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Motivation

@ Droplet evaporation occurs
commonly in a vast range of
circumstances in nature,
industry and biology

comsosmagazine.com
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@ Droplet evaporation occurs
every day, with applications in
nature, industry and biology

@ Crucial process in technological
applications - inkjet printing,
coating, spray cooling, etc.

techxplore.com
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@ Droplet evaporation occurs
every day, with applications in
nature, industry and biology

@ Crucial process in technological z
applications - inkjet printing,
coating, spray cooling, etc.

@ The aim of the project is to ] r
understand droplet evaporation —Ro Ro
on textured substrates —Ho

@ In this talk we look at the
evolution and lifetime of a
drying droplet in a shallow well
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0 r
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@ We consider a thin axisymmetric sessile droplet in a shallow
cylindrical axisymmetric well
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The Model - Assumptions
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Vapour

“Ro Ro
—Ho

@ We consider a thin axisymmetric sessile droplet in a shallow
cylindrical axisymmetric well

@ Diffusion-limited evaporation under ambient conditions
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The Model - Assumptions

z
0 r
—Ro Ro
_H0
@ We consider a thin axisymmetric sessile droplet in a shallow
cylindrical axisymmetric well
@ Diffusion-limited evaporation under ambient conditions
@ Gravity is neglected - free surface determined by surface tension
@ Free surface evolves quasi-statically
@ Contact line remains pinned at the lip of the well throughout the

entire evaporation
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The Model - Prior to Touchdown

z=h(r,t)
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The Model - Prior to Touchdown

z=h(r,t)

_HO

@ c is the vapour concentration in the air
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The Model - Prior to Touchdown

z
V2c=0
z=h(r,t)

0 0 g

0 0
oc _—RO Ro dc ~0

oz dz

—H,

@ c is the vapour concentration in the air
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The Model - Prior to Touchdown

V2c=0 € Co
z=h(r,t)
c= Csat
0 0 g
8(:?_ —Ro Ro 8c¢_ 0
0z 0z
—H,

@ c is the vapour concentration in the air
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The Model - Prior to Touchdown

Vic=0 €= Coo

rJ o~ z=h(r,t)

\\ \ A

oW € = Csat
0 0 g
oc __RO Ro oc —0
oz dz
—H,

@ c is the vapour concentration in the air

@ J is the local evaporative flux
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The Model - Prior to Touchdown

V2c=0 i C — Cxo

0 0

dc _, . 9 _,

0z = Csat 0z > r
—Ry Ro

Figure: View of the droplet on the scale of the atmosphere
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The Model - Prior to Touchdown

V3c=0 N C— Cxo

0 0

9€ _ o e 9% _o

0z = Gsat 0z > r
—Ry Ro

Figure: View of the droplet on the scale of the atmosphere
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Height Profile:  h(r,t) = Am (1 - R§>’ hm = h(0,1) = ==
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The Model - Prior to Touchdown

V3c=0 N C— Cxo

0 0

9€ _ o e 9% _o

0z = Gsat 0z > r
—Ry Ro

Figure: View of the droplet on the scale of the atmosphere

r2 R09

Height Profile:  h(r,t) = Am (1 - R§>’ hm = h(0,1) = ==

Tngﬁ
4

Volume:  V/(t) = Viyen + Vigrop = THoRG +
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The Model - Prior to Touchdown

@ Mathematical model for a thin droplet evaporating in a shallow well
prior to touchdown

V2c=0 for the half space z > 0

C = Csat onz=0forr <Ry
€ — Cxo as |r| = oo
$:0 onz=0forr>Ry

0z
J:—D% onz=0forr< Ry
0z
dv Ro
pI:—27T A Jrdr
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The Vapour Problem - Prior to Touchdown

