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Motivation

Droplet evaporation occurs
commonly in a vast range of
circumstances in nature,
industry and biology

neelywang.com

comsosmagazine.com
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Motivation

Droplet evaporation occurs
every day, with applications in
nature, industry and biology
Crucial process in technological
applications - inkjet printing,
coating, spray cooling, etc.
The aim of the project is to
understand droplet evaporation
on textured substrates
In this talk we look at the
evolution and lifetime of a
drying droplet in a shallow well
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The Model - Assumptions

r

z

R0−R0

−H0

θ

H0
R0
� 1 θ � 1Vapour z = h(r , t)

We consider a thin axisymmetric sessile droplet in a shallow
cylindrical axisymmetric well
Diffusion-limited evaporation under ambient conditions
Gravity is neglected - free surface determined by surface tension
Free surface evolves quasi-statically
Contact line remains pinned at the lip of the well throughout the
entire evaporation
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The Model - Prior to Touchdown

r
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R0−R0

θθ

z = h(r , t)

−H0

∇2c = 0

∂c
∂z = 0 ∂c

∂z = 0

c = csat

c → c∞

J

c is the vapour concentration in the air
J is the local evaporative flux
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The Model - Prior to Touchdown

r

z

R0−R0

∇2c = 0

∂c
∂z = 0 ∂c

∂z = 0c = csat

c → c∞

Figure: View of the droplet on the scale of the atmosphere

Height Profile: h(r , t) = hm

(
1− r2

R2
0

)
, hm = h(0, t) = R0θ

2

Volume: V (t) = Vwell + Vdrop = πH0R2
0 + πR3

0θ

4
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The Model - Prior to Touchdown

Mathematical model for a thin droplet evaporating in a shallow well
prior to touchdown

∇2c = 0 for the half space z > 0
c = csat on z = 0 for r ≤ R0

c → c∞ as |r| → ∞
∂c
∂z = 0 on z = 0 for r > R0

J = −D ∂c
∂z on z = 0 for r ≤ R0

ρ
dV
dt = −2π

∫ R0

0
J r dr
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The Vapour Problem - Prior to Touchdown

We rescale so that the problem for the concentration c of vapour is
∇2c = 0 for the half space z > 0

c = 1 on z = 0 for r ≤ 1
c → 0 as |r| → ∞

∂c
∂z = 0 on z = 0 for r > 1

J = −∂c
∂z on z = 0 for r ≤ 1

dV
dt = −2π

∫ 1

0
J r dr

where
h = hm(1− r2), hm = θ

2

V = πH0 + πθ

4
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Solution for Concentration - Prior to Touchdown

The exact solution for c is well known and may be written as

c = 2
π

sin−1
( 2

[(1 + r)2 + z2]1/2 + [(1− r)2 + z2]1/2

)

-4 -2 2 4
r

0.5

1

c

-2 -1 1 2
r

1

2

3

z

Figure: Plot of the concentration on z = 0 and a contour plot of c.
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Solution for the Flux - Prior to Touchdown
The evaporative flux from the free surface J is

J = −∂c
∂z

∣∣∣∣
z=0

= 2
π(1− r2)1/2 for r < 1

-1 0 1
r

1

2

3

J

Figure: Solution for the evaporative flux J prior to touchdown
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Evolution - Prior to Touchdown
dV
dt is given by

dV
dt = −2π

∫ 1

0
J r dr

=⇒ d
dt

(
πH0 + πθ

4

)
= −4

∫ 1

0

r
(1− r2)1/2 dr

=⇒ dV
dt = π

4
dθ
dt = −4

The evolution of the droplet prior to touchdown is therefore given by

V = V0 − 4t, V0 = V (0) = πH0 + π

4
θ = θ0 −

16
π

t, θ0 = θ(0) = 1
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Evolution - Prior to Touchdown

Using

V = V0 − 4t, V0 = V (0) = πH0 + π

4
θ = θ0 −

16
π

t, θ0 = θ(0) = 1

we now find tflat and ttouchdown to be

tflat = π

16 ≈ 0.1963

ttouchdown = π(1 + 2H0)
16
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The Droplet - After Touchdown

The free surface touches down at r = 0, z = −H0 at t = ttouchdown

Thereafter the droplet takes the form of an annulus of outer radius 1
and inner contact radius R = R(t)

r

z
∇2c = 0

−H0

1−1

−R R

Figure: Sketch of the annular droplet at some instant after touchdown
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The Droplet - After Touchdown

r

z

1−1

∇2c = 0

∂c
∂z = 0 ∂c

∂z = 0 ∂c
∂z = 0c = 1c = 1

c → 0

−R R

Figure: View of the droplet on the scale of the atmosphere after touchdown

Height Profile: h(r , t) = H0(r2 − 1− 2R2 log r)
1− R2 + 2R2 log r , R = R(t)

Volume: V (t) = πH0(1− R4 + 4R2 log R)
2(1− R2 + 2R2 log R)
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The Vapour Problem - After Touchdown

Mathematical model of an evaporating thin annular droplet in a
shallow well after touchdown

∇2c = 0 for the half space z > 0
c = 1 on z = 0 for R ≤ r ≤ 1

c → 0 as |r| → ∞
∂c
∂z = 0 on z = 0 for 0 ≤ r < R and for r > 1

J = −∂c
∂z on z = 0 for R ≤ r ≤ 1

dV
dt = −F (R), F (R) = 2π

∫ 1

R
J r dr

No simple closed form solution is available for c
Our main concern is finding the total flux F
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Solution - After Touchdown

How to find the evaporative flux J and total flux F ?

