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Resource [rı’sɔ:s]: something that can be 
used to help you (in contrast to something 
useless)



Example: Bipartite entangled states are 
useful, as opposed to separable states

Teleportation

[Horodecki^3, Rev. Mod. Phys. 2009]

MBQC
Quantum privacy

To view it as a resource theory, need “free” 
operations, that do not create entanglement: 
LOCC = local operations & classical comm.



2. Resource theories

  of states

[Brandão/Gour, PRL 2015]

In general, for a resource theory whose 
objects are quantum states, we need:

*for every system A, a set 𝔽(A) of ”free” 
states (=useless states);


*for every two systems A, B, a set 𝔽(A→B) 
of free quantum channels (cptp maps);


*…such that free channels map free states 
to free states.



2. Resource theories

  of states

[Brandão/Gour, PRL 2015]

Purposes of a resource theory of quantum 
states:

- Resource measures on states = monotones 
under free channels


- Is the theory reversible? (This means 
that the free operations induce a linear 
order on the states.)




2. Resource theories

  of states

[Brandão/Gour, PRL 2015]

Purposes of a resource theory of quantum 
states:

- Resource measures on states = monotones 
under free channels


- Is the theory reversible? (This means 
that the free operations induce a linear 
order on the states.)


- Implementing tasks (not another state!)





3. Channels as resources
We should consider as possible resource any 
object in our theory. Thus, not only 
quantum states but also channels…

[Cf. Devetak/Harrow/AW, IEEE-IT 2008]

How? Example: Shannon theory - resources 
are channels N from Alice to Bob; local 
channels are free. Transform channels by 
encoding and decoding, i.e. composition with 
free channels: N’ = D °N °E, for instance to 
turn a noisy channel into a less noisy one…



3. Channels as resources

[Gour, 1808.02808; Liu/Yuan, 1904.02680, Liu/AW, 1904.04201]

Denote the subset of channels from A to B 
that are free by 𝔽(A→B). For our purposes, 
we need three essential axioms:

1) Doing nothing is free: id ∈ 𝔽(A→A).

2) The free sets 𝔽(A→B) are topologically

  closed, i.e. limits of free maps are free.

3) Composition and tensor product of free

 channels are free: 𝔽(B→C)∘𝔽(A→B) ⊂ 𝔽(A→C),

 𝔽(A→B)⊗𝔽(A’→B’) ⊂ 𝔽(AA’→BB’).

A



3. Channels as resources
Denote the subset of channels from A to B 
that are free by 𝔽(A→B). 

Note that this includes free 
states: 𝔽(A) = 𝔽(ℂ→A)

[Gour, 1808.02808; Liu/Yuan, 1904.02680, Liu/AW, 1904.04201]



3. Channels as resources
Some additional properties that may or may 
not hold:

4) Trace/partial trace is free: Tr ∈ 𝔽(A→ℂ).

5) Every system has some free states, i.e.

  𝔽(B) = 𝔽(ℂ→B) is nonempty.

6) The free sets 𝔽(A→B) are convex.

7) In system composed of n identical parts,

  the permutations are free, i.e. for A = A ,

  U ・U  ∈ 𝔽(A →A ), for all π.

A

π π
† n n

n ⊗n

[Gour, 1808.02808; Liu/Yuan, 1904.02680, Liu/AW, 1904.04201]



4. Channels, superchannels

  & quantum circuits

To build a theory of channels as resources, 
we need to understand how to transform 
one into another.



4. Channels, superchannels

  & quantum circuits

To build a theory of channels as resources, 
we need to understand how to transform 
one into another.
Axiomatically, we want a superchannel: a 
map Θ that takes quantum channels (cptp 
maps) to quantum channels (cptp maps on 
a potentially different system); it should be 
linear and its extensions id⊗Θ should behave 
the same.



Lemma: A map Θ on quantum channels is a 
superchannel iff it can be written as 

Θ(N) = D°(N⊗id)°E:

[Chiribella/D’Ariano/Perinotti, PRL 2008]

Θ(N)

A’

B’

A’

N≡

B’

A

B

C

D

E



5. Resource theories

  of quantum channels 

To make a resource theory, we need to 
identify the free objects and the free 
transformations — in the present case, they 
will turn out to be essentially the same.

From the previous examples, we are used to 
the idea that the free channels are given.



5. Resource theories

  of quantum channels 

Recall the axioms:

1) Doing nothing is free: id ∈ 𝔽(A→A).

2) The free sets 𝔽(A→B) are topologically

  closed, i.e. limits of free maps are free.

3) Composition and tensor product of free

 channels are free: 𝔽(B→C)∘𝔽(A→B) ⊂ 𝔽(A→C),

 𝔽(A→B)⊗𝔽(A’→B’) ⊂ 𝔽(AA’→BB’).