@ We rescale so that the problem for the concentration ¢ of vapour is

V2c=0 for the half space z > 0
c=1 onz=0forr<1
c—0 as |r| — oo
%:0 onz=0forr>1

0z
J:—g onz=0forr<1
0z
1
dV:—27r/ Jrdr
dt 0

BIRS 2019
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The Vapour Problem - Prior to Touchdown

@ We rescale so that the problem for the concentration ¢ of vapour is
V2c=0 for the half space z > 0
c=1 onz=0forr<1

c—0 as |r| — oo

%:0 onz=0forr>1
0z
J:—g onz=0forr<1
0z
1
dV:—27r/ Jrdr
dt 0
@ where 0
h=hm(1—r?), hm_5
0
V:T('HO—’—T
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Solution for Concentration - Prior to Touchdown

@ The exact solution for ¢ is well known and may be written as
2

- 2
c= ;sm 1 ({(1 n r)2 + 22]1/2 +[(1 - r)2 + 22]1/2>

N

o

N

7

N

1 2

4 2 2 4 Z '

Figure: Plot of the concentration on z =0 and a contour plot of c.
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Solution for the Flux - Prior to Touchdown

@ The evaporative flux from the free surface J is

oc 2
J=-2 - < g 1
dz|,_  m(I_r2p2 TS
J

! 3 :

! 2| !

| 1} |

: : ;
-1 0 1

Figure: Solution for the evaporative flux J prior to touchdown
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Evolution - Prior to Touchdown

° ﬂ is given b
pm g Y

1
dv=—27r/ Jrdr
dt 0
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Evolution - Prior to Touchdown

° ﬂ is given b
pm g Y

—=—27T/ Jrdr

:>d<H+ >__4/1r dr
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Evolution - Prior to Touchdown

° ﬂ is given b
pm g Y

—=—27T/ Jrdr

e — —_—
dt\"° T s o (1= r2)i/2
dvV  wdo

dt  4dt
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Evolution - Prior to Touchdown

° ﬂ is given b
pm g Y

:—27T/ Jrdr

)

dt 4 o (1—r2)i
dv  wdo
dt  4dt

@ The evolution of the droplet prior to touchdown is therefore given by
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Evolution - Prior to Touchdown

° ﬂ is given b
pm g Y

—:—27T/ Jrdr

e — —_—
dt\"° T s o (1= r2)i/2
dvV  wdo

dt  4dt

@ The evolution of the droplet prior to touchdown is therefore given by
V:V0—4t VOZV(O):TFH()—FE

4
1
9—90—£t 9029(0):1
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Evolution - Prior to Touchdown

@ Using
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Evolution - Prior to Touchdown

@ Using

V =

Vo—4t, Vo= V(0)=nHo+ ~

4
1

0:00——6t, 00:9(0):1
m

@ we now find g and tiouchdown tO be
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The Droplet - After

@ The free surface touches down at r =0, z = —Hp at t = tiouchdown

H.-M. D'Ambrosio (Strathclyde) Droplet Evaporation BIRS 2019 15/32



The Droplet - After

@ The free surface touches down at r =0, z = —Hp at t = tiouchdown

@ Thereafter the droplet takes the form of an annulus of outer radius 1
and inner contact radius R = R(t)
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The Droplet - After

@ The free surface touches down at r =0, z = —Hp at t = tiouchdown

@ Thereafter the droplet takes the form of an annulus of outer radius 1
and inner contact radius R = R(t)

V4

V2c=0

—H,
-R R

Figure: Sketch of the annular droplet at some instant after touchdown
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The Droplet - After Touchdown

oc_, oc|_, o,
Jz c=1 Oz| c=1 8zi)r

-1 -R R 1

Figure: View of the droplet on the scale of the atmosphere after touchdown
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The Droplet - After Touchdown

acio 8c70 8c70

Jz _ c=1 oz| c=1 E*)

——— r
-1 -R R 1

Figure: View of the droplet on the scale of the atmosphere after touchdown

Ho(r? —1—2R?logr)
1—-R2+2R?logr ’

