Asymptotic performance of

port-based teleportation

arXiv:1809.10751

Felix Leditzky

(JILA & CTQM, University of Colorado Boulder)

Joint work with

M. Christandl, C. Majenz, G. Smith, F. Speelman, M. Walter

BIRS workshop, Banff, Canada

26 July 2019

Resource conversion in teleportation

[Bennett et al. 1993]

$$[qq] + 2[c \rightarrow c] \ge [q \rightarrow q]$$

Port-based teleportation:

[Ishizaka and Hiroshima 2008]

 $N[qq] + (\log N)[c \rightarrow c] \ge [q \rightarrow q]$

Because port-based teleportation has unitary covariance

Resource conversion in teleportation

Standard teleportation:

[Bennett et al. 1993]

$$[qq] + 2[c \rightarrow c] \ge [q \rightarrow q]$$

Port-based teleportation:

[Ishizaka and Hiroshima 2008]

$$N[qq] + (\log N)[c \rightarrow c] \ge [q \rightarrow q]$$

This is worse... why care?

Because port-based teleportation has unitary covariance!

Resource conversion in teleportation

Standard teleportation:

[Bennett et al. 1993]

$$[qq] + 2[c \rightarrow c] \ge [q \rightarrow q]$$

Port-based teleportation:

[Ishizaka and Hiroshima 2008]

$$N[qq] + (\log N)[c \rightarrow c] \ge [q \rightarrow q]$$

This is worse... why care?

Because port-based teleportation has unitary covariance!

Why is PBT interesting?

▶ Partial trace commutes with $W^{\otimes N}$: PBT is **unitarily covariant**.

 PBT enables instantaneous non-local quantum computation (INQC).
 [Beigi and König 2011]

INQC can be used to break position-based cryptography.

[Buhrman et al. 2014]

Caveat

Unitary covariance leads to the fact that

perfect PBT is impossible with finite resources.

[Nielsen and Chuang 1997; Ishizaka and Hiroshima 2008]

Variants of PBT

Deterministic PBT

Protocol always yields final state that approximates target state.

Probabilistic PBT

Protocol yields **exact** target state with certain probability.

- Unitary covariance: Perfect PBT impossible with finite resources.
- Goal of this talk: Understand symmetries of PBT and determine asymptotic performance of PBT protocols.

Outline

- 2 Symmetries & representation theory
- 3 Main results: Asymptotics of PBT protocols

4 Proof methods

5 Concluding remarks

Table of Contents

1 Operational setting & known bounds

- 2 Symmetries & representation theory
- 3 Main results: Asymptotics of PBT protocols

4 Proof methods

5 Concluding remarks

Deterministic PBT

- In deterministic PBT the protocol always yields a final state as an approximation to the target state.
- Hence, PBT protocol implements qudit channel Λ that simulates ideal channel.
- **Figure of merit:** entanglement fidelity

$$F_{d} = F(\Lambda, \mathrm{id}) = \langle \Phi^{+}_{A'A} | (\mathrm{id} \otimes \Lambda)(\Phi^{+}_{A'A}) | \Phi^{+}_{A'A} \rangle$$

▶ For PBT the diamond norm distance is exactly equivalent to *F*_d:

$$\|\operatorname{\mathsf{id}} - \Lambda\|_\diamond = 2(1 - F_d).$$
 [Pirandola et al. 2018]

Deterministic PBT and state discrimination

 Deterministic PBT is equivalent to state discrimination of the uniformly drawn states [Ishizaka and Hiroshima 2009]

$$\omega_{A^NB}^{(i)} = \operatorname{Tr}_{B_{i^c}} \varphi_{A^NB^N}.$$

Success probability q of discriminating between $\omega^{(i)}$:

$$q=\frac{d^2}{N}F_d.$$

- Suggests pretty good measurement (PGM) as POVM.
- Further protocol simplification: $| \varphi \rangle = \mathsf{EPR}^{\otimes N}$
- We call ($EPR^{\otimes N}$, PGM) the standard protocol.

Probabilistic PBT

- Probabilistic PBT yields the exact target state with success probability p_d and aborts otherwise.
- ► Extended POVM $E_{\text{prob}} = \{E^{(i)}\}_{i=0}^{N}$, where $E^{(0)}$ corresponds to abortion of the protocol.
- Probabilistic PBT is a special case of deterministic PBT.
 (Send random port when getting outcome "0".)
- Again: consider special case where $|\varphi\rangle = EPR^{\otimes N}$.
- ► We call ($EPR^{\otimes N}$, E_{prob}) the **EPR protocol**. (POVM E_{prob} is now optimized over.)