A



Definition: A free transformation of 
channels is a superchannel Θ that can be 
decomposed into free channels. I.e.,

Θ(N)

A’

B’

A’

N≡

B’

A

B

C

D

E

N

B

A

↝

s.t. E ∈ 𝔽(A’→AC) and D ∈ 𝔽(BC→B’).



Definition: A free transformation of 
channels is a superchannel Θ that can be 
decomposed into free channels.

Observation: Given free superchannels Θ and 
Ξ, their composition Θ°Ξ and tensor product 
Θ⊗Ξ are free, too. 

(This is because the free channels are 
closed under composition and tensor 
products: “completely free” - Gilad Gour)



Definition: A free transformation of 
channels is a superchannel Θ that can be 
decomposed into free channels.

Observation: Given free superchannels Θ and 
Ξ, their composition Θ°Ξ and tensor product 
Θ⊗Ξ are free, too. 

(This is because the free channels are 
closed under composition and tensor 
products: “completely free” - Gilad Gour)

Note: We care for the (free) realisation of 
free superchannels. More than simply asking 
that they map free channels to free ones.



Now, the resource theory is about possible 

free channel transformations, N ↝ N’ = Θ(N).

Often we are happy with approximation:

N ↝ N’ ≈ Θ(N), w.r.t the diamond norm on 
cptp maps.



To decide transformability, we seek to 
classify all monotones, i.e. real-valued 
functions f on channels s.t. f(𝔽)=0 and for 
all free superchannels Θ, f(N) ≥ f(Θ(N)). 

Now, the resource theory is about possible 

free channel transformations, N ↝ N’ = Θ(N).

Often we are happy with approximation:

N ↝ N’ ≈ Θ(N), w.r.t the diamond norm on 
cptp maps.



Constructions of monotones

1. Generating power: Let ω be a resource 
monotone on states, then


       Ω(N) = sup ω(N⊗id(ρ))-ω(ρ)


  defines a monotone on channels, which

  extends ω.

ρ



Constructions of monotones

1. Generating power: Let ω be a resource 
monotone on states, then


       Ω(N) = sup ω(N⊗id(ρ))-ω(ρ)


  defines a monotone on channels, which

  extends ω.

ρ

2. Distance measures: Let d be contractive  
on states (a metric or divergence), then


      Δ(N) = inf sup d(N⊗id(ρ),L⊗id(ρ))


  defines a monotone on channels.

ρL∈𝔽



Constructions of monotones

3. Robustness is defined as

     LR(N) = inf D   (N||L), where


  D   (N||L) = log min λ s.t. N ≤ λL is the

  max-relative entropy, extended from

  states to channels.

L∈𝔽
max

max



Constructions of monotones

3. Robustness is defined as

     LR(N) = inf D   (N||L), where


  D   (N||L) = log min λ s.t. N ≤ λL is the

  max-relative entropy, extended from

  states to channels.

L∈𝔽
max

max

There is also a smooth version:

    LR (N) = inf inf D   (N’||L),


where N’ runs over channels with N’≈N.
L∈𝔽

max
ε

N’
ε





Why do we have so many monotones? In 
fact, often there will be many inequivalent 
ones.

This is related to the fact that N ↝ N’ 
under free superchannels is usually not a 
linear, only a partial order. Irreversibility!

Example: Pure bipartite states under LOCC 
or SEP. Infinite set of majorisation 
conditions necessary and sufficient…

[Nielsen, PRL 1999]



In some theories, reversibility (i.e. linear 
ordering) is restored in an asymptotic limit 
of large number of copies. 

Many examples either way:

1) Mixed entangled states with LOCC: 
bound entanglement, zoo of e-measures

[Cf. Christandl, PhD thesis 2006]



In some theories, reversibility (i.e. linear 
ordering) is restored in an asymptotic limit 
of large number of copies. 

Many examples either way:

[Brandao/Plenio Nature Phys. 2008, 

Brandão/Gour, PRL 2015]

1) Mixed entangled states with LOCC: 
bound entanglement, zoo of e-measures

2) Mixed entangled states with SEPP 
(=almost separability-preserving channels): 
Reversible with unique quantifier E (ρ).∞

r

[Cf. Christandl, PhD thesis 2006]



In some theories, reversibility (i.e. linear 
ordering) is restored in an asymptotic limit 
of large number of copies. 

Many examples either way:

1) Mixed entangled states with LOCC: 
bound entanglement, zoo of e-measures

2) Mixed entangled states with SEPP 
(=almost separability-preserving channels): 
Reversible with unique quantifier E (ρ).∞

r

[Cf. Christandl, PhD thesis 2006]

⚡Free operations not closed under ⊗! ⚡



[Navascués/García-Pintos, PRL 2015, 

Faist/Berta/Brandão, 1807.05610]

3) (Thermodynamics toy model) Systems 
with Hamiltonian at temperature T, and 
under Gibbs-preserving channels: 

-Work is a special resource, a state |E> 
of a battery.

