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This was proved by Haiman using geometry of Hilbert schemes:
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The modified Macdonald polynomials are Schur positive:
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Is there a combinatorial interpretation of the coefficients?
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Conjecture (Lapointe-Lascoux-Morse)
The atom k-Schur functions {Ax(x; t)} x, <k
e form a basis for Nk = spang(q,;) 1 Hu(X; g, t) }y <k, and

e are Schur positive;

e expansion of H,(x; q,t) € A¥ in this basis has coefficients in N[q, t].

k-Schur are Schur positive
Schur expanding Macdonald <
Hu(x;q,t) € Ak is g, t k-Schur positive

The intricate construction of these functions lacked in mechanism for

proof.

Many conjecturally equivalent candidates have since been proposed, now
all informally called k-Schur functions.
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o peZt
e W C AT is an upper order ideal of positive roots.

e band(W, u); = pi+ number of "non roots” in row i
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5

band(V, ;1) = (6,6,6,2,2,2).
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Def. (Panyushev, Chen-Haiman)

e W C AT is an upper order ideal of positive roots,

o ycZl
The Catalan function indexed by W and ~:

HY(xit):= [ 1 tRy) 'sy(x)
(i,j)ew

where the raising operator Rj; acts by Rjj(sy(x)) = Sy+¢;—¢;(X).
Equivalently, we can define it using the modified Hall-Littlewood H,(x; t)

HY(xt) = J[ (1—tRy)H,(xt).
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where RjiH, (x; t) := Hyje,—¢;(x; t)
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Example.  Let = (u1,..., ) be a partition.
e Empty root set: H7(x;t) = s,(x).
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Special cases

Example.  Let = (p1,..., ) be a partition.
o Empty root set: HS(x; t) = s,(x).

o Full root set: HA"(x; t) = Hy,(x; t), the modified Hall-Littlewood
polynomial.

At . _
Hi30001(X; t) = Has2021.
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Def. For p a k-bounded partition of length < ¢, define the root ideal
A(u) = {(i)) € AT [ k—pi+i < j},

and the k - Schur Catalan function

band(A* (1), 1) is a decreasing sequence

whose first £(A*(p)) entries are all k
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— charge =4
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From SSYT to SMT

shape = 541
1 1 1 1 3 ‘
2234 weight = 4222
4
— charge =4

Fix a positive integer k = 4,
outside= 33332, inside = 3222

14[34[ 5]
212 |2x
2[3 5% word = 34121
4x
315 spin = 4
We write SMTX(w ;1) = set of strong tableaux T marked by w with

outside(T) = pu.
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up, U, -+ € EndZ[t](Ak) are defined by their action on the basis

(K)

{51} epare as follows:

sﬁlk) “Up = Z tspin(T)si(:s)ide(T) :
TeSMT*(p;u)

Given a word w = wy - - - Wy, We Write Uy = Uy, « - - Uy,.
Powerful tool: It is the same as:

For any p € Parf and p € [4],

) up = H(A (1) o — €p)-
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Strong Pieri Operators

For any p € Parf and p € [4],

) up = H(A () p — €p)-

Example.

3 3
3 2
clUp =

2 2

1 1

(4)
53301 " U2



Strong Pieri Operators

For any p € Parf and p € [4],

) up = H(A () p — €p)-

Example.

3 2 2 3
-u2: pr— +t

2 2 2 2

1 1 1 0

(4) _ ¥ (4)
S33p1 * U2 = 3351 1 153350



Properties of k-Schur functions

Theorem (Blasiak-Morse-P.-Summers)

The k-Schur functions {55Lk) | u is k-bounded of length < ¢} satisfy
(vertical dual Pieri rule) ejs,(j‘) = 5,8“ : < Z Ujp + -+ u;d> )
(shift invariance) 55}‘) = efs(< )

74 H+1Z )

(Schur function stability)  if

(k) —
m

= Su-

o e € End(A) is defined by (e (g), h) = (g, eqh) for all g, h € A.

e u; = operator for removing a strong cover marked in row i.



k-Schur branching rule

Theorem (Blasiak-Morse-P.-Summers)
For v a k-bounded partition of length < £, the expansion of the k-Schur
(k)

function s,/ into k + 1-Schur functions is given by

5&") — sty = Z ¢sPin(T) g (k1)

pu+1t ug:--- inside(T) *
TESMTK1(L.-21; u+1%)




k-Schur branching rule

Theorem (Blasiak-Morse-P.-Summers)

For v a k-bounded partition of length < £, the expansion of the k-Schur
(k)

function s,/ into k + 1-Schur functions is given by

sflk) = 55(:1:? Ug---up = Z tspin(T)si(:SJi:ile)( )"

TESMTK1(L.-21; u+1%)

Proof.

