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The q = −1 phenomenon
Suppose we have

I a finite set X of combinatorial objects
I a combinatorial involution σ : X → X
I a “natural” q-enumerator of X , that is, a polynomial f (q)

with non-negative integer coefficients such that f (1) = |X |

Following Stembridge, we say that (X , σ, f (q)) exhibits the
q = −1 phenomenon if the number of fixed points of σ is equal
to f (−1).

Of course, such a polynomial always exists. Stembridge was
interested in the case where f (q) has a simple closed formula,
so that the fixed points can then be enumerated easily.
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Example 1

I X = {partitions contained in the k × (n − k) rectangle}
I σ = complement (and rotate 180 degrees)
I f (q) = the q-binomial coefficient

[n
k

]
, where

[a] =
1− qa

1− q
, [a]! = [a] · · · [2][1],

[n
k

]
=

[n]!
[k ]![n − k ]!

This triple exhibits the q = −1 phenomenon.

Example: n = 4, k = 2

f (q) =
[

4
2

]
= 1 + q + 2q2 + q3 + q4

and the number of self-complementary partitions is f (−1) = 2.
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Example 2

I X = {partitions contained in the staircase
(n − 1,n − 2, . . . ,1)}

I σ = transpose

I f (q) = the q-Catalan polynomial
1

[n + 1]
·
[

2n
n

]
This triple exhibits the q = −1 phenomenon.

Example: n = 3

f (q) =
1
[4]
·
[

6
3

]
= 1 + q2 + q3 + q4 + q6

and the number of self-conjugate partitions is f (−1) = 3.
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Evacuation (the Schützenberger involution)
Let SSYT(λ,≤ n) denote the set of semistandard tableaux of
shape λ, with entries at most n. Evacuation is an involution

en : SSYT(λ,≤ n)→ SSYT(λ,≤ n).

Example:

e4

(
1 1 1 1 2 2 3
2 3 4

)
=
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Observe that evacuation reverses the content. That is, if µ is a
composition with n (possibly zero) parts, then

en : SSYT(λ, µ)→ SSYT(λ,w0(µ))

where w0 is the longest element of Sn.



Self-evacuating tableaux

I X = SSYT(λ,≤ n)
I σ = en

I f (q) = qb(λ)sλ(1,q,q2, . . . ,qn−1)

where b(λ) =
∑

(i − 1)λi

Theorem (J. Stembridge, ’96)
The number of self-evacuating semistandard tableaux in
SSYT(λ,≤ n) is equal to f (−1).

Our goal: a weight space refinement of this result
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The standard case
Evacuation acts on standard tableaux. For the q-enumerator,
take the q-analogue of the hook-length formula:

f λ(q) = [n]!
∏

(i,j)∈λ

1
[hi,j ]

where n = |λ|, and hi,j is the hook-length of the box in position
(i , j) of the diagram of λ.

Theorem
The number of self-evacuating standard tableaux of shape λ is
equal to f λ(−1).
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Domino tableaux

Definition
Say that a standard tableau T of shape λ ` n is a domino
tableau if for each pair

(n − 1,n), (n − 3,n − 2), . . . ,

{
(1,2) if n even
(2,3) if n odd

,

the entries in the pair are adjacent in T .

Examples:
1 2 5 6
3 7 8
4

1 2 3
4 5 8
6 7 9

Theorem (J. Stembridge, ’96)
The number of self-evacuating standard tableaux of shape λ is
equal to the number of domino tableaux of shape λ.



The standard case

Theorem
The number of self-evacuating standard tableaux (or domino
tableaux) of shape λ ` n is equal to f λ(−1), where
f λ(q) = [n]!/

∏
[hi,j ].

Sketch of proof, following Stanley ’09

I One has f λ(q) = qb(λ)
∑

T∈SYT(λ)

q comaj(T ),

where comaj(T ) =
∑

i a descent of T

(n − i)

I Define an involution τ : SYT(λ)→ SYT(λ) as follows: if
some pair of entries (n − (2i + 1), (n − 2i)) is not adjacent
in T , swap the entries in the largest such pair; if there is no
such pair, then τ fixes T

I If T is not domino, then τ changes the parity of comaj; if T
is domino, T is fixed by τ , and comaj(T ) ≡ b(λ) mod 2
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Aside: cyclic sieving
Suppose we have

I a finite set X of combinatorial objects
I a combinatorial map σ : X → X of order n
I a “natural” q-enumerator f (q) of X

Let ζ be a primitive nth root of unity. The triple (X , σ, f (q))
exhibits the cyclic sieving phenomenon if for each k , the
number of fixed points of σk is equal to f (ζk ).