Height Profile:  h(r,t) = R = R(t)
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The Droplet - After Touchdown

acio 8Cf0 8c70

Jz _ c=1 oz| c=1 E*)

——— r
-1 -R R 1

Figure: View of the droplet on the scale of the atmosphere after touchdown

Ho(r? —1—2R?logr)
1—-R2+2R?logr ’

mHo(1 — R* + 4R%log R)

2(1 — R?+2R?log R)

Height Profile:  h(r,t) = R = R(t)

Volume: V/(t) =
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The Vapour Problem - After Touchdown

@ Mathematical model of an evaporating thin annular droplet in a
shallow well after touchdown

V2c=0 for the half space z > 0
c=1 onz=0for R<r<1

c—0 as |r| — oo
oc
8—20 onz=0for0<r<Randforr>1
z
J:—% onz=0for R<r<1
0z
vV 1
Vv _Fr), F(R):27r/ Jrdr
dt R
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The Vapour Problem - After Touchdown

@ Mathematical model of an evaporating thin annular droplet in a
shallow well after touchdown

V2c=0 for the half space z > 0
c=1 onz=0for R<r<1

c—0 as |r| — oo
Oc
8—20 onz=0for0<r<Randforr>1
z
J:—% onz=0for R<r<1
0z
dVv

1
Y _ _F(R), F(R)= 27r/ Jrdr
dt R

@ No simple closed form solution is available for ¢
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The Vapour Problem - After Touchdown

@ Mathematical model of an evaporating thin annular droplet in a
shallow well after touchdown

V2c=0 for the half space z > 0
c=1 onz=0for R<r<1

c—0 as |r| — oo
Oc
8—20 onz=0for0<r<Randforr>1
z
J:—% onz=0for R<r<1
0z
dVv

1
Y _ _F(R), F(R)= 27r/ Jrdr
dt R

@ No simple closed form solution is available for ¢

@ Our main concern is finding the total flux F
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Solution - After Touchdown

@ How to find the evaporative flux J and total flux F?
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Solution - After Touchdown

@ How to find the evaporative flux J and total flux F?
o Following Cooke (1963) we first converted the above problem into an

integral equation for ¢
o We used a method based on Chebyshev-Gauss quadrature to solve this
integral equation to obtain ¢ and hence the local flux J and total flux F
o We also used the finite-element package COMSOL to find the solution

for ¢ and hence J and F
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Solution - After Touchdown

@ How to find the evaporative flux J and total flux F?

o Following Cooke (1963) we first converted the above problem into an
integral equation for ¢

o We used a method based on Chebyshev-Gauss quadrature to solve this
integral equation to obtain ¢ and hence the local flux J and total flux F

o We also used the finite-element package COMSOL to find the solution
for ¢ and hence J and F

e The two approaches were found to be in very good agreement for F

18/32
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Solution - After Touchdown

=z i

0 0.5 1.0 1.5 0 02 04 06 08 10 1.2

r r
Figure: Contour plot of the concentration ¢ and a plot of the evaporative flux J
for an annular droplet in R < r <1 in the case R=1/2
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Solution - After Touchdown

0 ' ' ' ' R
0O 02 04 06 08 1

Figure: The numerical solution for the total evaporative flux F, obtained via
COMSOL
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mHo(1 — R* 4+ 4R?log R) dv

= tHof(R 9 _ _F(R
20— R2+2R?IogR) _ "Hof(R). (k)

V =
dt
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mHo(1 — R* 4+ 4R?log R) dv

= tHof(R 9 _ _F(R
20— R2+2R?IogR) _ "Hof(R). (k)

V =
dt

dR

- TI'Hof/(R) pm

= —F(R)
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mHo(1 — R* 4+ 4R?log R) dv

V= = tHof(R — =—F(R
20— R2+2R?IogR) _ MOf(R). (R)
dR
= aHof(R) S = —F(R)