-Work extractable from many copies of N 
is W(N) = sup kTS(N(ρ))-TrN(ρ)H

                 -kTS(ρ)+TrρH
ρ

Free energy difference

after-before :-)



[Navascués/García-Pintos, PRL 2015, 

Faist/Berta/Brandão, 1807.05610]

3) (Thermodynamics toy model) Systems 
with Hamiltonian at temperature T, and 
under Gibbs-preserving channels: 

-Work is a special resource, a state |E> 
of a battery.

-Work extractable from many copies of N 
is W(N) = sup kTS(N(ρ))-TrN(ρ)H

                 -kTS(ρ)+TrρH

-…turns out to be the asymptotic cost of 
implementing many copies of N!

ρ



[Bennett/Devetak/Harrow/Shor/AW, IEEE-IT 2014]

4) Entanglement-assisted communication 
between Alice and Bob: Interesting because 
all states are free, but only the local 
channels are free.




[Bennett/Devetak/Harrow/Shor/AW, IEEE-IT 2014]

4) Entanglement-assisted communication 
between Alice and Bob: Interesting because 
all states are free, but only the local 
channels are free.

Subtheory of channels from Alice to Bob 
is reversible, and the rate of converting N 
into a perfect binary classical channel is the 
entanglement-assisted quantum capacity:


  C (N) = max I(A:B)  s.t. ρ=(id⊗N)φρ|φ>E



6. On multiple resources
For states, if you understand one, you 
understand many: having access to resource 
states ρ , ρ , …, ρ  is the same as having 
access to ρ ⊗ρ ⊗…⊗ρ  — just another state.

1 2 n
1 2 n
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understand many: having access to resource 
states ρ , ρ , …, ρ  is the same as having 
access to ρ ⊗ρ ⊗…⊗ρ  — just another state.
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1 2 n

For channels, if you have N and M, you can 
clearly build N⊗M, but also the 
compositions N∘F∘M and M∘F’∘N, with free 
channels F and F’.




6. On multiple resources

[Cf. Bisio/Perinotti, arXiv:1806.09554]

For states, if you understand one, you 
understand many: having access to resource 
states ρ , ρ , …, ρ  is the same as having 
access to ρ ⊗ρ ⊗…⊗ρ  — just another state.

1 2 n
1 2 n

For channels, if you have N and M, you can 
clearly build N⊗M, but also the 
compositions N∘F∘M and M∘F’∘N, with free 
channels F and F’.

Axiomatic way: No-signalling channels, and 
supermaps between them… Free supermaps?



6. On multiple resources
To avoid thorny issues (which however may have 

to be confronted eventually), let’s stick with free 
transformations as being those realised by 
a free quantum circuit, with slots in 
which the resource channels are to be 
inserted in a given causal order:

[Chiribella/D’Ariano/Perinotti, PRL 2008]

C D
A1 A2 B2B1N N1 2

Θ (freely realised circuit)



6. On multiple resources
Actually transforms a memory channel into 
a channel, by means of a free memory 
channel:

[Chiribella/D’Ariano/Perinotti, PRL 2008]

C D
A1 A2 B2B1

N(2)

Θ (freely realised circuit)



[Chiribella/D’Ariano/Perinotti, PRL 2008]

C1 D2

A1 A2 B2B1

M(3)

Θ (free)

…And more generally, memory channels to 
memory channels:

B3A3

D1 C2



[Chiribella/D’Ariano/Perinotti, PRL 2008]

C1 D2

A1 A2 B2B1

M(3)

Θ (free)

…And more generally, memory channels to 
memory channels:

B3A3

D1 C2

Note: Even when the input M   is a 
product of independent channels, the 
output N  = Θ∘M   is in general a memory 
channel!

(3)

(3)(2)



C1 D2

A1 A2 B2B1

M(3)

Θ (free)

B3A3

D1 C2

Means: We want a resource theory not of 
channels, but of memory channels (combs), 
transformed to other such objects via 
freely realised memory channels (combs). 

Natural metric: comb-extension of ◊-norm.

[Chiribella/D’Ariano/Perinotti, Europhys. Lett. 2008]



Means: We want a resource theory not of 
channels, but of memory channels (combs), 
transformed to other such objects via 
freely realised memory channels (combs). 

Natural metric: comb-extension of ◊-norm.

Outstanding project/work in progress: 
Define monotones for memory channels, or 
extend them from states and channels.

For product channels, amortised measures 
are good candidates (see Mark Wilde’s talk).



Outstanding project/work in progress: 
Define monotones for memory channels, or 
extend them from states and channels.

