Rank-one perturbations and Anderson-type Hamiltonians

Constanze Liaw

(University of Delaware and CASPER)

at BIRS in April 2019

Thanks to NSF-DMS.

Idea of Self-adjoint Perturbation Theory

- Throughout consider self-adjoint operators on a separable Hilbert space \mathcal{H} .
- The general context of this talk is perturbation theory:

Given operator A, what can we say about the spectral properties of A + B for $B \in ClassX$?

- Classically Class $X = \{ \text{trace cl.} \}$, $\{ \text{Hilb.-Schmidt} \}$, $\{ \text{comp.} \}$, or some other von Neuman-Schatten class S_p .
- Here our goal is to:

Relate rank one pert. w/ Anderson-type Hamiltonians!

- Rank one pert. are $A_{\gamma} := A + \gamma \langle \cdot, \varphi \rangle \varphi$ with $\varphi \in \mathcal{H}$, $\gamma \in \mathbb{R}$.
- This is interesting, as $\{\gamma\langle\cdot,\varphi\rangle\varphi\}\subset S_p$ for all $1\leq p\leq\infty$, while Anderson-type Hamiltonians have a random perturbation that is almost surely non-compact.

Origins, applications and connections of rank one pert.

- Differential operators with changing boundary conditions:
 - Sturm-Liouville operators (Weyl 1910),
 - Half-line Schrödinger operator $Au = -\frac{d^2}{dx^2}u + Vu$,
 - Maybe soon PDEs.
- Describe all self-adjoint extensions of a symmetric operator with deficiency indices (1,1).
- Anderson-type Hamiltonian
- Large random matrices, free probability probability
- Decoupling of CMV matrices
- Adding partition vertices to quantum graphs
- Nehari interpolation problem
- Holomorphic composition operators
- Rigid functions
- Functional models (Sz.-Nagy–Foiaș, deBranges–Rovnyak, Nikolski–Vasyunin)
- Two weight problem for Hilbert/Cauchy transform
- Existence of the limit in the Julia-Carathéodory quotient

Origins, applications and connections of rank one pert.

- Differential operators with changing boundary conditions:
 - Sturm-Liouville operators (Weyl 1910),
 - Half-line Schrödinger operator $Au = -\frac{d^2}{dx^2}u + Vu$,
 - Maybe soon PDEs.
- Describe all self-adjoint extensions of a symmetric operator with deficiency indices (1,1).
- Anderson-type Hamiltonian
- Large random matrices, free probability probability
- Decoupling of CMV matrices
- Adding partition vertices to quantum graphs
- Nehari interpolation problem
- Holomorphic composition operators
- Rigid functions
- Functional models (Sz.-Nagy–Foiaș, deBranges–Rovnyak, Nikolski–Vasyunin)
- Two weight problem for Hilbert/Cauchy transform
- Existence of the limit in the Julia-Carathéodory quotient

Origins, applications and connections of rank one pert.

- Differential operators with changing boundary conditions:
 - Sturm-Liouville operators (Weyl 1910),
 - Half-line Schrödinger operator $Au = -\frac{d^2}{dx^2}u + Vu$,
 - Maybe soon PDEs.
- Describe all self-adjoint extensions of a symmetric operator with deficiency indices (1,1).
- Anderson-type Hamiltonian
- Large random matrices, free probability probability
- Decoupling of CMV matrices
- Adding partition vertices to quantum graphs
- Nehari interpolation problem
- Holomorphic composition operators
- Rigid functions
- Functional models (Sz.-Nagy–Foiaş, deBranges–Rovnyak, Nikolski–Vasyunin)
- Two weight problem for Hilbert/Cauchy transform
- Existence of the limit in the Julia-Carathéodory quotient

Unitary Equivalence and Spectral Decompositions

- $A \sim T$ means unitary equivalence of operators, i.e. $UAU^{-1} = T$ for some unitary U.
- $A \sim T \pmod{\text{Class } X}$, if $(UAU^{-1} T) \in \text{Class } X$ for some unitary operator U.
- $T_{\rm ac} \sim \left(M_z \big|_{\oplus \int \mathcal{H}(z) d\mu_{\rm ac}(z)} \right)$. Think " $\oplus \int \mathcal{H}(z) d\mu(z) = L^2(\mu)$ ".
- $\sigma_{\rm ess}(T) = \sigma(T) \setminus \{ \text{isolated point spectrum of finite mult.} \}.$