Existing results: optimal performance of PBT

Standard deterministic protocol:

$$F_d^{\mathrm{std}} \geq 1 - rac{d^2 - 1}{N}.$$

[Ishizaka and Hiroshima 2008; Beigi and König 2011]

Converse bound for arbitrary deterministic protocols:

$$F_d^* \leq 1 - rac{1}{4(d-1)N^2} + O(N^{-3}).$$
 [Ishizaka 2015]

• Closed forms for d = 2: [Ishizaka and Hiroshima 2009]

$$F_2^{\mathrm{std}} = F_2^{\mathrm{EPR}} = 1 - rac{3}{4N} + o(N^{-1})$$

 $p_2^{\mathrm{EPR}} \sim 1 - \left(rac{8}{\pi N}
ight)^{-1/2} + o(N^{-1/2}).$

Existing results: optimal performance of PBT

> PBT has a lot of inherent symmetries

 \longrightarrow use representation theory (RT)!

- Leads to exact expressions for F_d and p_d in terms of RT
 quantities. [Studziński et al. 2017] and [Mozrzymas et al. 2017]
- Our main results: Asymptotics of these expressions for F_d^* , F_d^{std} and p_d^{EPR} to first order.
- This talk focuses on
 - ▷ standard deterministic protocol F_d^{std} ;
 - \triangleright EPR probabilistic protocol p_d^{EPR} .

Table of Contents

1 Operational setting & known bounds

2 Symmetries & representation theory

3 Main results: Asymptotics of PBT protocols

4 Proof methods

5 Concluding remarks

Natural symmetries of PBT

Notation: U_d ... unitary group; S_N ... symmetric group.

Permutation symmetry

Every port B_i is equally good for teleportation

 \longrightarrow *S*_{*N*}-symmetry of $ho_{B^N} = \operatorname{Tr}_{A^N} \varphi_{A^N B^N}$.

Same symmetry for POVM elements

 \longrightarrow S_N -action on $\{E^{(i)}\}_i$.

Unitary invariance

The protocol works equally well for all input states

 $\longrightarrow U_d$ -symmetry of ho_{B^N} .

Natural symmetries of PBT

Proposition: Symmetries of PBT

Every PBT protocol Λ can be symmetrized to a protocol Λ_s with $F(\Lambda_s, id) \ge F(\Lambda, id)$, satisfying:

- ► Resource state $\varphi_{A^N B^N}$ is a purification of a symmetric Werner state, i.e., invariant under $U_A^{\otimes N} \otimes \overline{U}_B^{\otimes N}$ and S_N .
- ▶ S_N acts on $\{E^{(i)}\}_i$, and each $E^{(i)}$ is invariant under $\overline{U}_{A_0} \otimes U_A^{\otimes N}$.
- \blacktriangleright Λ_s is unitarily covariant.

"Folklore" results, proofs in C. Majenz's PhD thesis and our paper.

Schur-Weyl duality

► Resource state $\varphi_{A^N B^N}$ invariant under action of $U_d S_N$ \longrightarrow structure determined by **Schur-Weyl duality**.

Group actions:

$$\begin{aligned} |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle & \stackrel{\pi \in S_N}{\longmapsto} & |\psi_{\pi^{-1}(1)}\rangle \otimes \ldots \otimes |\psi_{\pi^{-1}(N)}\rangle \\ |\psi_1\rangle \otimes \ldots \otimes |\psi_N\rangle & \stackrel{U \in U_d}{\longmapsto} & U|\psi_1\rangle \otimes \ldots \otimes U|\psi_N\rangle \end{aligned}$$

Schur-Weyl decomposition:

$$(\mathbb{C}^d)^{\otimes N} \cong \bigoplus_{\lambda \vdash_d N} [\lambda] \otimes V_\lambda$$

▶ $\lambda \vdash_d N$: Young diagram with *N* boxes and at most *d* rows.

Irreducible representations:

- $\triangleright \ [\lambda]$ is an irrep of S_N with dim $[\lambda] = d_{\lambda}$.
- \triangleright V_{λ} is an irrep of U_d with dim $V_{\lambda} = m_{d,\lambda}$.

Exact expressions for F_d and p_d using RT

[Studziński et al. 2017; Mozrzymas et al. 2017]

Standard deterministic protocol

$$F_d^{std} = rac{1}{d^{N-2}}\sum_{lpha \vdash_d N-1} \left(\sum_{\mu=lpha + \Box} \sqrt{d_\mu m_{d,\mu}}\right)^2$$
,

where $\mu = \alpha + \Box$ denotes a Young diagram $\mu \vdash_d N$ obtained from $\alpha \vdash_d N - 1$ by adding a single box (!).

