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Let A1, ...,An be k × k matrices. The set

σ(A1, ...,An) =
󰁱
[x1, ..., xn] ∈ CPn−1 : det(x1A1 + ...+ xnAn) = 0

󰁲

is called the determinantal hypersurface determined by
A1, ...,An.
We always assume that at least one of A1, ...,An is invertible, and ,
therefore can be taken to be the identity matrix I.

If A1, ...,An are operators acting on a Hilbert space X, the
projective joint spectrum of A1, ...,An introduced by Yang (2008)
is

σ(A1, ...,An) =
󰁱
[x1, ..., xn] ∈ CPn−1 :

x1A1 + ...+ xnAn is not invertible}

We will concentrate on the case when An = I and denote by

σp(A1, ...,An−1) = σ(A1, ...,An−1, I) ∩ {xn 󲧰 0} (so that xn = −1).
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Determinantal hypersurface of a tuple of matrices is an algebraic
manifold in CPn−1, but if X is infinite dimensional, the joint
spectrum is not necessarily an analytic set.

Theorem (S., Tchernev)

Let A1, ...,An be bounded operators on a Hilbert space X with A1

normal, and let λ 󲧰 0 be an isolated spectral point of A! of finite
multiplicity. Then, there is a neignbourhood O ⊂ CPn of
[1/λ, 0, ..., 0,−1] such that σp(A1, ...,An) ∩ O is an analytic set of
pure codimension one.
The same is true without the assumption of normality if λ is a
simple isolated spectral point.
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Q.1
Given a hypersurface Γ ⊂ CPn when are there matrices A1, ...,An+1

such that
Γ = σ(A1, ...,An+1)?

In the case when the answer is affirtmative, it is said that Γ has a
determinatal representation.

Q.2

Given that Γ ⊂ CPn has a determinantal representation, what does
its geometry say about the relations between the matrices in the
tuple?

Motzkin and Taussky (1952): Two self-adjoint matrices commute
⇐⇒ σ(A1,A2, I) is a union of projective lines.
Chagouel, S., Zhu (2015) extended this result to tuples of compact
self-adjoint operators in a Hilbert space, and tuples of normal
matrices.
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If A1, ...,An have a common invariant subspace of dimension k ,
then σp(A1, ...,An) contains an algebraic hypersurface of order k .
Simple examples show that the converse is not true. For example,
if

A1 =

󰀵
󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 0 0
0 5 0
0 0 0

󰀶
󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸 , A2 =

󰀵
󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 2 1
2 7 1
1 1 1/2

󰀶
󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸 ,

then

σp(A1,A2) = {(x, y) ∈ C2 : (x+y−1)(5xy+5y2−15y−10x+2) = 0}.

There are a line and a quadratic in the joint spectrum, but no
common eigenvectors and no common two-dimensional invariant
subspaces.



Q. 2′

Find a necessary and sufficient conditions for an appearance of an
algebraic hypersurface of order k in σp(A1, ...,An) to indicate that
there is a k-dimensional common invariant subspace.

It turned out that the case n = 2, k = 1 is the most important here.



Theorem (S., Tchernev)
Let A1, . . . ,An be self-adjoint, λ 󲧰 0 be an isolated point of σ(A1),
and there exists ρ > 0 such that, up to multiplicity,

∆ρ(1/λ, 0, . . . , 0) ∩ {λx1 + a2x2 + · · ·+ anxn = 1}
= ∆ρ(1/λ, 0, . . . , 0) ∩ σp(A1, . . . ,An)

where ∆ρ(w) = {z ∈ Cn : |zj − wj | < ρ}.
The following are equivalent:

(1) The eigensubspace of A1 corresponding to eigenvalue λ is an
eigensubspace for each of the operators A2, . . . ,An;

(2) There exist an 󰂃 ∈ R, 󰂃 󲧰 1, and ρ′ > 0 such that A1(󰂃, λ) is
invertible and, up to multiplicity,

∆ρ′(λ, 0, . . . , 0) ∩ {(1/λ)x1 + a2x2 + · · ·+ anxn = 1}
= ∆ρ′(λ, 0, . . . , , 0) ∩ σp

󰀓
A1(󰂃, λ)

−1,A2(󰂃, a2), . . . ,An(󰂃, an)
󰀔
,

where A(󰂃, b) = (1 + 󰂃)A − b󰂃I.