The shift invariance property followed by the vertical dual Pieri rule yields

1 (k+1)  (k+1)

(k) —
5# = €& 5#+1£ —5”+1Z up uj. L]




k-Schur branching rule

3 4 4 4 4
522)221 = t35§3)21 + t25g2)22 + t25g3)111 + 522)221
1+]3]5] 1+[3]5] 1+[3]3]5] 1«[3]3]5]
2x| 4 212|2x| 4 2x| 4 2 [2x| 4
1|35 2 |3x| 5 3[3x|5 313%| 5
2 |4% Ax 2 4% 4%
3 |5% 3 |5% 5% 5x

SMT*(54321; 33332)



k-Schur branching rule

3 4 4 4 4
522)221 = t35§3)21 + t25g2)22 + t25g3)111 + 522)221
1+]3]5] 1+[3]5] 1+[3]3]5] 1«[3]3]5]
2x| 4 212|2x| 4 2x| 4 2 [2x| 4
1|35 2 |3x| 5 3[3x|5 313%| 5
2 |4% Ax 4x 4%
3 |5% 3 |5% 5% 5x

SMT*(54321; 33332)

1«[3]5] (T T] [ ]

2x| 4

N

4%

3 |5+

spin(T)=0+1+14+0+0=2 inside(T)=3222 outside(T) = 33332



k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)
Let pu be a k-bounded partition of length < ¢ and set m = max(|u| — k,0).

The Schur expansion the k-Schur function ELk) is given by

55Lk) = Z tspin(T)Sinside( )
TeSMTKM((£--1)m; p+-mt)




k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)
Let yu be a k-bounded partition of length < ¢ and set m = max(|u| — k, 0).

The Schur expansion the k-Schur function 5&“ is given by

5§Lk) = Z tspin( T)Sinside( T):
TESMTKm((£-1)™; pt+mt)

Proof.

Applying the shift invariance property m times followed by the vertical
dual Pieri rule, we obtain

5§Lk) = (ej‘)mﬁ(k+m) = 5(k+m)(u,e 90 Ul)m = Z tspin(T)sinside(T)'

ptmt T Tpdmt
TESMT+m((£--1)m; p+m¥)

The Schur function stability property ensures this is the Schur function
decomposition. O

V.
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Theorem (Blasiak-Morse-P.-Summers)
Let u be a k-bounded partition of length < ¢ and set m = max(|u| — k,0).

The Schur expansion the k-Schur function 5,(}() is given by

55Lk) = Z tspin(T)Sinside( T)-
TeSMTm((¢---1)m; u+-mt)

Example. k=1, =111,



k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)
Let u be a k-bounded partition of length < ¢ and set m = max(|u| — k,0).

The Schur expansion the k-Schur function 5,(}() is given by

55Lk) = Z tspin(T)Sinside( T)-
TeSMTm((¢---1)m; u+-mt)

Example. k=1, 4=111,/=3, m=3—-1=2.



k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)
Let u be a k-bounded partition of length < ¢ and set m = max(|u| — k,0).

The Schur expansion the k-Schur function 5,(}() is given by

5&“ = Z tspin(T)Sinside( T)-
TESMTKm((£-1)™; pt+mt)

Example. k=1, 4=111,/=3, m=3—-1=2.

SMT (- 1)™ u+ m*) = SMT3((321) 111 + 2%)



k-Schur into Schur

Theorem (Blasiak-Morse-P.-Summers)
Let u be a k-bounded partition of length < ¢ and set m = max(|u| — k,0).

The Schur expansion the k-Schur function 5,(}() is given by

5&“ = Z tspin(T)Sinside( T)-
TESMTKm((£-1)™; pt+mt)

Example. k=1, 4=111,/=3, m=3—-1=2.