EPR probabilistic protocol

$$ho_d^{ ext{EPR}} = rac{1}{d^N}\sum\limits_{lpha \, dash_d N-1} m_lpha^2 rac{d_{\mu^*}}{m_{\mu^*}}$$

where μ^* is the Young diagram obtained from $\alpha \vdash_d N - 1$ by adding a single box such that $N \frac{m_{d,\mu} d_{\alpha}}{m_{\alpha} d_{\mu}}$ is maximal.

Table of Contents

- 1 Operational setting & known bounds
- 2 Symmetries & representation theory
- 3 Main results: Asymptotics of PBT protocols

4 Proof methods

5 Concluding remarks

Main results

Main result 1: standard deterministic PBT

For deterministic PBT using PGM and EPR pairs, we prove:

$$F_d^{ ext{std}} = 1 - rac{d^2-1}{4N} + O(N^{-3/2+\delta})$$
 for any $\delta > 0.$

• Recovers qubit result
$$F_2^{\text{std}} = 1 - \frac{3}{4N} + o(N^{-1})$$
.

Shows that
$$F_d^{\text{std}} \ge 1 - \frac{d^2 - 1}{N}$$
 is not tight, confirming numerical evidence.

Main results

Main result 2: probabilistic PBT

For probabilistic PBT using EPR, we prove:

$$p_d^{ ext{EPR}} = 1 - \sqrt{rac{d}{N-1}} \mathbb{E}[\lambda_{ ext{max}}(\mathbf{G})] + o(N^{-1}),$$

where **G** is a Gaussian unitary, i.e, a Hermitian, traceless random $d \times d$ matrix with independent Gaussian RVs as entries.

For qubits (i.e., d = 2 and **G** is a 2 \times 2 matrix):

$$\mathbb{E}[\lambda_{\max}(\mathbf{G})] = 2\pi^{-1/2}.$$

▶ Hence, our result "corrects" the qubit result

 $p_2^{\text{EPR}} \sim 1 - \sqrt{\frac{8}{\pi N}} + o(N^{-1/2}).$ [Ishizaka and Hiroshima 2009] Arbitrary *d*: use bounds on $\mathbb{E}[\lambda_{\max}(\mathbf{G})].$

Standard deterministic protocol

EPR probabilistic protocol

Table of Contents

- 1 Operational setting & known bounds
- 2 Symmetries & representation theory
- 3 Main results: Asymptotics of PBT protocols

4 Proof methods

5 Concluding remarks

Spectrum estimation & random matrix theory

Recall Schur-Weyl duality:

$$(\mathbb{C}^d)^{\otimes N} \cong \bigoplus_{\lambda \vdash_d N} [\lambda] \otimes V_{\lambda}.$$

- ► Consider the projective measurement $\{P_{\lambda}\}_{\lambda \vdash_{d} N}$, where P_{λ} is the orthogonal projection onto $[\lambda] \otimes V_{\lambda}$.
- ► Intuition: $\{P_{\lambda}\}_{\lambda \vdash_d N}$ respects the U_d and S_N -symmetries of the spectrum estimation problem.

Spectrum estimation

[Keyl and Werner 2001]

Let \mathbf{Y}_N denote the outcome of the measurement $\{P_\lambda\}_{\lambda \vdash_d N}$ applied to $\rho^{\otimes N}$ where ρ is a state. Then, as $N \to \infty$,

$$\frac{1}{N}\mathbf{Y}_N \xrightarrow{D} \operatorname{spec}(\rho).$$

Spectrum estimation & random matrix theory

For the completely mixed state $\tau = \frac{1}{d}\mathbb{1}$, the corresponding probability distribution is called **Schur-Weyl distribution**:

$$p_{d,N}(\lambda) = {
m Tr}(P_\lambda au^{\otimes N}) = rac{1}{d^N} d_\lambda m_{d,\lambda}.$$

Spectrum estimation: For the RV \mathbf{Y}_N^{τ} obtained from applying the measurement $\{P_{\lambda}\}_{\lambda \vdash_d N}$ to τ , we have

$$\frac{1}{N}\mathbf{Y}_N^{\tau} \xrightarrow{D} (1/d, \ldots, 1/d).$$

What about a "central limit theorem" version of this describing fluctuations of Young diagrams?

Spectrum estimation & random matrix theory

To make this exact, define the centered and normalized RV

$$\mathbf{A}_{N} = \frac{\mathbf{\lambda}_{N} - (N/d, \dots, N/d)}{\sqrt{N/d}}$$

where $\mathbf{\lambda}_{N} \sim p_{d,N}$ takes values in Young diagrams $\{ \lambda \vdash_{d} N \}$.