Corollary
Let A1 be a unitary involution (A2

1 = I) with 1 being a spectral point
of A1 of finite multiplicity, and let A2, ...,An be self-adjoint. If
σp(A1, ...,An) contains a part of a hyperplane passing through
(1, 0..., 0) that lies in a neighborhood of (1, 0, ..., 0), then A1, ...,An

have a common eigenvector.

Remark: If the multiplicity is infinite, it is no longer true.



Algebraic curves in the spectrum

Let A1 and A2 be two self-adjoint operators on X and suppose that
λ 󲧰 0 is an isolated spectral point of A1 of finite multiplicity.
Suppose that for some neighborhood O of a point (1/λ, 0) the part
of the joint spectrum σp(A1,A2) which is in O is an an algebraic
curve

σp(A1,A2) ∩ O = {(x1, x2) ∈ O : P(x1, x2) = 0},

P(x1, x2) =
k󰁛

j=0

Rj(x1, x2),

Rj(x1, x2) is a homogeneous polynomial of degree j, R0 = −1.

We assume that (1/lambda, 0) is not a singular point of σ(A1,A2)
and that the line {x2 = 0} is not tangent to σp(A1,A2) at (1/λ, 0),
so that ∀x = (x1, x2) ∈ O, {τx : τ ∈ C} ∩ σp(A1,A2) 󲧰 ∅.



Algebraic curves in the spectrum

Let A1 and A2 be two self-adjoint operators on X and suppose that
λ 󲧰 0 is an isolated spectral point of A1 of finite multiplicity.
Suppose that for some neighborhood O of a point (1/λ, 0) the part
of the joint spectrum σp(A1,A2) which is in O is an an algebraic
curve

σp(A1,A2) ∩ O = {(x1, x2) ∈ O : P(x1, x2) = 0},

P(x1, x2) =
k󰁛

j=0

Rj(x1, x2),

Rj(x1, x2) is a homogeneous polynomial of degree j, R0 = −1.

We assume that (1/lambda, 0) is not a singular point of σ(A1,A2)
and that the line {x2 = 0} is not tangent to σp(A1,A2) at (1/λ, 0),
so that ∀x = (x1, x2) ∈ O, {τx : τ ∈ C} ∩ σp(A1,A2) 󲧰 ∅.



Let x = (x1, x2) ∈ O. Write

A(x) = x1A1 + x2A2.

We have

tx = (tx1, tx2) ∈ σp(A1,A2) ⇐⇒
k󰁛

j=0

t jRj(x1, x2) = 0, (1)

tx ∈ σp(A1,A2) ⇐⇒ µ = 1/t ∈ σ(A(x)),

and µ satisfies

µk −
k󰁛

j=1

Rk−j(x1, x2)µ
j = 0.

If O is small enough, the last equation has a root µ(x) close to 1
which is an eigenvalue of A(x).



Let x = (x1, x2) ∈ O. Write

A(x) = x1A1 + x2A2.

We have

tx = (tx1, tx2) ∈ σp(A1,A2) ⇐⇒
k󰁛

j=0

t jRj(x1, x2) = 0, (1)

tx ∈ σp(A1,A2) ⇐⇒ µ = 1/t ∈ σ(A(x)),

and µ satisfies

µk −
k󰁛

j=1

Rk−j(x1, x2)µ
j = 0.

If O is small enough, the last equation has a root µ(x) close to 1
which is an eigenvalue of A(x).



If ξ(x) is an eigenvector of A(x) with eigenvalue µ(x), then
󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃A(x)k −

k󰁛

j=1

Rk−j(x)A(x)j

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄 ξ = 0,

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃A(x)k −

k󰁛

j=1

Rk−j(x)A(x)j

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄P(x)η = 0, ∀η ∈ X ,

P(x) is the orthogonal projection X onto the eigenspace of A(x)
with eigenvalue µ(x).

=⇒

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃A(x)k −

k󰁛

j=1

Rk−j(x)A(x)j

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄P(x) = 0.



Well-known:

P(x) =
1

2πi

󰁝

γ
(zI − A(x))−1dz,

γ - a small contour around 1.