@ Solving with the condition R(tiouchdown) = 0 gives
R f1(R)
F(R)

t = tiouchdown — WHO/O dR
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mHo(1 — R* 4+ 4R?log R) dv

V= = tHof(R — =—F(R
20— R2+2R?IogR) _ MOf(R). (R)
dR
= aHof(R) S = —F(R)

@ Solving with the condition R(tiouchdown) = 0 gives
R f1(R)
F(R)

@ Then using the fact that R(%jifetime) = 1 we obtain

t = tiouchdown — FHO/O dR

T
tiifetime = ttouchdown + TaHy = T6 [1 + 2(1 + 80£)H0],

Lf(R)

dR ~ 0.1369
o F(R)

where o = —
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Evolution - R and V

0.5¢ ol

ttouchdown

Lifetime

0 : : : : —t 0
0 02 04 06 08 1 0 02 04 06 08 1

Figure: Evolution of the moving inner contact radius R and the volume V for
t =0... tifetime in the case Hy =1
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Comparison with experiments

@ We compare the theory to
experiments conducted in Durham
on droplets of methyl benzoate
evaporating (into ambient air) from
the wells in polished glass substrates
coated with ITO
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Comparison with experiments

@ We compare the theory to
experiments conducted in Durham
on droplets of methyl benzoate
evaporating (into ambient air) from
the wells in polished glass substrates
coated with ITO

@ Droplets were deposited into wells
of radius 30, 50 and 75 um

@ Behaviour of the height profile, R,
and V were measured
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Comparison with experiments

@ The following parameter values were used in the comparison of the
theory with experiments

D=6.899x10°m?s ! p=1.085x10% kgm3,

{2330 x 1073 kg m™* Book Value 1
=t 12.252 x 1073 kg m™3  Book Value 2

Coo =0
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Comparison with Experiments - Height Profile

z
5.x1077} — Theory e Experimental Values
. \ ——y — n — r
0.00007  0,00Q0 0 06006—2—6H%K000Z—28005
-5.x107f
-1.x10=5%
-1.5x10%
3 ° e
—i ry ° )
_2.x1076L

Figure: Comparison of the height profile predicted by the theory with the
measured experimental values of a methyl benzoate droplet in a well of radius
50 um at times t =0, 0.26 ...4.16 s
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Comparison with Experiments - R

R/RO
1.0 -
0.8
0.6
0.4
—— Theory Book Value 1
----- Theory Book Value 2
0.2 @ Threshold Method
i
b m Intersection Method
d
0.0 . t
0 2 8 10

Figure: Comparison of the evolution of the moving inner contact radius R
predicted by the theory with the measured experimental values for droplets of
methyl benzoate in wells of radii 30, 50 and 75 um
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Comparison with Experiments - V

—— Theory Book Value 1

----- Theory Book Value 2
0.8}
o Experimental values

0.6

0.4

0.2

0 2 4 6 8 10

Figure: Comparison of the evolution of the volume V predicted by the theory with
the measured experimental values for droplets of methyl benzoate in wells of radii
30, 50 and 75 um
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Comparison with Experiments - Critical Times

Well Dimensions (um) || Critical Times | Experiments Tg\e}o;y % diff.
that 0.07 s 0.06s | —14%

Ro = 30, Hy = 2.38 tiouchdown 1.90 s 1955 +3%
tiifetime 3.98 s 403s | +1%

thiat 0.23s 0.23s +0%

Ro =50, Hy = 1.87 tiouchdown 2.88s 2.79 s -3%
tifetime 5.44 s 560s | +3%

tlat 0.46 s 049s | +6%

Ro =75, Hy =2.39 tiouchdown 5.05s 540 s +7%
tiifetime 10.40 s 10.79s | +4%

Table: Comparison of experimental results for the critical times with theory
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Different Shapes of Well

@ We have extended this approach
to wells with height profile

o=l ()