Perturbation Theory (think "A and T = A + B") Theorem (von Neuman early 1900's) $A \sim T(\textit{Mod compact operators}) \quad \stackrel{A \textit{ bdd}}{\Leftrightarrow}$ $\sigma_{\rm ess}(A) = \sigma_{\rm ess}(T).$ Theorem (Kato–Rosenblum 1950's, Carey–Pincus 1976) $A \sim T(\text{Mod trace class}) \quad \Leftrightarrow \quad A_{ac} \sim T_{ac}, \text{ conditions.}$ Theorem (Aronszajn–Donoghue Theory 1970-80's) Complete info for eigenvalues and absolutely cont. part of A and $T = A_{\gamma}$. Singular parts are mutually singular and 'interlacing'. A and T are said to be completely non-equivalent, if there are no non-trivial closed inv. subspaces \mathcal{H}_1 , $\mathcal{H}_2 \leq \mathcal{H} | w / A |_{\mathcal{H}_1} \sim T |_{\mathcal{H}_2}$. Theorem (Poltoratski 2000) Let A and T be cyclic, self-adjoint, completely non-equivalent operators with purely singular spectrum so that $\sigma(A) = \sigma(T) = K$ and $\sigma_{\rm pp}(A) \cap \partial K = \sigma_{\rm pp}(T) \cap \partial K = \emptyset$.

Then we have $A \sim T \pmod{\text{rank one}}$.

Anderson-type Hamiltonians

- Self-adjoint operator A on a separable Hilbert space \mathcal{H} .
- $\{\varphi_n\}_{n\in\mathbb{N}}\subset\mathcal{H}$ orthonormal basis.
- ω = (ω₁, ω₂, ...), where ω_i's are i.i.d. random variables distributed according to an absolutely continuous probability measure ℙ on ℝ.
- Anderson-type Hamiltonian A_{ω} on \mathcal{H} is given by

$$A_{\omega} := A + \sum_{n} \omega_n \langle \cdot , \varphi_n \rangle \varphi_n.$$

- Perturbation is almost surely a non-compact operator.
- Special case: discrete random Schrödinger operator on $l^2(\mathbb{Z}^d)$

$$\begin{split} Af(x) &= -\bigtriangleup f(x) = -\sum_{n \in \mathbb{Z}^d, |n|=1} (f(x+n) - f(x)), \\ \varphi_n(x) &= \delta_n(x) = \left\{ \begin{array}{ll} 1 & x = n, \\ 0 & \text{else.} \end{array} \right. \end{split}$$

Simon-Wolff

 $\text{Recall } A_{\omega} = A + \sum_{n} \omega_n \langle \cdot \, , \varphi_n \rangle \varphi_n \text{ vs. } A_{\gamma} = A + \gamma \langle \cdot \, , \varphi \rangle \varphi, \ \gamma \in \mathbb{R}.$

- Simon–Wolff 1986 provided a characterization of when rank-one perturbation problems A_γ are pure point for Lebesgue a.e. γ ∈ ℝ. With this they showed that the one-dimensional discrete random Schrödinger operator exhibits 'Anderson localization'.
- Their idea was to sweep through the parameter domain for the perturbed operators' random coupling constants.
- This technique was the first kind of connection between rank one perturbations and Anderson-type Hamiltonians.
- I believe their success inspired numerous mathematical physicists to work on rank one perturbations.

Theorem (L. 2019 in BJMA)

Consider the Anderson-type Ham. $A_{\omega} = A + \sum \omega_n \langle \cdot, \varphi_n \rangle \varphi_n$. together with corresponding scalar-valued spectral measure μ_{ω} . Assume A is bounded and of finite multiplicity. For almost all $(\omega, \eta) \in (\prod_n \mathbb{P} \times \prod_n \mathbb{P})$ we have:

1) $(\mu_{\omega})_{\mathrm{ac}} \sim (\mu_{\eta})_{\mathrm{ac}}$,

2)
$$\sigma_{\rm ess}(A_{\omega}) = \sigma_{\rm ess}(A_{\eta})$$
 and

3) If $(A_{\omega})_{\text{ess}}$ is cyclic almost surely and $|\partial \text{ess-supp}(\mu_{\omega})_{\text{ac}}| = 0$, then $(A_{\omega})_{\text{ess}} \sim (A_{\eta})_{\text{ess}} (\text{mod rank one})$.