A(x)mP(x) =
1

2πi

󰁝

γ
zm(zI − A(x))−1dz

Therefore,

1
2πi

󰁝

γ

󰀳
󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃z

k −
k󰁛

j=1

Rk−j(x)z j

󰀴
󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄 (zI − A(x))−1dz = 0.
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Let x = (1/λ, y), with y being small. Then

A(x) = (1/λ)A1 + yA2,

(zI − A(x))−1 = (zI − (1/λ)A1)
−1(I − yA2(zI − (1/λ)A1)

−1)−1

= (zI − (1/λ)A1)
−1
∞󰁛

j=0

y j
󰁫
A2(zI − (1/λ)A1)

−1
󰁬j
,

⇒
∞󰁛

j=0

y j 1
2πi

󰁝

γ
(zk −

k󰁛

j=1

Rk−j(1/λ, y)z j)(zI − (1/λ)A1)
−1S jdz,

where S = [A2(zI − (1/λ)A1].
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A rearrangement of terms gives

∞󰁛

j=0

y j

2πi

󰁝

γ
Ψj(z)dz = 0,

where Ψj(z) are operator-valued meromorphic functions of z
obtained from the equation above.

Thus,
Rez(Ψj)|z=1 = 0, j = 0, 1, ... (2)

(This relation for j = 0 is not informative).

Remark It is possible to show that conditions of the last relation
imply that all Ψj are holomorphic and that these conditions are
necessary and sufficient for the curve P(x1, x2) = 0} to be in the
spectrum.

For this talk we will need relations (2) only for j = 1, 2.
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Recall that we denoted by P the projection onto the λ-eigenspace
of A1. Now we introduce the following operator T(A1).

1). In the case of matrices, let λ = λ1, λ2, ..., λs be distinct
eigenvalues of A1 and P = P1,P2, ...,Ps be the corresponding
projections. Then

T(A1) = T =
s󰁛

j=2

λ

λj − λ
Pj .

2). For general self-adjoint operators

T =

󰁝

σ(A1)\{λ}

λ

z − λdE(z),

where
A1 =

󰁝

σ(A1)
zdE(z)

is the spectral resolution of A1.
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Theorem (S., Tchernev)
Suppose that A1 and A2 are self-adjoint, that λ 󲧰 0 is an isolated
spectral point of A1 of finite multiplicity such that
◮ (1/λ, 0) belongs to only one component of σp(A1,A2) and in

a neighborhood of (1/λ, 0) the proper joint spectrum
σp(A1,A2) is given by P(x1, x2) = 0;

◮ ∂R
∂x1

󰀏󰀏󰀏󰀏
(1/λ,0)

󲧰 0, so that locally {P = 0} defines x1 as an implicit

function of x2, x1 = x1(x2), x1(0) = 1/λ.

Then

PA2P = −x′1(0)P (3)

PA2TA2P = −
x′′1 (0)

2
P. (4)

This result is used to prove Theorem about common eigenvalues
for tuples.



Another application of this result is to the case when the unit circle
is in the spectrum.

Theorem (Cuckovic, S., Tchernev)

Let A1,A2 be self-adjoint operators on an N-dimensional Hilbert
space X, and suppose that A1 is invertible and that 󰀂A2󰀂 = 1.

Further suppose that the “complex unit circle”
{(x, y) ∈ C2 : x2 + y2 = 1} is a reduced component of both
σp(A1,A2) and σp(A−1

1 ,A2), of multiplicity n, and that the points
(±1, 0) do not belong to any other component of either σp(A1,A2)
or σp(A−1

1 ,A2), and that the points (0,±1) do not belong to any
other component of σp(A1,A2).



Theorem (Continued)
Then:

1. A1 and A2 have a common 2n-dimensional invariant subspace
L;

2. The pair of restrictions A1|L and A2|L is unitary equivalent to
the following pair of 2n × 2n involutions C1 and C2, each
block-diagonal with n equal 2 × 2 blocks along the diagonal:

C1 =

󰀵
󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 0 . . . 0 0
0 −1 . . . 0 0
...
...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 −1

󰀶
󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

, C2 =

󰀵
󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 1 . . . 0 0
1 0 . . . 0 0
...
...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 1 0

󰀶
󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

3. The group generated by C1 and C2 represents the Coxeter
group B2.



Corollary

If in the previous Theorem A1 is an involution and the ”circle” is in
the spectrum with (±1, 0), (0,±1) not being singular points of the
spectrum, then the conclusions of the above Theorem hold.



Unitary Matrices

Lemma

Let A1 and A2 be bounded self-adjoint involutions on a Hilbert
space X that is A2

1 = A2
2 = I. Then:

1) The set σp(A1,A2) is the union of all the “complex ellipses”
Eα = {x2 + αxy + y2 = 1} with α ∈ σ(A1A2 + A2A1).

