
A summary of the open problem sessions of Jan 24, 2019

last update: February 13, 2019

At the end of the BIRS workshop Representation Theory Connections to (q,t)-Combinatorics
(19w5131) we reserved two hours for an open problem session. This document serves as a
rough written summary of the problems presented by the participants. The video of the
two hour periods is available here:
first hour
second hour
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A q analogue of a probability

François Bergeron

Problem 1:

A theorem of R.Patrias and V.Reiner, together with F.B., roughly states that: The

probability that a monomial positive symmetric function is actually Schur positive is

1Q
µ`n

P
�`nK�µ

.

This is a very precise formula which gives an idea why Schur positivity is a very rare

phenomenon. Similarly, the probability that a Schur positive symmetric function is e-
positive (or h-positive), is

1Q
�`n

P
µ`nK�µ

.

Observe here that we exchange the role of � and µ.

Question: (this is slightly vague, but the aim is to try to make this more precise)

“Consider the q-analogue of these formulae obtained by replacing the Kostka numbers by

the q-Kostka polynomials (or even (q, t)), can we give a natural interpretation of this as a

probability of some sort?”

See reference: arXiv:1810.11038

The probability of positivity in symmetric and quasisymmetric functions

Authors: Rebecca Patrias, Stephanie van Willigenburg

1

https://arxiv.org/abs/1810.11038
https://arxiv.org/search/math?searchtype=author&query=Patrias%2C+R
https://arxiv.org/search/math?searchtype=author&query=van+Willigenburg%2C+S


Positivity of matrices of symmetric functions

Lauren Williams

Is there an analogy between matrices being totally positive and Schur positivity?
A square matrix is said to be totally positive if each sub-matrix has a positive deter-

minant.
Given a matrix M = (mij) entries are symmetric polynomials. M is totally Schur

positive if each square sub-matrix has Schur positive determinant.
An example of this are the Jacobi-Trudi matrices, but are there others?
The paper by Fomin-Zelevinsky “Total positivity: tests and parametrizations”

https://arxiv.org/abs/math/9912128

is a notable reference for this question. They address various questions there (how to
parametrize the set of all totally positive matrices, and how to find ”total positivity tests”
– collections of minors whose positivity implies the positivity of ALL minors), and so I
wonder if the same questions might have nice answers in this Schur-positivity setting.
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Problem discussed at BIRS, January 2019.

H.R.Morton

In 1986 Pawel Traczyk and I developed skein-based models for the Hecke
algebra Hn and the Birman-Wenzl algebra (which specialises to the Brauer
algebra), [1].

For the Hecke algebra Hn we used linear combinations of oriented n-tangles
in D2

×I, subject to suitable local skein relations, and showed that these defined
an algebra MTn which satisfied the relations of the algebra Hn. To show that
MTn was isomorphic to Hn we proved that the n! elements corresponding to a
known basis of Hn were linearly independent in MTn.

The key argument for this involved a simple geometric construction of a
skein-based inner product on MTn, and a quick proof, based on properties of
the Homfly polynomial, that this was non-degenerate, and could be used to
confirm the independence of the n! elements in MTn.

With this in mind I would like to construct something similar for the skein
model Hn(T 2, ∗) of the DAHA Ḧn which I described in my lecture. A potential
route is to make a sort of inner product by putting two copies of the thickened
torus T 2

× I together to form a 3-manifold S1
× S1

× S1. Regard the resulting
linear combinations of curves in this as the setting where the inner product
will take values, and show that the inner product is suitably non-trivial on the
images of the known Poincaré-Birkhoff-Witt basis for Ḧn.

The difficulties here are firstly that the PBW basis is no longer finite, and
secondly that the exact form of combinations of curves in the closed 3-manifold
needs to be handled with care to be sure that they don’t all turn out to represent
0.