Schur expansion of s

W = Hin

1x[2]4]4x[5]6]
12«4 ]4[54] 6
3%| 5 |6%
1[1x] 2[4 [4x]5]6]
2x[ 4] 4[54] 6
34[ 5 [6%
1x]3]4x[5[5]5]6]
2x[ 5|5 |5« 6
1|3x|6%
1[1[3]a«[5]5]5]6]
2%| 5|5 (5% 6
3x|6%
1 _
S =

t3 S3

t2 So1

t so1

S111

t3S3 + t2521 + tso1 + S111

(1)

The Schur expansion of the 1-Schur function 51111 is obtained by summing
tSPi”(T)sinSide(T) over the set SMT3(321321; 333) of strong tableaux T

above.
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Unifying the definitions of k-Schur functions

° s;(f()(x; t) defined as a sum of monomials over strong tableaux. Equivalent to
the symmetric functions satisfying the dual Pieri rule.

° Aff)(x; t) defined recursively using Jing vertex operators.
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Unifying the definitions of k-Schur functions

° s;(f()(x; t) defined as a sum of monomials over strong tableaux. Equivalent to
the symmetric functions satisfying the dual Pieri rule.

° Aﬂ()(x; t) defined recursively using Jing vertex operators.

e = 60 = A

(=]



Unifying the definitions of k-Schur functions

° sﬁk)(x; t) defined as a sum of monomials over strong tableaux. Equivalent to

the symmetric functions satisfying the dual Pieri rule.

o Aﬂ()(x; t) defined recursively using Jing vertex operators.

Combining our results with those of Lam and Lam-Lapointe-Morse-Shimozono:



Unifying the definitions of k-Schur functions

° sp(bk)(x; t) defined as a sum of monomials over strong tableaux. Equivalent to
the symmetric functions satisfying the dual Pieri rule.

° /Z\ﬁtk)(x; t) defined recursively using Jing vertex operators.

Combining our results with those of Lam and Lam-Lapointe-Morse-Shimozono:

Theorem
The k-Schur functions defined from Jing vertex operators, k-Schur Catalan
functions, and strong tableau k-Schur functions coincide:

k)(x t) = 5(")( t) = s/(f)(x; t) for all k-bounded .
Moreover, their t = 1 specializations {sﬁk)(x; 1)} match a definition using weak

tableaux, and represent Schubert classes in the homology of the affine
Grassmannian Grg of G = SL; ;.




k-Schur positivity of Catalan Functions
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If (W, 1) is an indexed root ideal with band(V, u); < k for all i, then
H(W; i) € Ak
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k-Schur positivity of Catalan Functions

Conjecture (Blasiak-Morse-P.-Summers)

If (W, 1) is an indexed root ideal with j € Park and band(W, 11); < k for
all i, then the Catalan function H(V; 1) is k-Schur positive.




k-Schur positivity of Catalan Functions

Conjecture (Blasiak-Morse-P.-Summers)

If (W, 1) is an indexed root ideal with j € Park and band(W, 11); < k for
all i, then the Catalan function H(WV; p) is k-Schur positive.

Example.

This Catalan function is 6-Schur positive.

= W s~ OO




k-Schur positivity of Catalan Functions

Conjecture (Blasiak-Morse-P.-Summers)

If (W, 1) is an indexed root ideal with j € Park and band(W, 11); < k for
all i, then the Catalan function H(WV; p) is k-Schur positive.

Example.

This Catalan function is 6-Schur positive.

= W s~ OO

Conjecture (Chen-Haiman)

The Catalan function HL" is Schur positive for any root ideal W and
partition L.
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Special cases

Let u € Park.
o W =A"T: HV,; u)(x; t) is the modified Hall Littlewood polynomial,
proving g = 0 of the strengthened Macdonald positivity conjecture;
e product of a schur and a k-schur (and also its generalization) when
the indexing partition concatenate to a partition;

This proves the k-split polynomials G/sk) are k-schur positive and

k (K
{53 e = (A e
e proving a substantial special case of a problem of Broer and
Shimozono Weyman on parabolic Hall Littlewood polynomials.
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Strengthened Macdonald positivity

e /7y = superstandard tableau of shape 6.

e colword(T) is the word obtained by concatenating the columns of T,
reading each from bottom to top, starting with the leftmost.

Example. k =3, p = 2211.