2) When σ(A1A2 + A2A1) is a finite set then each connected
component of σp(A1,A2) \ {(±1, 0) (0,±1)} is either
L \ {(±1, 0) (0,±1)} with L one of the lines x ± y = ±1, or
Eα \ {(±1, 0) (0,±1)} for some α ∈ σ(A1A2 + A2A1).

3) When X is finite dimensional each reduced component of
σp(A1,A2) is either a line of the form x ± y = ±1, or a
“complex ellipse” Eα with α ∈ σ(A1A2 + A2A1) \ {−2, 2}.
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“complex ellipse” Eα with α ∈ σ(A1A2 + A2A1) \ {−2, 2}.



Proof If (x, y) ∈ σp(A1,A2), then

(xA1 + yA2)
2 − I = (xA1 + yA2 − I)(xA1 + yA2 + I)

= (x2 + y2 − 1)I + xy(A1A2 + A2A1).

is not invertible.

If (x, y) 󲧰 (±1, 0) or (0,±1), then

1 − x2 − y2

xy
∈ σ(A1A2 + A2A1).

Since 󰀂 Aj 󰀂= 1,

α =

󰀏󰀏󰀏󰀏󰀏󰀏
1 − x2 − y2

xy

󰀏󰀏󰀏󰀏󰀏󰀏 ≤ 2,

and in the case of finite dimension 1) follows. In infinite
dimensional case it is derived from the conclusion that
σp(A1,A2) ∪ (−σp(A1,A2)) contains the ”ellipse”.
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The following result is derived from the previous two:

Theorem
Let A1 and A2 be unitary self-adjoint linear operators on a
finite-dimensional Hilbert space X. Then:

1) Every reduced component of σp(A1,A2) is either a line
{x ± y = ±1} or an “ellipse” {x2 + 2xy cos(2πθ) + y2 = 1} for
some 0 < θ < 1/2.

2) If a line {x ± y = ±1} is a reduced component of multiplicity r
of the joint spectrum σp(A1,A2) then A1 and A2 have a
corresponding common eigenspace of dimension r.

3) If an “ellipse” {x2 + 2xy cos(2πθ) + y2 = 1} with 0 < θ < 1/2
is a reduced component of the proper joint spectrum
σp(A1,A2) of multiplicity r, then A1 and A2 have a
correponding common invariant subspace of dimension 2r
that is a direct sum of r two-dimensional common invariant
subspaces.
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Proof 1) follows from the previous result,

2) - from the fact that for self-adjpoint operators a line passing
through (1/α, 0), |α| =󰀂 A1 󰀂, and α beeing an isolated spectral
point of A1, implies the existence of a common eigenspace of the
same multiplicity as the one of the line, and

3) is proved by successive scaling and using the above CST result.
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Proposition

Let A1 and A2 be as in the previous Theorem, and let m ≥ 2 be an
integer. The following are equivalent:

(1) (A1A2)
m = I,

(2) σ(A1A2 + A2A1) ⊆ { Eα : α = 2 cos(2πk/m) | k =
0, . . . ,m − 1 }.

Proof (1) =⇒ (2). For each n ≥ 0 set

Rn = (1/2)
󰁫
(A1A2)

n + (A2A1)
n
󰁬
.

Then

R0 = I,

R1 = (1/2)(A1A2 + A2A1), and

Rn = 2R1Rn−1 − Rn−2 for n ≥ 2.
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It follows by induction that for each n ≥ 0 we have

Rn = Tn(R1),

where Tn(z) are Tchebyshev’s polynomials of the first kind defined
by

T0(z) = 1,

T1(z) = z, and

Tn(z) = 2zTn−1(z) − Tn−2(z) for n ≥ 2.

It is well known that for each real z ∈ [−1, 1] one has
Tn(z) = cos(n cos−1(z)), in particular the polynomial Tn(z) − 1 is of
degree n and has for its set of roots the set
{ cos(2πk/n) | k = 0, . . . n − 1 }.
Now, suppose (A1A2)

m = I. Thus (A2A1)
m = I as well, hence

Rm = Tm(R1) = I. Since σ(Rm) = Tm

󰀓
σ(R1)

󰀔
, we must have

Tm(α) = 1 for each α ∈ σ(R1). Therefore
σ(R1) ⊆ {cos(2πk/m) | k = 0, . . . ,m − 1}, which implies (2) as
desired.
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Application to representations of Coxeter groups

Definiton For N × N matrices A1, ...,An the proper joint spectrum
in the divisor form, σd

p(A1, ...,An) is defined as the zero-divisor of
the polynomial det(x1A1 + ...+ xnAn − I).