The hope is that this, or maybe some other simply constructed map on the
skein model, will ensure that Hn(T 2, ∗) is isomorphic to the algebra Ḧn, and
not just a homomorphic image of it.
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Involutive a�ne Stanley symmetric functions

Brendan Pawlowski

Start with the Stanley symmetric function for a permutation w 2 Sn and let R(w)
represent the set of reduced words for w. The Stanley symmetric function is

Fw =
X

a2R(w)

QAsc(a) (1)

=
X

w=w1·····wp

x`(w
1)

1 · · ·x`(wp)
p (2)

where Q↵ is the Gessel fundamental quasisymmetric function and w1 · · · · · · · wp runs over
length-additive factorizations of w where each wi has a decreasing reduced word. This
thing is not only symmetric [10], but it is also Schur positive [1].

Can do the a�ne version for w 2 S̃n, F̃w =
P

w=w1·····wp x
`(w1)
1 · · ·x`(w

p)
p where each wi

has a cyclically decreasing reduced word, i.e. a word on Z/nZ with no repeated letters
in which i + 1 never follows i.The result is symmetric, but is not Schur positive, but it is
a�ne Schur positive [7]. One can define a�ne Schur functions as the symmetric functions
F̃w for w 2 S̃n with at most one descent, in parallel with the fact that every Schur function
occurs as Fw for some w 2 Sn with at most one descent [10].

The next definition works for any Coxeter group. Take any z 2 W that is an involution.
There is a 0-Hecke product,

w � s =
(
ws if `(ws) > `(w)

w else
.

Say sa1 , sa2 , . . . , sa` is an involution word for z if z = sa` � · · · � sa2 � sa1 � sa2 � · · · � sa`
E.g. (13) = s1s2s1 = s2s1s2 so (s1, s2) and (s2, s1) are involution words.
Define R̂(z) as the set of involution words for z. These words were introduced by

Richardson and Springer to study orbits of the orthogonal group on the complete flag
variety [9]. They index maximal chains in a partial order on involutions studied by Hultman
[6] and others [4, 5, 2]. Richardson and Springer showed that R̂(z) is closed under the
Coxeter relations of W , so there exists a set A(z) ✓ W with R̂(z) =

F
w2A(z)R(w).

Then define by putting a hat on first equation: F̂z =
P

a2R̂(z)QAsc(a) =
P

w2A(z) Fw.
it is a sum of Stanley symmetric functions so it is symmetric and Schur positive. It is also

1



Schur P -positive [3]. The open problem is to do the same thing for the a�ne setting. Now

for z 2 S̃n there is a definition for an a�ne ˜̂F z =
P

w2A(z) F̃w that is known to be a�ne
Schur positive, but what else can be said about it? The positivity properties of Fw and
F̂z can be deduced (1) algebraically, by appropriate “transition recurrences”; (2) combina-
torially, by insertion algorithms; (3) geometrically, by realizing them as representatives of

certain cohomology classes. There are transition recurrences for ˜̂F z [8], but they do not
terminate in any obvious way, and perspectives (2) and (3) are missing.
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Question for Ban↵ Conference 19w5131

Peter Samuelson

The elliptic Hall algebra Eq,t is an algebra over C(q, t) which was defined by Burban and
Schi↵mann as a “universal Hall algebra of elliptic curves over finite fields.” It is generated by
elements um,n with m,n 2 Z, modulo certain commutator relations. In particular, um,n and um0,n0

commute if (m,n) and (m0, n0) are collinear in Z2. The um,n are PBW generators, of Eq,t, in the
sense that picking a total order on Z2 gives a basis of Eq,t indexed by ordered words in the um,n.

There is a central extension Êq,t which is generated by um,n and additional central elements
m,n with m,n 2 Z. In this extension, generators on a line in Z2 generate a Heisenberg algebra
instead of a commutative algebra, with relations of the form [ux, u�x] = cxx, where x 2 Z2 and
cx 2 C(q, t). For later, we remark that if E+

q,t and Ê+
q,t are defined to be the subalgebras generated

by {um,n | m > 0 or (m = 0 and n � 0}, then E+
q,t is isomorphic to Ê+

q,t.
Theorem: [Schi↵mann-Vasserot, also independently proved by others in a di↵erent language] The
central extension Êq,t acts on Sym.

These operators are very interesting combinatorially, and there is a long story which we can’t
tell here, but instead recommend the article by Bergeron below, and references therein.
Theorem: [Morton-Samuelson] Eq,t=q is isomorphic the Homflypt skein algebra Skq(T 2).