1
Z(3333)/(2211) = 3 § and COlWOl“d(Z(3333)/(2211)) = 434321.
44




Strengthened Macdonald positivity

e /7y = superstandard tableau of shape 6.

e colword(T) is the word obtained by concatenating the columns of T,
reading each from bottom to top, starting with the leftmost.

Theorem (Blasiak-Morse-P.-Summers)
Let p be a k-bounded partition of length < {. Set w = colword(Z,,,).

k i k
HH = 55(2) sUw = Z t*° n(T)si(ns)ide(T) :
TeSMTH(w ; k)

Example. k =3, p = 2211.

1
Z(3333)/(2211) = 3 § and COlWOl"d(Z(3333)/(2211)) = 434321.
44




Strengthened Macdonald positivity

e /7y = superstandard tableau of shape 6.

e colword(T) is the word obtained by concatenating the columns of T,
reading each from bottom to top, starting with the leftmost.

Theorem (Blasiak-Morse-P.-Summers)
Let p be a k-bounded partition of length < {. Set w = colword(Z,,,).

k : k
H, = siz) CUw = Z P n(7—)5|(ns)|de( T)"
TeSMTH(w ; k)

Example. k =3, p = 2211.

Z(3333)/(2211) = and COlWOl"d(Z(3333)/(2211)) = 434321.

1
2
3|3
4

3 B spm(T) (3)
Hoo11 = S3333 * UgUzlgUzlaly = Z 5msnde(T)

SMT3(434321;3333)



The 3-Schur expansion of Hy1q

L E[AE]6] spin
12x[3]4]5]6]
1[2[3+[4]5+]6 4
4x| 5 |6%
[ 114]2[3]4]5]6]
1 1[24[3]4]5]6 3
23] 4 [54[ 6
44] 5 [6+]
[ T Jt+[2]3]5 5 5]6]
12435 5 5]6]
355 5 54 6] 2
1 [4x[6]
[ T J11«]2]3]5 5 5]6] [ Jis[2 2 2]3]4]5]6]
1 1[2+[3]5 5 5[6] 2 2 2+|3[4]5]6] 1
35]5 5 54/ 6] 3x[ 454 6]
4[64] 45 [64]
[1 1 14]2]3]5 5 5[6]
[2«[3]5 5 5]6]
345 5 54/ 6] 0
4x]6%]
— 4.0, .3.3 , 2.0 3) 3) ®3)
Hoo11 = 17533 + 175357 + 175357 + 83135 + 15500 + 55011



The 3-Schur expansion of H»)11

spin
]S P
1]2+[3]4]5]6]
1[2[3«[4]54] 6 4
4| 5 |6%
inside = 321 3
spin =14+140+40+1+0
[ T Ji+[2]3]5 5 5]6]
124[3]5 5 5]6] 2
34]5 5 54 6]
1 [4x]6%]
[ T Jr142]3]5 5 5[6] [ Jt«[2 2 2]3]4]5]6]
1 1[243]5 5 5]6] 2 2 2«[3[4]5]6] 1
3+]5 5 54/ 6] 3+] 4[5+ 6
4*6*[ 4*56*[
[1 1 14]2]3]5 5 5[6]
[2«[3]5 5 5]6] 0
345 5 54/ 6]
4*6*[

3 3 3 3 3 3
Haop = t* 5&3) +t° 5gz)l + 2 5gz)l + tﬁgl)ll + tﬁgz)z +5gz)11'
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e SSYTy(r) = semistandard Young tableaux of shape 6 with entries
from {1,...,r}.

e B, = Shimozono-Zabrocki generalized Hall-Littlewood vertex
operator, which is multiplication by s, at t = 1.

Theorem (Blasiak-Morse-P.-Summers)

Let v be a partition of length r with y1 < k — r+ 1, and v a partition
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k
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TESSYTr),(r)




Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let i be a partition of length r with u1 < k — r+ 1, and v a partition
such that uv is a partition. Set R = (k —r+1)". Then

k
B,u 55/“ = Z 5%’3 " Ucolword(T) -
TESSYTr,(r)




Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let i be a partition of length r with 1 < k —r 4+ 1, and v a partition
such that v is a partition. Set R = (k —r +1)". Then

k
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TE€SSYTgr/,(r)

Example. Let k=6, r =3, p =432, v =22. Then R = 444.



Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let i be a partition of length r with 1 < k —r 4+ 1, and v a partition
such that v is a partition. Set R = (k —r +1)". Then

BM 51(/k) = Z 5%(,,) : ucolword( T)-
TE€SSYTgr/,(r)

Example. Let k=6, r =3, p =432, v =22. Then R = 444.

SSYTR/M(r):{ A 0 EF O G EO 7}.

[1]2] [1]3] [1]3] [2

N
N
w
N
w
w

w
w
w




Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let i be a partition of length r with 1 < k —r 4+ 1, and v a partition
such that v is a partition. Set R = (k —r +1)". Then

BM 51(/k) = Z 5%(,,) " Ucolword(T) -
TE€SSYTgr/,(r)

Example. Let k=6, r =3, p =432, v =22. Then R = 444.

-

SSYTR/H(r):{ T T = A [ O[O 7}.
3

[1]2] [2]3] [1]3] [2]2] [2]3] [2]3] [3]3] [3

k
B, 5,(,k) = 5%,,) : (U121 + U131 + U132 + U221 + U231 + U232 + U331 + U332)-



Schur times k-Schur into k-Schur

Theorem (Blasiak-Morse-P.-Summers)

Let i be a partition of length r with 1 < k —r 4+ 1, and v a partition
such that v is a partition. Set R = (k —r +1)". Then

BM 51(/k) = Z 5%(,,) : ucolword( T)-
TE€SSYTgr/,(r)

Example. Let k=6, r =3, p =432, v =22. Then R = 444.

-
—
N
=
=
)
=
N

simor-{ d d o o o ol )

[1 [1]3] [1]3] [2 [2]3] [2 [3]3] [3]3

N
N
w

6 6
B3> Egg) = 5514)4122 : (U121 + U131 + U132 + U221 + U231 + U232 + U331 + U332)-



Schur times k-Schur into k-Schur

Example. 6-Schur expansion of a t-analog of s435 $po.

B, 25( ) — 50 (U121 4 U131 + U132 + U221 + U231 + U3 + U331 + 332).

22 = 544422
1x 1x
2% 3% 3% 1 [1x|3% 1x|3%
2% 2% 2%
1 1
2|3 3 3 13
1 1|11
2% | 3% 2% | 3%
1

2,.(6) 2,.(6) 1,.(6) 1.(6) -(6)

(6) _ ,3.(6)
Bus2 5y = tS4ap1 + [ Saus11 + E 84450 + T 843501 + T 500001 + S45m00-



Schur times k-Schur into k-Schur

Example. 6-Schur expansion of a t-analog of s432 spo.

6 k
Bs32 s§2) = 5‘(;42122 : (U121 + U131 + U132 + U221 + U231 + U232 + U331 + U332)-

inside = 44311
spin=1+0+4+1=2

6 3.(6 2 _(6) 2 _(6) 1.(6) 1.(6) (6)
Bas2 5&2) =t 5514)41 T 1754311 T U S4430 T £ 543301 + 544901 T S43000-
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shifting the rows of p as little as possible so that all hook lengths are < k.

Example. k = 4:
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Def. A k-bounded partition is a partition with parts of size < k.

Def. The k-skew diagram of a k-bounded partition y is obtained by
shifting the rows of p as little as possible so that all hook lengths are < k.

Example. k = 4:
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k-skew diagrams

Def. A k-bounded partition is a partition with parts of size < k.

Def. The k-skew diagram of a k-bounded partition y is obtained by
shifting the rows of p as little as possible so that all hook lengths are < k.

Example. k = 4:
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k-skew diagrams

Def. A k-bounded partition is a partition with parts of size < k.

Def. The k-skew diagram of a k-bounded partition y is obtained by
shifting the rows of p as little as possible so that all hook lengths are < k.

Example. k = 4:

\ 413[2]1
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k-skew diagrams

Def. A k-bounded partition is a partition with parts of size < k.

Def. The k-skew diagram of a k-bounded partition y is obtained by
shifting the rows of p as little as possible so that all hook lengths are < k.

Example. k = 4:

|

,u  k-skew(p)

Boxes labeled by hook lengths.
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Def. p(u) denotes the outer shape of k-skew(u).

Example. k = 4:
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Def. p(u) denotes the outer shape of k-skew(u).

Def. A k + 1-core is a partition whose diagram has no box with hook
length k 4 1.