- ► Let M be the Gaussian unitary ensemble GUE(d): a Hermitian random matrix whose entries are independent Gaussian RVs. (df: exp(-¹/₂ Tr H²) where H is a Hermitian matrix-valued RV.)
- ▶ Define M₀ = M Tr(M)/d 1, called the traceless Gaussian unitary ensemble GUE₀(d).

Main technical result

Fluctuations of Schur-Weyl distribution

[Johansson 2001]

For the RV
$$\mathbf{A}_N = \sqrt{rac{d}{N}} (\mathbf{\lambda}_N - (N/d, \dots, N/d)),$$

$$\mathbf{A}_N \xrightarrow{D} \operatorname{spec}(\mathbf{G}),$$

where $\mathbf{G} \sim \text{GUE}_0(d)$.

Note that spec(G) $\xrightarrow{d \to \infty}_{a.s.}$ Wigner's semicircle law.

Main technical result (informal)

Strengthening of Johansson's result:

$$\mathbb{E}[g(\mathbf{A}_N)] \xrightarrow{n \to \infty} \mathbb{E}[g(\operatorname{spec}(\mathbf{G}))]$$

for "suitable" functions g.

Application of Johansson strengthening

Proof idea of asymptotics for standard and EPR protocol:

apply convergence of expectation values to exact RT formulas by rewriting them as expectation values over Schur-Weyl distribution.

- Main principle: Computing expectation values of (functions of) GUE-distributed matrices is much easier!
- Example: probabilistic PBT

$$p_d^{ ext{EPR}} = rac{1}{d^N}\sum_{lphadash_d N-1} m_lpha^2 rac{d_{\mu^*}}{m_{\mu^*}}$$

• Rewrite $p_d^{\text{EPR}} = \frac{N}{d} \mathbb{E}_{\alpha}[(\alpha_1 + d)^{-1}]$ and apply technical result.

More results in the paper

Main result 3: fully optimized deterministic PBT

Achievability bound:

$$F_d^* \geq 1 - rac{d^5 + O(d^{9/2})}{4\sqrt{2}N^2} + O(N^{-3}).$$

Converse bound:

$$F_d^* \leq 1 - rac{d^2 - 1}{16N^2}.$$

Asymptotics of optimal deterministic PBT are given by

$$F_d^* = 1 - \Theta(N^{-2}).$$

Table of Contents

- 1 Operational setting & known bounds
- 2 Symmetries & representation theory
- 3 Main results: Asymptotics of PBT protocols

4 Proof methods

5 Concluding remarks

Summary

We discussed two variants of port-based teleportation (PBT):

 \triangleright deterministic PBT with entanglement fidelity F_d ;

 \triangleright probabilistic PBT with success probability p_d .

► Inherent symmetries: closed representation-theoretic formulas for F_d and p_d . [Studziński et al. 2017; Mozrzymas et al. 2017]

Standard protocols: use connection between Young diagrams and GUE to determine asymptotics.

We also determine asymptotics of fully optimized case using different proof technique.

Open problems

Connection between Schur-Weyl distribution and GUE seems very fruitful: get asymptotics for other "symmetric" tasks?

For the optimal deterministic case, achievability bound is optimal in *N*, but not in *d*-dependence: improvement?

We considered natural limit of fixed *d* and $N \rightarrow \infty$. What about the limit $N, d \rightarrow \infty$ with $N/d^2 = \text{const}$?

References

Beigi, S. and R. König (2011). New Journal of Physics 13.9, p. 093036. arXiv: 1101.1065 [quant-ph].
Bennett, C. H. et al. (1993). Physical Review Letters 70.13, p. 1895.
Buhrman, H. et al. (2014). SIAM Journal on Computing 43.1, pp. 150–178. arXiv: 1009.2490 [quant-ph].
Ishizaka, S. (2015). arXiv preprint. arXiv: 1506.01555 [quant-ph].
Ishizaka, S. and T. Hiroshima (2008). Physical Review Letters 101.24, p. 240501. arXiv: 0807.4568 [quant-ph].
- (2009). Physical Review A 79.4, p. 042306. arXiv: 0901.2975 [quant-ph].
Johansson, K. (2001). Annals of Mathematics 153.1, pp. 259–296. arXiv: math/9906120 [math.C0].
Keyl, M. and R. F. Werner (2001). Physical Review A 64.5, p. 052311. arXiv: 1070.08456 [quant-ph].
Nielsen, M. A. and I. L. Chuang (1997). Physical Review Letters 79.2, p. 321. arXiv: 1203.02834 [quant-ph].
Viudziński, M. et al. (2017). Scientific Reports 7, p. 10871. arXiv: 1803.02834 [quant-ph].

Thank you very much for your attention!