H.-M. D'Ambrosio (Strathclyde) Droplet Evaporation BIRS 2019 29/32



Different Shapes of Well

@ We have extended this approach
to wells with height profile

o=l ()

z
Hy=0
orn=20

-

r
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Different Shapes of Well

@ We have extended this approach
to wells with height profile

= H(r) = —Ho [1 - <fgo)]

V4

Hy=0
orn=20

Ry

b
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Different Shapes of Well

p4
@ We have extended this approach n="2

to wells with height profile

— H(r) = —Ho [1 - <;O)] ol ~__ R0

Hy=0
orn=20

r

Ro

b
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Different Shapes of Well

p4
@ We have extended this approach n="2

to wells with height profile

= H(r) = —Ho [1 - </£0) ] Aol ~__ " Fo
z z
g"nzzoo T 2<n< oo

r r

Ro Hl\__| /Ro

b
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Different Shapes of Well

p4
@ We have extended this approach n="2

to wells with height profile

= H(r) = —Ho [1 - </£0) ] Aol ~__ " Fo
z z
g"nzzoo T 2<n< oo

r r

Ro Hl\__| /Ro

n — oo

~or
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Conclusions and Future Work

@ We used the diffusion-limited evaporation model to describe the
evolution of a thin droplet in a shallow well until total evaporation at

Liifetime
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Conclusions and Future Work
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Conclusions and Future Work

We used the diffusion-limited evaporation model to describe the
evolution of a thin droplet in a shallow well until total evaporation at

Liifetime

We found the solution prior to touchdown analytically

We used the COMSOL Multiphysics package and Chebyshev-Gauss
quadrature to obtain the evaporative flux J and the total flux F after
touchdown

We found that the lifetime of the droplet is linear in Hy

We found good agreement with experimental data for the height
profile, R, V and the critical times

H.-M. D'Ambrosio (Strathclyde) Droplet Evaporation BIRS 2019 30/32



@ Deposition and "coffee stains” from an evaporating droplet inside a
well
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@ Deposition and "coffee stains” from an evaporating droplet inside a
well

@ Extend analysis to other modes of evaporation

@ Multicomponent droplets
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Different Shapes of Wells
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Different Shapes of Wells

0.51

Figure: Evolution of the height profile of a droplet in a conical well from the
theory where n=1.
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Different Shapes of Wells
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Different Shapes of Wells

0.5 1

0.2 0Z 06 —— 4

Figure: Evolution of the height profile of a droplet in a parabolic well from the
theory where n=2.
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Different Shapes of Wells
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nt Shapes of Wells

Figure: Evolution of the height profile in an axisymmetric well from the theory
where n=9.
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Different Shapes of Wells - Evolution of «
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Figure: Evolution of parameter « for varying n.
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Experimental Analysis

h/HO

e

4 6

4 RO 30 microns
e RO 50 microns
= RO 75 microns

— Linear Fit

Figure: Experimental values for the height in the middle of the droplet h,, for

three wells of radius 30, 50 and 75 pm.
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Experimental Analysis

= — r ]

— 85520.000030 B
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— Parabolic Fit

« Experimental Values

— Parabolic Fit

« Experimental Values

— Parabolic Fit

(b) Ro =50 pum

« Experimental Values

(c) Ro =75 pm

Figure: Parabolic fits of the experimental values for the height profile of a droplet
in wells of radius 30, 50 and 75 um before touchdown at time intervals of (a)
t=0,0.18...1.80s, (b) t =0, 0.26 ...2.60 s and (c).t =.0, 0.48 ...4.80s.
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Experimental Analysis
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Figure: Modified fits of the experimental values for the height profile of a droplet
in wells of radius 30, 50 and 75 um after touchdown at time intervals of (a)
t=1.92 198 ...252s, (b) t =3.12,3.18 ...3.78 s and (c) t = 5.68, 5.84
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