Theorem (B. Rhoades, ’10)
Let λ be a rectangular partition, and let pr be jeu-de-taquin
promotion. The triples

(SSYT(λ,n), pr,qb(λ)sλ(1,q,q2, . . . ,qn−1))

and
(SYT(λ), pr, f λ(q))

exhibit the cyclic sieving phenomenon.
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Beyond the standard case
Question: When µ 6= (1n), what is the natural q-analogue of
the Kostka number Kλµ := |SSYT(λ, µ)|?

Answer: the (cocharge) Kostka–Foulkes polynomials K̃λµ(q),
which are given combinatorially by

K̃λµ(q) =
∑

T∈SSYT(λ,µ)

qc(T ),

where c is a Z≥0-valued statistic called cocharge, defined by
Lascoux and Schützenberger.

When T is standard, one has coch(T ) = comaj(T ), so cocharge
can be viewed as a semistandard generalization of comaj. This
means that

f λ(q) = qb(λ)
∑

T∈SYT(λ)

qcomaj(T ) = qb(λ)K̃λ,(1|λ|)(q).
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Palindromic content
When T is standard, one has coch(T ) = comaj(T ), so cocharge
can be viewed as a semistandard generalization of comaj. This
means that

f λ(q) = qb(λ)
∑

T∈SYT(λ)

qcomaj(T ) = qb(λ)K̃λ,(1|λ|)(q).

Thus, the number of self-evacuating standard tableaux of
shape λ is equal to (−1)b(λ)K̃λ,(1|λ|)(−1).

More generally, when µ is palindromic (i.e., w0(µ) = µ),
evacuation acts on SSYT(λ, µ), and the number of
self-evacuating tableaux is equal to

(−1)b(λ)K̃λµ(−1).

This can be seen by combining several results of Stembridge
and Lascoux–Leclerc–Thibon.
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The general case

I X = SSYT(λ, µ)
I f (q) = qb(λ)K̃λµ(q)
I σ = ___?

What is f (−1) counting? Evacuation reverses content, so does
not act on X in general. We would like to have another
involution which reverses content and commutes with
evacuation....



Symmetric group action on tableaux
Lascoux and Schützenberger defined an action of Sn on
SSYT(λ,≤ n), where the generators si act on a tableau T as
follows:

I Write the sequence of i ’s and i + 1’s in T in reading order.
I Recursively cross out pairs of the form (i + 1) i with no

uncrossed letters in between, until the remaining letters
form a subsequence of the form ia (i + 1)b.

I Replace this subsequence with ib (i + 1)a, and let si(T ) be
the corresponding tableau.

Example:

si

(
1 1 1 2 2 3 3
2 3 3 3

)
=

1 1 1 2 2 2 3
2 2 3 3
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Main result
Define

e∗n = w0 ◦ en.

Clearly e∗n preserves content. Also, en commutes with w0
because si ◦ en = en ◦ sn−i . This implies that e∗n is an involution.

Theorem (Chmutov–F–Kim–Lewis–Yudovina, ’18)
If µ is a partition with n parts, then the number of elements of
SSYT(λ, µ) fixed by the involution e∗n is equal to
(−1)b(λ)K̃λµ(−1).

Our proof uses Kirillov and Reshetikhin’s bijection between
semistandard tableaux and rigged configurations, and several
difficult results of Kirillov–Schilling–Shimozono about the
interaction of this bijection with evacuation, the symmetric
group action, and cocharge.



Main result
Define

e∗n = w0 ◦ en.

Clearly e∗n preserves content. Also, en commutes with w0
because si ◦ en = en ◦ sn−i . This implies that e∗n is an involution.

Theorem (Chmutov–F–Kim–Lewis–Yudovina, ’18)
If µ is a partition with n parts, then the number of elements of
SSYT(λ, µ) fixed by the involution e∗n is equal to
(−1)b(λ)K̃λµ(−1).

Our proof uses Kirillov and Reshetikhin’s bijection between
semistandard tableaux and rigged configurations, and several
difficult results of Kirillov–Schilling–Shimozono about the
interaction of this bijection with evacuation, the symmetric
group action, and cocharge.



Main result
Define

e∗n = w0 ◦ en.

Clearly e∗n preserves content. Also, en commutes with w0
because si ◦ en = en ◦ sn−i . This implies that e∗n is an involution.

Theorem (Chmutov–F–Kim–Lewis–Yudovina, ’18)
If µ is a partition with n parts, then the number of elements of
SSYT(λ, µ) fixed by the involution e∗n is equal to
(−1)b(λ)K̃λµ(−1).

Our proof uses Kirillov and Reshetikhin’s bijection between
semistandard tableaux and rigged configurations, and several
difficult results of Kirillov–Schilling–Shimozono about the
interaction of this bijection with evacuation, the symmetric
group action, and cocharge.