The multiplicity ascribed to a point (x1, ..., xn) ∈ σd
p(A1, ...,An) is

equal to the rank of the projection

1
2πi

󰁝

γ
(zI −

n󰁛

j=1

xjAj)
−1dz,

(γ is asmall contour around 1).
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Recall that a Coxeter group is a finitely generated group with
generators g1, ..., gn satisfying the relations

g2
j = 1, j = 1, ..., n; (gigj)

mij = 1, 2 ≤ mij ≤ ∞ for i 󲧰 j.

If mij = 2 gi and gj commute.

A Coxeter group is defined by the Coxeter matrix

M = (mij) , mii = 1,

that is symmetric (obviously mij = mji)
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A traditional way of presentation of a Coxeter group is through its
Coxeter diagram, which is a graph constructed by the following
rules:
◮ the vertices of the graph are the generator subscripts;
◮ vertices i and j form an edge if and only if mij ≥ 3;
◮ an edge is labeled with the value mij whenever this value is 4

or greater.

In particular, two generators commute if and only if they are not
connected by an edge. The disjoint union of Coxeter diagrams
yields a direct product of Coxeter groups, and a Coxeter group is
connected if its diagram is a connected graph.
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The finite connected Coxeter groups consist of the one-parameter
families An, Bn, Dn, and I(n), and the six exceptional groups E6,
E7, E8, F4, H3, and H4. They were classified by Coxeter.

The Coxeter diagrams for the groups An,Bn,Dn+1, and I(n) that we
study here are as follows:

An :
1 2

. . .
n − 1 n

Bn :
1

4

2
. . .

n − 1 n

Dn+1 :
1 2

. . .
n − 1

n

n + 1

I(n) :
1

n

2

I(n) is called Dihedral group.
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A linear representation of a group G is a homomorphism
ρ : G → GL(X) of G into group of invertible linear operators acting
on a Hilbert space X.

Two representations ρ1, ρ2 : G → GL(X) are equivalent⇐⇒
∃C ∈ GL(X) : ρ1(g) = Cρ2(g)C−1 ∀g ∈ G.

We will be talking of finite dimensional representations.

Known:

Every linear representation of a finite group
is equivalent to a unitary representation.
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Corollary

Two linear representations of the Dihedral group I(n), ρ1 and ρ2,
are equivalent if and only if

σd
p(ρ1(g1), ρ1(g2)) = σ

d
p(ρ2(g1), ρ2(g2)),

where g1, g2 are the Coxeter generators of I(n).



Another Corollary to the above theorem is the follow result.

Theorem (Cuckovic, S, Tchernev)

Let U1, ...,Un be k × k self-adjoint unitary matrices, and let G be
the subgroup of GLk generated by these matrices. Suppose that
for i 󲧰 j the joint spectra

σp(Ui ,Uj) = ∪
rij

s=1Eαij
s
, α

ij
s = 2π

l ijs
p ij

s

,

where l ijs , p
ij
s are mutually prime (p ij

S = 1 if l ijs = 0). Denote by

mij =

󰀻󰁁󰁁󰀿
󰁁󰁁󰀽

2 if l ijs = 0 ∀s
the least common multiple of {p ij

s} if ∃l ijs 󲧰 0.

Then G is isomorphic to a quotient group of the Coxeter group with
the Coxeter matrix (mij).



We saw that the joint spectrum in the divisor form of the Coxeter
generators determines a representation of a Dihedral group up to
an equivalence.

Q. Are there any other finitely generated groups with the same
property: there is a group of generators such that the joint
spectrum in the divisor form of these generators determine a
representation up to an equivalence?



Theorem (Cuckovic, S., Tchernev)

Suppose G is a finite Coxeter group of type either A, or B, or D,
and let g1, ..., gn be the Coxeter generators of G. If for two finite
dimensional linear representations ρ1 and ρ2 of G we have

σd
p(ρ1(g1), ..., ρ1(gn)) = σ

d
p(ρ2(g1), ..., ρ2(gn)),

then the representations ρ1 and ρ2 are equivalent.



Comments for the proof.

Write Ai = ρ1(gi),Bi = ρ2(gi), i = 1, ..., n. Fix x ∈ Cn . Then for
λ ∈ C, λx ∈ σp(A1, ...,An)⇐⇒ 1

λ ∈ σ(A(x)), A(x) =
󰁓

xjAj .