Example. k = 4:

1209]7]6]4]3]2]1]

=IN|PAN
=

—
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Def. p(u) denotes the outer shape of k-skew(pu).

Def. A k + 1-core is a partition whose diagram has no box with hook
length k + 1.

Example. k = 4:

12]9[7]6]4]3]2]1]

=IN(PAN
=

—
’I—‘L».)-bO'\&O_,>

I p(p)

Proposition. The map p +— p(u) defines a bijection from k-bounded
partitions to k + 1-cores.
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Def. An inclusion 7 C k of k 4 1-cores is a strong cover, denoted T = K,
if [p~1(7)| + 1= [p~(x)].

Example.
Strong cover with k = 4: corresponding k-skew diagrams:
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Strong covers

Def. An inclusion 7 C k of k 4 1-cores is a strong cover, denoted T = K,
if [p~1(7)| + 1= [p~(x)].

Example.
Strong cover with k = 4: corresponding k-skew diagrams:




Strong marked covers

Def. A strong marked cover T == & is a strong cover T = K together
with a positive integer r which is allowed to be the smallest row index of

any connected component of the skew shape x/7.

Example. The two possible markings of the previous strong cover:

o (@K




Def.
© spin(r == k) =c-(h—1)+ N, where
e ¢ = number of connected components of x/T,

e h = height (number of rows) of each component,
e /\/ = number of components below the marked one.



Def.
© spin(r == k) =c-(h—1)+ N, where
e ¢ = number of connected components of x/T,

e h = height (number of rows) of each component,
e /\/ = number of components below the marked one.

Example.

L AN J LEL 2
L] L]
L] L]

LEL 2 LN J

L] L]

6 3
T — K T — K
spin =4 spin =5

spin=c-(h—-1)+ N=2-3-1)4+0=4 spin=2-(3-1)+1=5



Strong marked tableaux

Def. For a word w = wy --- wy, € ZZ,, a strong tableau marked by w is a
sequence of strong marked covers of the form
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o inside(T) := p~ (k)
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Strong marked tableaux

Def. For a word w = wy --- wy, € ZZ,, a strong tableau marked by w is a
sequence of strong marked covers of the form

0) _Wn (1) _Wmt, o _w(m)

/1(

/{(

o inside(T) := p~ (k)
o outside(T) := p~ (k™)

Example. For k = 4, a strong marked tableau marked by 34121:
[ [ [

K@ =L k) spin=1(1-1)+0=0




Strong marked tableaux

Def. For a word w = wy --- wy, € ZZ,, a strong tableau marked by w is a
sequence of strong marked covers of the form

R0 W (1) WmL ()

o inside(T) := p~ (k)
o outside(T) := p~ (k™)

Example. For k = 4, a strong marked tableau marked by 34121:

|
2 kW =25 k@) spin=1(2-1)+0=1




Strong marked tableaux

Def. For a word w = wy --- wy, € ZZ,, a strong tableau marked by w is a
sequence of strong marked covers of the form

0) _Wn (1) _Wmt, o _w(m)

/1(

/{(

o inside(T) := p~ (k)
o outside(T) := p~ (k™)

Example. For k = 4, a strong marked tableau marked by 34121:

[3+]

- K@ =L kO spin=3(1-1)+2=2




Strong marked tableaux

Def. For a word w = wy --- wy, € ZZ,, a strong tableau marked by w is a
sequence of strong marked covers of the form

0) _Wn (1) _Wmt, o _w(m)

/1(

/{(

o inside(T) := p~ (k)
o outside(T) := p~ (k™)

Example. For k = 4, a strong marked tableau marked by 34121:
|

K3 =% k@ spin=2(1—-1)+0=0

4x




Strong marked tableaux

Def. For a word w = wy --- wy, € ZZ,, a strong tableau marked by w is a
sequence of strong marked covers of the form

0) _Wn (1) _Wmt, o _w(m)

/1(

/{(

o inside(T) := p~ (k)
o outside(T) := p~ (k™)

Example. For k = 4, a strong marked tableau marked by 34121:
[5]
5x k) = (06, spin=3(1-1)+1=1




Strong marked tableaux

Def. For a word w = wy --- wy, € ZZ,, a strong tableau marked by w is a
sequence of strong marked covers of the form

R0 W (1) WmL ()

o inside(T) := p~ (k)
o outside(T) := p~ (k™)

Example. For k = 4, a strong marked tableau marked by 34121:

1+[3+] 5]
21212« 4
T= 2|35« , spin(T)=14+0+2+1+0=4

4x




Spin k-Schur functions

e We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, ... ).