Main result
Define

e∗n = w0 ◦ en.

Clearly e∗n preserves content. Also, en commutes with w0
because si ◦ en = en ◦ sn−i . This implies that e∗n is an involution.

Theorem (Chmutov–F–Kim–Lewis–Yudovina, ’18)
If µ is a partition with n parts, then the number of elements of
SSYT(λ, µ) fixed by the involution e∗n is equal to
(−1)b(λ)K̃λµ(−1).

Our proof uses Kirillov and Reshetikhin’s bijection between
semistandard tableaux and rigged configurations, and several
difficult results of Kirillov–Schilling–Shimozono about the
interaction of this bijection with evacuation, the symmetric
group action, and cocharge.



Context

The Robinson–Schensted bijection sends permutations to pairs
of standard tableaux of the same shape. Reverse complement
of permutations corresponds to evacuation of the tableaux.

The affine matrix-ball construction (AMBC) of
Chmutov–Pylyavskyy–Yudovina sends affine permutations to
pairs of tabloids of the same shape (plus some additional data),
where a tabloid is a filling of a Young diagram with the numbers
1, . . . ,n, each used once, so that rows increase.

There is a natural analogue of the reverse complement map for
affine permutations. This map corresponds to a
shape-preserving involution on tabloids, which we call affine
evacuation.
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Fixed points of affine evacuation
From computational evidence, we conjectured a recursive
formula for the number of fixed points t(µ) of this map:

t(µ) =
∑
i≥2,

mi is odd

t
(
µ↓(i)(i−2)

)
+

k∑
i=1

2
⌊mi

2

⌋
· t
(
µ↓(i,i)(i−1,i−1)

)
.

Dongkwan had come across exactly the same recursion! He
proved that this recursion was satisfied by the Euler
characteristics of certain Springer fibers in types B,C,D, and he
proved that these Euler characteristics are given by

Qµw0
(−1).

The Green’s polynomial Qµ(q) is (up to tensoring with the sign
character) the graded character of the symmetric group action
on the cohomology of the type A Springer fiber asscoiated to
the partition µ. Qµσ(q) denotes its value on the permutation σ.
(For comparison, the Euler characteristic of the type A Springer
fiber is Qµid(1).)
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Fixed points of affine evacuation
Combinatorially, the Green’s polynomials are given by

Qµσ(q) =
∑
λ

χλσ K̃λ,µ(q)

where χλ is an irreducible symmetric group character.

Let T (µ) be the set of tabloids of shape µ. The previous
considerations suggested that the number of fixed points of
affine evacuation on T (µ) is equal to Qµw0

(−1).

RSK gives a bijection
T (µ)↔

⊔
λ

SYT(λ)× SSYT(λ, µ).

We showed that if T ↔ (P,Q), then e(T )↔ (e(P),e∗(Q)). By
the Murnaghan–Nakayama rule, the number of self-evacuating
(or domino) tableaux of shape λ is (−1)b(λ) · χλw0

. This
suggested that the number of fixed points of e∗ on SSYT(λ, µ)
should be equal to (−1)b(λ) · K̃λ,µ(−1).
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Fixed points of affine evacuation
Thus, our result about Kostka–Foulkes polynomials at q = −1
was the key step in proving the following result:

Theorem (Chmutov–F–Kim–Lewis–Yudovina, ’18)
The number of fixed points of affine evacuation on T (µ) is
equal to Qµw0

(−1).

This is not an example of the q = −1 phenomenon! However,
our results imply that the polynomial

f (q) =
∑

T∈T (µ)

qcomaj(T )+c(Q(T )),

where Q(T ) is the RSK recording tableau associated to T ,
exhibits the q = −1 phenomenon with respect to affine
evacuation.
Can this q = −1 phenomenon be proved by means of a
sign-reversing involution?
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More questions

I Is there a natural subset of “domino tabloids” which are in
bijection with the fixed points of affine evacuation?

I What do our results say about Schur P- and Q-functions?

I Let Kλ,µ(q, t) be the Macdonald–Kostka polynomial. We
have focused on Kλ,µ(q,0). Does Kλ,µ(q,1) exhibit a
q = −1 phenomenon?

I Other types?

Thanks for listening!



More questions

I Is there a natural subset of “domino tabloids” which are in
bijection with the fixed points of affine evacuation?

I What do our results say about Schur P- and Q-functions?

I Let Kλ,µ(q, t) be the Macdonald–Kostka polynomial. We
have focused on Kλ,µ(q,0). Does Kλ,µ(q,1) exhibit a
q = −1 phenomenon?

I Other types?

Thanks for listening!