The skein algebra acts naturally on the skein module of any 3-manifold with torus boundary.
In particular, Skq(T 2) acts on Skq(annulus ⇥ [0, 1]) ' Sym ⌦ Sym. The “positive subalgebra”
Skq(T 2)+ acts on the subspace Sym ⌦ 1, and so does E+

q,t by the remark above the previous
theorem.
Theorem [Morton, Samuelson] The action of Sk+

q (T
2) on Sym is the t = q specialization of the

E+
q,t=q action on Sym.

Question: Does the action of Eq,t=q on Sym⌦ Sym extend to generic t?.
The “vertical subalgebra” (generated by the u0,n) acts on Sym (essentially) by Macdonald

operators, which are diagonalized by Macdonald polynomials. The module Sym ⌦ Sym has a
basis s�,µ of “double Schur functions,” and this diagonalizes the “vertical subalgebra” of the skein
algebra. A positive answer to this question would (presumably) lead to “double” Macdonald
polynomials, which would be indexed by pairs of Young diagrams, so a followup question is “how
much of Macdonald theory carries through to double Macdonald polynomials”?
Some references:
“The Homflypt skein algebra of the torus and the elliptic Hall algebra” [Morton, Samuelson]
“On the Hall algebra of an elliptic curve” [Burban, Schi↵mann]
“The elliptic Hall algebra and the K-theory of the Hilbert scheme of A2” [Schi↵mann, Vasserot]
“Open Questions for Operators Related to Rectangular Catalan Combinatorics” [by F. Bergeron]
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Some conjectures in Science Fiction

Marino Romero

Denote the cells of a partition by their coordinates (i, j) 2 µ as follows: for the partition
(3, 1) we have

(0, 0) (0, 1) (0, 2)

(1, 0)

Define the alternant
�µ[Xn;Yn] = det ||xjryir|| (i,j)2µ

r=1,...,n
.

For instance,

�(3,1) = det

2

664

1 1 1 1
y1 y2 y3 y4

y
2
1 y

2
2 y

2
3 y

2
4

x1 x2 x3 x4

3

775 .

And define Mµ as the linear span of all the derivatives of �µ:

Mµ = {P (@Xn , @Yn)�µ : P 2 Q[Xn, Yn]} .

The n!-Conjecture states that the dimension ofMµ is n!, and as a consequence, the modified
Macdonald polynomials are the bigraded Frobenius image of an Sn module:

Frobqt(Mµ) = eHµ[X; q, t].

This is now a theorem due to Mark Haiman. The conjectured Frobenius characteristic of
Diagonal Harmonics led François Bergeron to the operator r, which was introduced by
François Bergeron and Adriano Garsia in Science Fiction:
F. Bergeron and A. M. Garsia. “Science Fiction and Macdonald’s Polynomials”. In:
arXiv:9809128 (1998).
This operator is defined by its diagonal action on the modified Macdonald basis:

r eHµ = Tµ
eHµ with Tµ

Y

(i,j)2µ

q
i
t
j
.
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We will write ↵ ! µ if the partition µ can be attained from ↵ by adding a single cell.
For example, (2, 1) ! (3, 1). One approach to the n! conjecture from Adriano Garsia was
to prove the n!/2-Conjecture. Let ↵,� ! µ, then

Conjecture 1.

dim(M↵

^
M�) = n!/2

Science Fiction conjectures the following formula for the Frobenius image of the inter-
section:

Conjecture 2.

Frobqt
⇣
M↵

^
M�

⌘
=

T�H̃↵ � T↵H̃�

T� � T↵
=

✓
1

1� T↵/T�

◆
eH↵+

✓
1

1� T�/T↵

◆
eH�

.
There are similar formulae for the intersection of k predecessors of the partition µ. And

there is the n!/k-Conjecture. These can be stated as follows:

Conjecture 3. For ↵
1
, . . . ,↵

k ! µ,

dim
⇣
M↵1

^
· · ·

^
M↵k

⌘
= n!/k

and

Frobqt
⇣
M↵1

^
· · ·

^
M↵k

⌘
=

kX

i=1

0

@
Y

j 6=i

1

1� T↵i/T↵j

1

A eH↵i .

