
Roles of noise in shaping gene 
expression dynamics
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Neuron

Cell state transitions are a key contributor to embryonic 

development

Actively dividing
stem/progenitor cell



Classical view

Proposed and reviewed by Kageyama et al Nature Neuroscience, 2008

Dynamic changes in gene expression underly novel mechanisms of cell 
state transitions  

New, dynamic view

Genes are upgregulated
or downregulated
over time as cells
change their fate

Genes oscillate and 
change in dynamics
drive transitions



Embryonic neural differentiation is controlled 
by a gene oscillator acting as a timer

Bonev et al, (2012), Cell Reports
Goodfellow et al., (2014) Nature Comm
Phillips et al., (2017) eLIFE



Live imaging of Hes5 dynamics in spinal cord neural progenitors 
enables analysis of oscillations in a tissue context

E10 Mouse Spinal cord live section of Venus-Hes5+/- Sox1CreERT2+/- R26R H2BmCherry loxP+/-

2.5 mg of Tamoxifen administered I.P to pregnant female 18hrs before dissection

Venus-Hes5
Mosaic H2B-mCherry

Hes5 dynamics
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Cerys Manning

Dissect live embryos
and slice using 

vibratome



Tool to analyse periodicity in noisy data using Gaussian Processes.  Phillips et al., 2017 Plos
Com Biol

Model selection by
Log likelihood Ratio 
(LLR)

Traces of gene 
expression

Model fitting Aperiodic fluctuations

Oscillations

Signal 
SD

𝐿𝐿𝑅 = 𝐿𝐿𝑂𝑈𝑜𝑠𝑐 − 𝐿𝐿𝑂𝑈

Periodicity 
of frequency β

Identification of oscillatory dynamics requires 

statistical analysis

Veronica Biga



Oscillations are more frequent in differentiating cells; dividing progenitors are noisy

Noise

Progenitors Differentiating

“Oscillatory-while-declining” exampleAperiodic but noisy 
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Which cell states show oscillatory HES5 dynamics?
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Oscillations may originate from noisy expression

Converting



Key modelling questions:

• Do we understand the mechanisms governing 
Hes5 gene expression oscillations?

• Can we understand the stochasticity of this
system?

• Can we identify mechanisms that can explain 
transitions from aperiodic to oscillatory gene 
expression?

• What predictions can we make from this?



Step one: apply a mathematical model of 
transcriptional autorepression

[1] N. A. Monk. Curr. Biol. 13(16), 1409–1413. (2003)
[2] T. Brett, T. Galla. J. Chem. Phys. 140(12), 124112. (2014)

Production
Degradation

Noise

Rate of change



The model generates time traces of Hes5 protein 
and mRNA expression



Step two: apply Bayesian inference to 
parameterise the model
Prior probability p(θ)

Posterior probability p(θ|D) ∝ p(D|θ)p(θ), Summary statistics: mean and standard 

deviation of Hes5 expression



Modelled traces of gene expression can exhibit 
aperiodic and oscillatory dynamics



The model correctly predicts the period and 
amplitude of the oscillations



The model is poised at the bifurcation point 
between aperiodic and oscillatory dynamics



Transitions from aperiodic to oscillatory gene 
expression can be initiated by changes in 
individual model parameters

aperiodic oscillatory



Oscillations are an example of stochastic 
amplification 

Manning, C. S., Biga, V., Boyd, J., Kursawe, J., Ymisson, B., 
Spiller, D. G., … Papalopulu, N. (2018). bioRxiv, DOI: 
10.1101/373407

Stochastic model

.. vs deterministic model



Conclusions

• Hes5 oscillations in spinal cord neural 
progenitor cells can be described by a model of 
transcriptional autorepression with delay

• The model can be used to make 
experimentally testable predictions

• Bayesian model interpretation enables the 
systematic evaluation of uncertainty for model 
parameters and predictions



New zebrafish line enables observation of 
oscillations in vivo
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New biorxiv preprint
Soto et al., miR-9 mediated noise optimization of the 
her6 oscillator is needed for cell state progression in 
the Zebrafish hindbrain
https://www.biorxiv.org/content/10.1101/608604v1

Ximena Soto



Perturbing microRNA binding enables 
perturbation of oscillations

Upstream 
signal

Her6

mir-9



Questions for a mathematical model

• Do we understand the emergence of the 
observed oscillations, and changes in 
dynamics under the MBS experiment?
• Are the observed changes in dynamics upon 

CTRL->MBS perturbation consistent with simply 
changing mRNA translation and degradation?

• How does noise in emerge in the Her6 
oscillator? How does the noise get regulated 
micro-RNA?



We modify the mathematical model to account 
for transcriptional noise

• The new term, σ, accounts for transcriptional 
noise due to bursting or upstream signal 
fluctuations 



Inference on wildtype oscillations again reveals
high parameter uncertainty

Ximena measured a protein half-life of 11 minutes. For the other parameters, we need 
to make prior assumptions

Knowing that there are 1000-2500 protein molecules per cell, the signal COV is 5-15%, and 
we see high-quality oscillations with periods below 150 minutes, we obtain posterior 
distributions 



Joint inference on wild-type oscillations and 
perturbation reduces parameter uncertainty

CTRL scenario posterior distributions:

Joint fitting conditions:
• CTRL oscillations as before
• MBS translation rate and mRNA degradation 

rate are changed from CTRL oscillations by 
unknown amounts

• MBS levels are between 1.8 and 2.2 times 
CTRL levels

• MBS oscillation coherence is lower than CTRL 
• Aperiodic lengthscale in MBS is higher than 

control by >10%



Bayesian posterior predictions inform new 
experiments



Summary

• Mir9 counteracts detrimental effects of  
transcriptional noise to enable coherent 
oscillations

• Mir9 achieves this by reducing the Her6 translation 
rate 

• The model makes multiple experimentally testable 
predictions:
• Translation rate increases from CTRL->MBS by a factor 

>=5
• The mRNA degradation rate is similar between CTRL 

and MBS mutant
• We expect the measured mRNA number in the MBS 

mutant to be smaller than in CTRL, despite the increase 
in absolute Her6 levels
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The model predicts that oscillation period can be 
controlled through changes in the protein 
degradation rate



Mathematical modelling is becoming key 
contributor to experimental design

• Example: which 
parameter changes 
can explain 
differences in gene 
expression dynamics 
upon changing cell 
state?

• Math modelling helps 
us decide which 
experiment to do 
next.



Her6 single cell dynamic expression
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How are changes in gene expression dynamics 
interpreted downstream?

Ximena Soto

New biorxiv preprint!
Soto et al., miR-9 mediated noise optimization of the 
her6 oscillator is needed for cell state progression in 
the Zebrafish hindbrain
https://www.biorxiv.org/content/10.1101/608604v1



Next step: inference on dynamic data

• Kalman filters can be used to infer parameters 
from single traces rather than summary 
statistics

Joshua Burton



Cluster 1
Cluster 2

Cluster 3 Cluster 4

Distinct patterns of Venus-Hes5 dynamics can be identified using 
hierarchical clustering
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Developmental biology can be described 
and understood with the help of 
mathematics

• To elucidate the rules governing embryonic development
• Need to understand the interplay of many processes: biophysical 

constraints, molecular signalling, gene expression dynamics etc.

• Aim: closely integrate theoretical tools with experimental 
data to unravel key phenomena that underly
morphogenesis