Generalised amortised channel divergences:

For a divergence D on states, and degree-t 
memory channels N=N   and M=M  , let

D (N||M) := sup D((Θ∘N)ρ||(Θ∘N)σ)-D(ρ||σ)

(t)(t)

A

[Berta/Hirche/Kaur/Wilde, 1808.01498; 

Wang/Wilde, 1907.06306]

Θ,ρ,σ

Test combs

(deg. t+1)

Test states (…)





7. Resource erasure

[Groisman/Popescu/AW, PRA 2005; 

Berta/Majenz, 1708.00360; Anshu/Hsieh/Jain, 1708.00381]

Universal quantifier of resourceness: How 
much randomness is required to destroy a 
given resource channel N?
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Universal quantifier of resourceness: How 
much randomness is required to destroy a 
given resource channel N?

Assume that there is a free F∈𝔽(A’→B’) and 
an ensemble {p ,U ,V } of free unitaries, s.t.

  ∑ p V °(N⊗F)°U  ≈ M ∈ 𝔽(AA’→BB’).ε

iiii=1

k i i i



7. Resource erasure

[Groisman/Popescu/AW, PRA 2005; 

Berta/Majenz, 1708.00360; Anshu/Hsieh/Jain, 1708.00381]

Universal quantifier of resourceness: How 
much randomness is required to destroy a 
given resource channel N?

Assume that there is a free F∈𝔽(A’→B’) and 
an ensemble {p ,U ,V } of free unitaries, s.t.

  ∑ p V °(N⊗F)°U  ≈ M ∈ 𝔽(AA’→BB’).ε

iiii=1

k i i i

Then by forgetting i (i.e. H(p) ≤ log k bits) 
we destroy the resource.



7. Resource erasure
Assume that there is a free F∈𝔽(A’→B’) and 
an ensemble {p ,U ,V } of free unitaries, s.t.

  ∑ p V °(N⊗F)°U  ≈ M ∈ 𝔽(AA’→BB’).ε

iiii=1

k i i i

Then by forgetting i (log k bits) we 
destroy the resource, approximately:

COST (N) := min log k.ε

[Groisman/Popescu/AW, PRA 2005; 

Berta/Majenz, 1708.00360; Anshu/Hsieh/Jain, 1708.00381]



7. Resource erasure
Assume that there is a free F∈𝔽(A’→B’) and 
an ensemble {p ,U ,V } of free unitaries, s.t.

  ∑ p V °(N⊗F)°U  ≈ M ∈ 𝔽(AA’→BB’).ε

iiii=1

k i i i

Equivalent to N if the resource 
theory has free states and free 
partial trace! Assume from now..

[Groisman/Popescu/AW, PRA 2005; 

Berta/Majenz, 1708.00360; Anshu/Hsieh/Jain, 1708.00381]



7. Resource erasure

[Liu/AW, arXiv:1904.04201. 

Extends Anshu/Hsieh/Jain, 1708:00381 for states!]

Assume that there is a free F∈𝔽(A’→B’) and 
an ensemble {p ,U ,V } of free unitaries, s.t.

  ∑ p V °(N⊗F)°U  ≈ M ∈ 𝔽(AA’→BB’).ε

iiii=1

k i i i

COST (N) := min log k.ε

Theorem: COST (N) ≈ LR (N) + O(1), with

          ε/2 < ζ < 2√ε 

ε
ζ

(Assuming theory has free permutations. 
Proof uses generalised ”convex-split lemma”)



8. Conclusion
Channels not enough: Memory channels 
for a minimal self-consistent theory!

General questions are hard to answer, 
but there are some common features: 
log-robustness plays a universal role 
both for resource destruction (extends 
to general memory channels ✓), and for 
channel simulation… [Cf. García Díaz et 
al., 1805.04045 for coherence; Faist/Berta/
Brandão, 1807.05610 for thermodynamics]



8. Conclusion
Question about asymptotics: Rate of 
randomness to destroy resource N  ?⊗n

COST (N) = sup lim(inf/sup) COST (N  )/n

           = sup lim(inf/sup) LR (N  )/n

           = ???

⊗n∞
⊗nε

εε
ε

n
n



8. Conclusion
Question about asymptotics: Rate of 
randomness to destroy resource N  ?⊗n

COST (N) = sup lim(inf/sup) COST (N  )/n

           = sup lim(inf/sup) LR (N  )/n

           = ???

⊗n∞
⊗nε

ε

For states [Brandao/Gour, PRL 2015; Anshu/
Hsieh/Jain, 1708.00381]: 

COST (ρ) = D (ρ) = lim min D(ρ  ||σ)/n

ε
ε

n
n

n
∞ ∞

𝔽 σ∈𝔽
⊗n

Quantum asymptotic equipartition 
property: From states to channels?!