An interesting operator to consider here is the “flip” with respect to ↵, which is the
nonsingular transformation sending f(Xn, Yn) 2 M↵ to

flip↵(f) = f(@Xn , @Yn)�↵(Xn, Yn) 2 M↵.

This map explains the identity

Tµ!
eHµ[X; 1/q, 1/t] = eHµ[X; q, t],

but in Science Fiction, this map acts on the subspaces defined by intersecting and excluding
some of the subspace from M↵1 , . . . ,M↵k . For example, in the case of two predecessors
↵,� ! µ, we should have

M↵ =
⇣
M↵

^
M�

⌘ M
flip↵

⇣
M↵

^
M�

⌘
.

See the paper for more formulas and conjectures.
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Rational Dyck paths v. Simultaneous (M,N)-cores

Mikhail Mazin

Take m and n relatively prime. There is a bijection between lattice paths which lie
below the diagonal in an n⇥m rectangle and partitions which are simultaneously m and
n cores.

In the relatively prime case there are q, t- countings of both sides which agree. That
is, on the left hand side you have a q, t counting of paths below the diagonal in an m⇥ n
rectangle and this is equal to a right hand side of a q, t counting of the partitions which
are simultaneously m and n cores.

Consider again the m and n relatively prime and let (M,N) = (dm, dn). The q, t-
counting can be naturally generalized both for lattice paths that stay below the diagonal
in an M ⇥N rectangle and for the simultaneous M,N -core partitions. However, they are
not equal anymore. In fact, the set of simultaneous M,N -core partitions is infinite in the
non relatively prime case, and the resulting generating function is not a polynomial, but
rather a power series (a rational function with denominator (1� q)d�1).

Both counts are related to some deep and interesting mathematics. The paths under
the diagonal appear in the compositional Shu✏e theorem by Erik Carlsson and Anton
Mellit, and simultaneous cores correspond to invariants of torus links.

The open question is what is the precise relation between these two q, t-countings in
the non relatively prime case. One can also upgrade this question by replacing lattice
paths by rational parking functions, and the simultaneous cores by the M -stable a�ne
permutations in eSn. Similarly, in the relatively prime case, these set are in bijection, and
produce the same q, t polynomials, but in the non relatively prime case the set of M -stable
permutations became infinite, and the exact relation between the two generating functions
is unknown.

A reference:
E. Gorsky, M. Mazin, M. Vazirani, Rational Dyck Paths in the Non Relatively Prime

Case, Electron. J. Combin. 24 (2017), no. 3, Paper P3.61.
We define equivalence classes on the set of simultaneous cores, which are in bijection

with the lattice paths under the diagonal (in the non relatively prime case). The dinv
statistic is constant on equivalence classes, and the area statistic changes in a predictable
way. However, the equivalence classes come in di↵erent sizes, so the relation between the
generating functions remains unclear.
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Matt Hogancamp mentioned that he and Anton Mellit are going to soon upload a
preprint about their recursive computation of the torus link invariants, which is closely
related to the generating functions for the simultaneous M,N -cores.
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A crystal structure for 3-column Macdonald polynomials?

A major open problem is to find a combinatorial interpretation of the coe�cients in the
Schur expansion of the modified Macdonald polynomial eHµ(x; q, t). Haglund, Haiman, and
Loehr gave a combinatorial formula for the monomial expansion [HHL05]:

eHµ(x; q, t) =
X

� :µ!Z>0

q
inv(�)

t
maj(�)

x
wt(�)

.

One appealing approach to finding the Schur expansion would be to define a crystal structure
on the set of fillings of µ that preserves the statistics maj and inv; the Schur expansion would
then be given by the weights of the highest elements in the crystal structure.

In the case where µ is a single column, inv is always zero, and the usual crystal structure on
words (see, e.g., [Shi05]) preserves maj (which is the usual major index on words in this case).
The highest weights are Yamanouchi words, which leads to the formula

eH(1n)(x; q, t) =
X

w Yamanouchi

t
maj(w)

swt(w)(x).