Proof of " $(\mu_{\omega})_{ac} \sim (\mu_{\eta})_{ac}$ ":

Absolutely continuous distributions \mathbb{P} satisfy the Kolmogorov 0-1 law. So properties that are invariant under finite rank pert. of Hare enjoyed by H_{ω} for almost all or almost no ω (deterministic). Fix $\varepsilon > 0$ and ω . Consider the Borel function $x \mapsto D_{\varepsilon}\mu_{\omega}(x)$ where

$$D_{\varepsilon}\mu_{\omega}(x) := rac{\mu_{\omega}([x-\varepsilon,x+\varepsilon])}{2\varepsilon}.$$

The essential support of the absolutely continuous part is given by

$$\mathsf{ess-supp}(\mu_{\omega})_{\mathrm{ac}} = \left\{ x \in \mathbb{R} : 0 < \limsup_{\varepsilon \to 0} D_{\varepsilon} \mu_{\omega}(x) < \infty \right\}.$$

By the Kato–Rosenblum theorem, the symmetric difference between ess-supp $(\mu_{(0,0,0,\ldots)})_{\mathrm{ac}}\Delta$ ess-supp $(\mu_{(\omega_1,\ldots,\omega_n,0,\ldots)})_{\mathrm{ac}}$ has zero Lebesgue measure. So by the Kolmogorov 0-1 law, Lebesgue almost every point $x \in \mathbb{R}$ lies in ess-supp $(\mu_{\omega})_{\mathrm{ac}}$ for almost all, or almost no ω .

In fact, we have proved that ess-supp $(\mu_{\omega})_{ac}$ is a deterministic set.

Proof idea " $(A_{\omega})_{ess} \sim (A_{\eta})_{ess} (\text{mod rank one})$ ":

• Cauchy transform for non-negative σ :

$$K\sigma(z) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{d\sigma(t)}{t-z}, \qquad z \in \mathbb{C}_+.$$

• Use the Krein-Lifshitz spectral shift function

$$u = -\arg(1 - \pi \gamma K \mathbf{v}_{\gamma}),$$

which drops from π to 0 at isolated points of $\operatorname{supp}(\nu_{\gamma})_{s}$ and lies in $(0, \pi)$ a.e. on the absolutely continuous spectrum.

•
$$u \stackrel{1:1}{\longleftrightarrow} \{\nu_{\gamma}\} \stackrel{1:1}{\longleftrightarrow} A_{\gamma}.$$

- Define auxiliary singular measures and then modify their Krein–Lifshitz spectral shift function.
- Use Poltoratski's sufficient conditions to ensure that the singular parts correspond to rank one perturbations.

Proof idea " $(A_{\omega})_{ess} \sim (A_{\eta})_{ess} (\text{mod rank one})$ ":

• Cauchy transform for non-negative σ :

$$K\sigma(z) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{d\sigma(t)}{t-z}, \qquad z \in \mathbb{C}_+.$$

• Use the Krein-Lifshitz spectral shift function

$$u = -\arg(1 - \pi \gamma K \boldsymbol{\nu_{\gamma}}),$$

which drops from π to 0 at isolated points of $\operatorname{supp}(\nu_{\gamma})_{s}$ and lies in $(0, \pi)$ a.e. on the absolutely continuous spectrum.

•
$$u \stackrel{1:1}{\longleftrightarrow} \{\nu_{\gamma}\} \stackrel{1:1}{\longleftrightarrow} A_{\gamma}.$$

- Define auxiliary singular measures and then modify their Krein–Lifshitz spectral shift function.
- Use Poltoratski's sufficient conditions to ensure that the singular parts correspond to rank one perturbations.

Perturbation Theory (think "A and T = A + B") Theorem (von Neuman early 1900's) $A \sim T(\textit{Mod compact operators}) \quad \stackrel{A \textit{ bdd}}{\Leftrightarrow}$ $\sigma_{\rm ess}(A) = \sigma_{\rm ess}(T).$ Theorem (Kato–Rosenblum 1950's, Carey–Pincus 1976) $A \sim T(\text{Mod trace class}) \quad \Leftrightarrow \quad A_{ac} \sim T_{ac}, \text{ conditions.}$ Theorem (Aronszajn–Donoghue Theory 1970-80's) Complete info for eigenvalues and absolutely cont. part of A and $T = A_{\gamma}$. Their singular parts are mutually singular and interlacing. A and T are said to be completely non-equivalent, if there are no non-trivial closed inv. subspaces \mathcal{H}_1 , $\mathcal{H}_2 \leq \mathcal{H} | w / A |_{\mathcal{H}_1} \sim T |_{\mathcal{H}_2}$. Theorem (Poltoratski 2000) Let A and T be cyclic, self-adjoint, completely non-equivalent operators with purely singular spectrum so that $\sigma(A) = \sigma(T) = K$ and $\sigma_{\rm pp}(A) \cap \partial K = \sigma_{\rm pp}(T) \cap \partial K = \emptyset$.

Then we have $A \sim T \pmod{\text{rank one}}$.

,

Thanks!