractible.
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Min-max solutions

Therefore we get:

Assume 4Mm < p < 4(M + 1), 2N7 < p+ p' < 2(N + 1)7.
If X is simply connected, then (MF, ) has solutions for M < N.
If ¥ is multiply connected, then (MF,, /) has solutions for all M, N.

N\
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THANK YOU FOR YOUR ATTENTION!
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