In the case where µ has two columns, Haglund–Haiman–Loehr defined a suitable crystal struc-
ture on the fillings [HHL05, §9] (in fact, this crystal structure is a translation of a construction
of Carré–Leclerc and van Leeuwen on domino tableaux [CL95, vL00]). The highest weight ele-
ments are again the fillings whose (row) reading word is Yamanouchi, but the crystal operators
are a bit more complicated than the usual crystal operators on words.

In the case where µ has three columns, Blasiak [Bla16] recently proved a conjectured rule
of Haglund [Hag04] for the Schur expansion. The proof uses Fomin and Blasiak’s machinery
of noncommutative Schur functions and switchboards [BF17]. We propose the problem
of finding a maj- and inv-preserving crystal structure on fillings of partitions with
three columns. The Yamanouchi fillings no longer have the correct statistics to form the set
of highest weight elements (for example, when µ = (3, 3)), so one will have to find the correct
replacement for the Yamanouchi condition. We hope that the Haglund–Blasiak rule may serve
as a guide. Perhaps 3-ribbon tableaux could be useful for intuition, as in the 2-column/domino
case (see [HHL05, §3] for the connection between modified Macdonald polynomials and ribbon-
tableaux generating functions).

We note that Kaliszewski and Morse [KM17] have given a maj-preserving crystal structure
on the fillings of an arbitrary shape, thereby (re)proving a formula for the Schur expansion of
the Macdonald polynomials at q = 1. The Hall–Littlewood case (q = 0) can also be understood
in terms of crystals: one may use Haglund–Haiman–Loehr’s bijection between inversion-less
fillings and row-strict fillings, which turns maj into the cocharge of the RSK recording tableau
[HHL05, §7], and then use the usual crystal structure on row-strict fillings (i.e., tensor products
of single row crystals), which preserves the recording tableau (see, e.g., [Shi05]).
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An elliptic Hall algebra identity

François Bergeron

For any operator Fm,n, on symmetric functions coming from the elliptic Hall algebra.
Define the operation F̂m,n := Fm,n|t=1. There is an identity that is simple to state, but
begs for a proof:

F̂m,n · f = f · (F̂m,n · 1).

In other words, F̂m,n is simply a multiplication operator. This is certainly not the case (in
general) for Fm,n.

See reference: arXiv:1603.04476
Open Questions for operators related to Rectangular Catalan Combinatorics, Journal of
Combinatorics Vol. 8, No. 4 (2017), pp. 673-703.
Author: François Bergeron
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Super Harmonics and a representation theoretic model for the

Delta conjecture

York: Nantel Bergeron, Laura Colmenarejo, Shu Xiao Li, John Machacek,
Robin Sulzgruber, Mike Zabrocki; UCSD: Adriano Garsia, Marino Romero,

Don Qui, Nolan Wallach

Define the bi-graded Sn module by the following quotient

SCoinvn := Q[x1, x2, . . . , xn; ✓1, ✓2, . . . , ✓n]/

*
nX

i=1

x
r
i ,

nX

i=1

✓ix
s
i : 0 < r  n, 0  s < n

+

where ✓i✓j = �✓j✓i and ✓
2
i = 0, but otherwise the variables commute. We can show that

as an Sn module the space of polynomials

SHarn =

(
P (Xn;⇥n) :

nX

i=1

@
r
xi
P (Xn;⇥n) =

nX

i=1

@
s
xi
@✓iP (Xn;⇥n) = 0 for 0 < r  n, 0  s < n

)

is isomorphic to SCoinvn where the partial di↵erential operators satisfy the relations

@✓i@✓j = �@✓j@✓i and ✓i@✓j = �@✓j✓i.

The first few of the q, t-dimensions for n = 1, 2, 3, 4 are 1, 1 + q + t, 1 + (2 q + 2 t) +

(2 q
2
+ 3 qt+ t

2
) + (q

3
+ q

2
t), 1 + (3 q + 3 t) + (5 q

2
+ 8 qt+ 3 t

2
) + (6 q

3
+ 11 q

2
t+ 6 qt

2
+

t
3
) + (5 q

4
+ 9 q

3
t+ 4 q

2
t
2
) + (3 q

5
+ 4 q

4
t+ q

3
t
2
) + (q

6
+ q

5
t) .