Thus,

σd
p(A1, ...An) = σ

d
p(B1, ...,Bn)⇒ σ(A(x)) = σ(B(x)) (5)

∀x ∈ Cn counting multiplicities.

=⇒
󰁛

xjTrace(Aj) = Trace(A(x)) = Trace(B(x)) =
󰁛

xjTrace(Bj)

=⇒ Trace(Aj) = Trace(Bj), j = 1, ..., n.
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Let G be a group, and ρ : G → GLn be a finite dimensional linear
representation.

Definition

The character, χρ, of a representation ρ : G → GLK is the function

χρ(g) = Trace(ρ(g)), g ∈ G.

The above relation shows that if σd
p(A1, ...,An) = σ

d
p(B1, ...,Bn),

then
χρ1(gj) = χρ2(gj), j = 1, ..., n. (6)
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Known:

If for two linear representations ρ1 and ρ2 of a finite group G

χρ1(g) = χρ2(g), ∀g ∈ G, (7)

then ρ1 and ρ2 are equivalent.

Relation (6) means that (7) holds for words of length one.
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To prove (7) for all words we remark that (5) implies that
∀k ∈ N, x ∈ Cn

σ(A(x)k ) = σ(B(x)k ) =⇒ Trace(A(x)k ) = Trace(B(x)k ) (8)

A(x)k =
󰁛

j1+..jn=k

x j1
1 ...x

jn
n

󰀓󰁛
Ar1 ...Ark

󰀔

where the last sum is taken over all (r1, ..., rn) with r1 + ...+ rn = k
and (r1, ..., rn) contains j1 A1 − s; j2 A2 − s; , ..., jn An − s. The
same is true for B(x)k .

Now (5) implies

󰁛
Trace(Ar1 ...Ark ) =

󰁛
Trace(Br1 ...Brk )

󰁛
χρ1(gr1 ...grn) =

󰁛
χρ2(gr1 ...grn).
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Characters of representations of affine Coxeter groups

C̃n
4 4

B̃n
4

D̃n



Let us denote by c1, ..., cn+1 Coxeter generators of C̃n, so that

c2
1 = c2

2 = · · · = c2
n = c2

n+1 = 1, cjck = ck cj if |j − k | ≥ 2,

(c1c2)
4 = (cn+1cn)

4 = 1, (cjck )
3 = 1, for 2 ≤ j, k ≤ n.

Write

tj = cjcj+1...cncn+1cn...cj , j = 2, ..., n + 1,

r1 = c1c2 · · · cncn+1cn · · · c2

r2 = c2c1c2 · · · cncn+1cn · · · c3

...

...

rn−2 = cn−2cn−3 · · · c2c1c2 · · · cn+1cncn−1

rn−1 = cn−1cn−2 · · · c2c1c2c3 · · · cn+1cn

rn = cncn−1 · · · c2c1c2 · · · cn+1
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Proposition

N :=< r1, r2, . . . , rn > is an abelian normal subgroup of C̃n and
C̃n = Bn ⋊ N



Theorem (Peebles, S., Tchernev Weyman)

Let ρ1, ρ2 be two finite dimensional linear representations of C̃n. If

σd
p(ρ1(c2), ρ1(c3), . . . , ρ1(cn), ρ1(cn+1), ρ(t2), ..., ρ(tn),

ρ1(r1), . . . , ρ1(rn), ρ1(r−1
1 ), . . . , ρ1(r−1

n ))

= σd
p(ρ2(c2), ρ2(c3), . . . , ρ2(cn), ρ2(cn+1), ρ2(t2), ...ρ2(tn)

ρ2(r1), . . . , ρ2(rn), ρ2(r−1
1 ), . . . , ρ2(r−1

n )),

then χρ1 = χρ2 .



Some open questions

Q.1 Does the joint spectrum σd
p of other than Coxeter sets of

generators determine a representation up to an equaivalence?

Q.2 Does every finite group has a set of generators different from
the whole group whose joint spectrum determines a representation
up to an equivalence?

Q.3 Is a representation of a non-special finite Coxeter group is
irreducible if and only if the joint spectrum of the Coxeter
generators is irreducible?

Q.4 We saw that an appearance of a ”complex ellipse” in the joint
spectrum of two matrices indicates the existence of a
two-dimensional invariant subspace. Are there other surfaces
{P(x1, ..., xn) = 0} such that if they appear in the joint spectrum of
tuple of n matrices, these matrices have common invariant
subspace of dimension equal to the degree of P?
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THANK YOU!