Spin k-Schur functions

e We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, ... ).

o SMTK(w;u) = set of strong tableaux T marked by w with
outside(T) = pu.



Spin k-Schur functions

e We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, ... ).

o SMTK(w;u) = set of strong tableaux T marked by w with
outside(T) = pu.

e spin(T) = sum of the spins of the strong marked covers comprising T.



Spin k-Schur functions

e We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, ... ).

o SMTK(w;u) = set of strong tableaux T marked by w with
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Spin k-Schur functions

e We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, ... ).

o SMTK(w;u) = set of strong tableaux T marked by w with
outside(T) = pu.

e spin(T) = sum of the spins of the strong marked covers comprising T.
Def. For a k-bounded partition p, let
Sﬁ(](k)(x; t) — Z Z Z tSpin(T)X,'l P Xid .
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Spin k-Schur functions

e We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, ... ).

o SMTK(w;u) = set of strong tableaux T marked by w with
outside(T) = pu.

e spin(T) = sum of the spins of the strong marked covers comprising T.

Def. For a k-bounded partition p, let

K) (v +) in(T
SOt = > > > g,
1<ip <<y WEZ‘;l TESMTk(W;M)
=l = wi<win
Their t = 1 specializations

e agree with another combinatorial definition using weak tableaux
(Lam-Lapointe-Morse-Shimozono 2010),



Spin k-Schur functions

e We work in the ring of symmetric functions in infinitely many
variables x = (x1, x2, ... ).

o SMTK(w;u) = set of strong tableaux T marked by w with
outside(T) = pu.

e spin(T) = sum of the spins of the strong marked covers comprising T.

Def. For a k-bounded partition p, let

VUCTI SENEED SR DR

1<ip <<y WEZ‘;l TESMTk(W;M)
=l = wi<win
Their t = 1 specializations

e agree with another combinatorial definition using weak tableaux
(Lam-Lapointe-Morse-Shimozono 2010),

e are Schubert classes in the homology of the affine Grassmannian
Grsg,,, of SLxy1 (Lam 2008).
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Spin k-Schur functions

Example. k=3, p = 311:
There are 10 strong marked standard tableaux T whose 4-core is 411 with
outside(T) = 311:

1x[2+] 4 x| [1x]24[4[5x] [1x[3+] 4 [5x] [1s[3s]4]ax] [1x[2x[35]4] [1+] 4 [ax[54]
3_* 3_* 2% 2% 4x 2% spin =0

o [ o & & &

w = 31211 w = 13211 w = 13121 w = 31121 w = 32111 w = 11321

wt =221 wt =212 wt =122 wt =131 wt =311 wt =113

Lx[2x[3x[dx] [1x]2x[3x[5%] [1x[2x[ax[5x] [1x][3x[4x[5+]
45 3% 2% spin =1

w = 31111 w = 12111 w = 11211 w = 11121
wt = 41 wt = 32 wt = 23 wt = 14



Spin k-Schur functions

Example. k=3, p = 311:
There are 10 strong marked standard tableaux T whose 4-core is 411 with
outside(T) = 311:

1x[2+] 4 x| [1x]24[4[5x] [1x[3+] 4 [5x] [1s[3s]4]ax] [1x[2x[35]4] [1+] 4 [ax[54]
3_* 3_* 2% 2% 4x 2% spin =0

o [ o & & &8

w = 31211 w = 13211 w = 13121 w = 31121 w = 32111 w = 11321

wt =221 wt =212 wt =122 wt =131 wt =311 wt =113

Lx[2x[3x[dx] [1x]2x[3x[5%] [1x[2x[ax[5x] [1x][3x[4x[5+]
45 3% 2% spin =1

w = 31111 w = 12111 w = 11211 w = 11121
wt = 41 wt = 32 wt = 23 wt = 14
SS)?[ = tmygy + tmzy + (1 + 21’)”’7311 + (1 + 2t)m221 + (3 + 3t)m2111 + (6 + 4t)m11111.
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