Following Cooke (1963) we first converted the above problem into an
integral equation for c
We used a method based on Chebyshev-Gauss quadrature to solve this
integral equation to obtain c and hence the local flux J and total flux F
We also used the finite-element package COMSOL to find the solution
for c and hence J and F
The two approaches were found to be in very good agreement for F
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Solution - After Touchdown
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r
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Figure: Contour plot of the concentration c and a plot of the evaporative flux J
for an annular droplet in R ≤ r ≤ 1 in the case R = 1/2
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Solution - After Touchdown

0 0.2 0.4 0.6 0.8 1
R0

1

2

3

4

F

Figure: The numerical solution for the total evaporative flux F , obtained via
COMSOL
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Lifetime

V = πH0(1− R4 + 4R2 log R)
2(1− R2 + 2R2 log R) = πH0f (R), dV

dt = −F (R)

=⇒ πH0f ′(R)dR
dt = −F (R)

Solving with the condition R(ttouchdown) = 0 gives

t = ttouchdown − πH0

∫ R

0

f ′(R̂)
F (R̂)

dR̂

Then using the fact that R(tlifetime) = 1 we obtain

tlifetime = ttouchdown + παH0 = π

16
[
1 + 2(1 + 8α)H0

]
,

where α = −
∫ 1

0

f ′(R)
F (R) dR ≈ 0.1369
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Evolution - R and V
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Figure: Evolution of the moving inner contact radius R and the volume V for
t = 0 . . . tlifetime in the case H0 = 1
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Comparison with experiments

We compare the theory to
experiments conducted in Durham
on droplets of methyl benzoate
evaporating (into ambient air) from
the wells in polished glass substrates
coated with ITO

Droplets were deposited into wells
of radius 30, 50 and 75 µm
Behaviour of the height profile, R,
and V were measured
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Comparison with experiments

The following parameter values were used in the comparison of the
theory with experiments

D = 6.899× 10−6 m2 s−1, ρ = 1.085× 103 kg m−3,

csat =
{

2.330× 10−3 kg m−3 Book Value 1
2.252× 10−3 kg m−3 Book Value 2

c∞ = 0
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Comparison with Experiments - Height Profile
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Figure: Comparison of the height profile predicted by the theory with the
measured experimental values of a methyl benzoate droplet in a well of radius
50 µm at times t = 0, 0.26 . . . 4.16 s
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Comparison with Experiments - R
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Figure: Comparison of the evolution of the moving inner contact radius R
predicted by the theory with the measured experimental values for droplets of
methyl benzoate in wells of radii 30, 50 and 75 µm
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Comparison with Experiments - V
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Figure: Comparison of the evolution of the volume V predicted by the theory with
the measured experimental values for droplets of methyl benzoate in wells of radii
30, 50 and 75 µm
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Comparison with Experiments - Critical Times

Well Dimensions (µm) Critical Times Experiments Theory
BV 2 % diff.

tflat 0.07 s 0.06 s −14%
R0 = 30, H0 = 2.38 ttouchdown 1.90 s 1.95 s +3%

tlifetime 3.98 s 4.03 s +1%
tflat 0.23 s 0.23 s ±0%

R0 = 50, H0 = 1.87 ttouchdown 2.88 s 2.79 s −3%
tlifetime 5.44 s 5.60 s +3%

tflat 0.46 s 0.49 s +6%
R0 = 75, H0 = 2.39 ttouchdown 5.05 s 5.40 s +7%

tlifetime 10.40 s 10.79 s +4%

Table: Comparison of experimental results for the critical times with theory
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Different Shapes of Well

We have extended this approach
to wells with height profile

z = H(r) = −H0
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Conclusions and Future Work

We used the diffusion-limited evaporation model to describe the
evolution of a thin droplet in a shallow well until total evaporation at
tlifetime

We found the solution prior to touchdown analytically
We used the COMSOL Multiphysics package and Chebyshev-Gauss
quadrature to obtain the evaporative flux J and the total flux F after
touchdown
We found that the lifetime of the droplet is linear in H0

We found good agreement with experimental data for the height
profile, R, V and the critical times
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Future Work

Deposition and ”coffee stains” from an evaporating droplet inside a
well

Extend analysis to other modes of evaporation
Multicomponent droplets
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Different Shapes of Wells

For 0 < n < 2
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Different Shapes of Wells

r

z

0.2 0.4 0.6 0.8 1

−1

−0.5

0.5

Figure: Evolution of the height profile of a droplet in a conical well from the
theory where n=1.
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Different Shapes of Wells

For n = 2
ttouchdown = tlifetime = π(1 + 2H0)
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Different Shapes of Wells
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Figure: Evolution of the height profile of a droplet in a parabolic well from the
theory where n=2.
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Different Shapes of Wells

For 2 < n <∞

ttouchdown = π(1 + 2H0)
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Different Shapes of Wells
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Figure: Evolution of the height profile in an axisymmetric well from the theory
where n=9.
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Different Shapes of Wells - Evolution of α
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Figure: Evolution of parameter α for varying n.
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Experimental Analysis
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Figure: Experimental values for the height in the middle of the droplet hm for
three wells of radius 30, 50 and 75 µm.
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Experimental Analysis
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Parabolic Fit
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Figure: Parabolic fits of the experimental values for the height profile of a droplet
in wells of radius 30, 50 and 75 µm before touchdown at time intervals of (a)
t = 0, 0.18 . . . 1.80 s, (b) t = 0, 0.26 . . . 2.60 s and (c) t = 0, 0.48 . . . 4.80 s.
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Experimental Analysis

Log Fit
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Figure: Modified fits of the experimental values for the height profile of a droplet
in wells of radius 30, 50 and 75 µm after touchdown at time intervals of (a)
t = 1.92, 1.98 . . . 2.52 s, (b) t = 3.12, 3.18 . . . 3.78 s and (c) t = 5.68, 5.84
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