The first three q, t-Frobenius images are s1, then

(q + t) s1,1 + s2, and

�
q
3
+ q

2
t+ qt+ t

2
�
s1,1,1 +

�
q
2
+ qt+ q + t

�
s2,1 + s3 .

Conjecture 1. For a fixed n � 1,

dimqz SCoinvn =

nX

k=1

Sq(n, k)[k]q!z
n�k

where Sq(n, k) = Sq(n � 1, k � 1) + [k]qSq(n � 1, k) and Sq(n, 1) = Sq(n, n) = 1. The
dimension of SCoinvn is equal to the number of ordered set partitions (see sequence:
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http://oeis.org/A000670). Furthermore, the Frobenius image of the symmetric group
character is

Frobqz(SCoinvn) =

nX

r=1

(�z/q)
n�r

Hn,r[X; 1/q] = �
0
en�1[X�✏z](en)

���
t=0

where en�1[X � ✏z] = en�1+ zen�2+ z
2
en�3 · · ·+ z

n�1 and where Hn,k[X; q] = !En,k[X; q]

is defined by the equation

hn


X

1� u

1� q

�
=

nX

r=1

(u; q)r

(q; q)r
Hn,k[X; q]

and �f (H̃µ[X; q, t]) = f [Bµ]H̃µ[X; q, t].

Fix an integer n, and let �n(Xn) =
Q

1i<jn(xi � xj) be the Vandermonde de-

terminant. Define polarize power sums Er =
Pn

i=1 ✓i@
r
xi
. They satisfy the relations

ErEs = �EsEr and E
2
r = 0. We conjecture the following analogue of ‘The Operator

Conjecture.’
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with ✏i 2 {0, 1} and @
a
x represents the derivatives with respect to the xi variables in all

possible ways.

We can show containment of the linear span in SHarn and this surprisingly allows us
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The Frobenius image expressed in terms of the Delta operator is quite suggestive and

leads us to the following conjecture. Let

Q[Xn, Yn;⇥n] := Q[x1, x2, . . . , xn, y1, y2, . . . , yn; ✓1, ✓2, . . . , ✓n]

be the polynomial ring in three sets of variables, the first two are commuting and the third

one is anti-commuting (and the variables of di↵erent flavors commute). The invariants of

this polynomial ring are generated by analogues of the power sums
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+ s
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< n. Define the analogue of the diagonal harmonics as

SDCoinvn := Q[Xn, Yn;⇥n]/
⌦
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Calculating the dimensions of the quotients for 1  n  6, the graded dimensions are

1, 4, 28, 288, 3936, 67328 (see sequence: https://oeis.org/A201595). Moreover we can

calculate the Frobenius image for 1  n  4 and conjecture the following model for the

‘The Delta Conjecture.’ The variable q will keep track of the degree in the Xn variables, t

for the degree in the Yn variables and z is the degree in in the ⇥n variables.

Conjecture 3. For n � 1,

Frobqtz(SDCoinvn) = �
0
en�1[X�✏z](en)

where en�1[X � ✏z] = en�1 + zen�2 + z
2
en�3 + · · · + z

n�1 and �
0
f (H̃µ[X; q, t]) = f [Bµ �

1]H̃µ[X; q, t].

Based on (potentially spotty, but significant enough to believe that it is true) data

computed this week, we can make an interesting further conjecture. Let En[Q;Z] =P
µ aµ[Q]sµ[Z] be the symmetric functions described in François Bergeron’s talk on Mon-

day and Tuesday as a symmetric function expression for the multivariate analogue of the

diagonal harmonics, then let

Coinv
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n , . . . , X
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be the coinvariant space in k sets of commuting variables and k
0
sets of anti-commuting

variables (such that the anticommuting variables also anticommute among themselves).

Conjecture 4. Let Qk represent the alphabet q1, q2, . . . , qk to keep track of the degrees in

the X
(i)
n variables and Tk0 represent the alphabet t1, t2, . . . , tk0 as variables which keep track

of the degrees in the ⇥
(i)
n variables, then

FrobQk,Tk0 (Coinv
k,k0
n ) = En[Qk � ✏Tk0 ;Z] .
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