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H=-A+6V

where

o (Au)(x) = X2}, _x=1(u(y) — u(x)) is the discrete Laplacian;
e (Vu)(x) = Viu(x) is a random potential;

e Vi € {0,1} are i.i.d. Bernoulli variables;

e § > 0 is the noise strength.

One word on physics motivation: model the motion of an electron
moving in a randomly disordered crystal (P.W. Anderson 1958).

Remark: the spectrum o(H) = [0, 4d + 9].

Remark: For concreteness we assume § = 1, and P(V, = 0) = 1/2.
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There is also a notion of dynamic localization which is more
directly related to the transport of the electron.
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We say that H has “Anderson localization” in the spectral interval
I Co(H) if

inf sup et™]y(x)| < oo,
t

>0 yezd
holds for any ¢ satisfying the following:
o :79 5 R,
e \c/,
o HyY = X\,

® infososupeza (1 + [x])"[Y(x)| < oo.

That is, every polynomially bounded solution of the eigenfunction
equation Hi = Ay with A € [ is an exponentially decaying
eigenfunction.

Remark: Except for a spectral measure 0, each spectrum value has
a polynomially bounded solution to the eigenfunction equation.
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Theorem. (D.—Smart 18) In dimension d = 2 there is an € > 0
such that, almost surely, H has Anderson localization in [0, €].

Closely related rigorous mathematical results:

o If d =1, then H almost surely has Anderson localization in all of
o(H) (Kunz=Souillard 80 and Carmona-Klein—Martinelli 87).

e If the noise is continuous (that is, the random variables

Vi € [0, 1] have bounded density), then H almost surely has
Anderson localization in [0, €] (Frohlich—Spencer 83)

e If the noise is continuous (or a sufficiently nice discrete
approximation of a continuous noise) and § > C is large, then H
almost surely has Anderson localization in all of o(H)
(Aizenman—Molchanov 93, Frohlich—-Martinelli-Scoppola—Spencer
85 and Imbrie 16).

o If the lattice is replaced by the continuum R, then H almost
surely has Anderson localization in [0, €] (Bourgain—Kenig 05).
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Theorem. (Exponential decay for resolvent; D.-Smart 18)
Suppose d = 2. For any 1/2>7>0 therearea >1>¢>0
such that, for every energy A € [0, €] and square Q C Z? of side
length L > «, (write Hg = 19H1(g)

Pl|(Ho — X) " (x,y)| < et =PV for x,y e Q] > 1 L.

Remark: To deduce Anderson localization, intuition is that
resolvent decay implies eigenfunction decay. But a rigorous proof is
highly nontrivial, and done in Bourgain—Kenig 05 and
Germinet—Klein 13 (by Peierls argument and bootstrapping for
multiple times).

Remark: Resolvent decay was established for R? in Bourgain—Kenig
05, via a powerful framework of multi-scale analysis.
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Unique continuation principle

Unique continuation principle (UCP) on RY: if u € C?(Bg),
|u(0)| =1, |Au| < a|ul, and |u| < «, then for some 5 > 0

min  max _|u(y)] Zﬁ_le_5R4/3l°gR.

xEBRr/2 yeBi(x)

UCP is a key ingredient in Bourgain—Kenig 05 for R which does
not hold for Z9, even for harmonic functions.

e In Z? there exists a non-zero harmonic function which vanishes
on half of the plane.

e In Z3 there exists a non-zero harmonic function which vanishes
except on a plane.
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containment relation holds for any pair in \A), then

|A|l <2712,

Very roughly speaking, in Bourgain—Kenig, Sperner’'s lemma is
applied in junction with UCP to derive a Wegner type of estimate,
i.e., for a cube of size L and 1 < k < L9, the probability that the
k-th eigenvalue is in an interval of size e~ is at most
o(L=9/?),

Remark: The 4/3 above corresponds to 4/3 in UCP. The estimate
is far from being optimal, but turns out sufficient.

By UCP, flip the potential at each site will perturb the eigenvalue
by e~ L Thus, Sperner’s lemma implies the desired estimate.

The key point is that every site responds to the potential
perturbation by UCP.
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A generalization of Sperner's lemma

Definition. Suppose p € (0,1]. A set A of subsets of {1,...,n} is
p-Sperner if, for every A € A, there is a set B(A) C {1,....,n} \ A
such that |B(A)| > p(n— |A|) and A C A’ € A implies
ANBA)=o.
Remark: Sperner family is 1-Sperner with B(A) = {1, ..., n} \ A.
Theorem. If p € (0,1] and A is a p-Sperner set of subsets of
{1, ..., n}, then

‘A| < 2nn—1/2p—1'

Thus, we only need a version of UCP on Z¢ with size of support

> v volume.
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Key challenge for us is to deal with potentials.

e In the worst case potential, there exists a harmonic function
supported only on a diagonal. We have to use “randomness” of
the potential in some way.

e A key step in Buhovsky-Logunov-Malinnikova-Sodin is to study
the propagation of the harmonic function with 0-boundary on west
diagonals and input on the south diagonals.



A key step in Buhovsky-Logunov-Malinnikova-Sodin

0000000
00000000
0000000
000000
00000
0000000000
O000000O0
0000000

00000

[eeXeXe)

[e)eXe]
(o))
o

[ ]
[ X X ]
L X JoX X J
[ X JNoNoNoX X J
[ X NoNoXoXoXoX X J
[ X JeXoXoXoXoXoNeoX X )
[ X JNeoXoXoXoXoNoNoNeXeoX ]
00000000000
00000000000
0000000000
000000000

00000000

o
(¢]
(¢]
o
(¢]
o



A key step in Buhovsky-Logunov-Malinnikova-Sodin

e Given values of a harmonic
function on black and red bullets
o (in particular, assume 0 on
(o) . .
000 black), one can inductively
O .
00000 determine the values on all
0000000 circles;
(o)
O0O0O000000
O0O0O000O0000
O0O0O0000O0O0
O00O00000
O0000O00
O0O0O0O0O00000
O0O0O00000
O000000
O000O0
O00O0

[e)eXe]
(o))
o

[ ]
[ X X ]
L X JoX X J
[ X JNoNoNoX X J
[ X NoNoXoXoXoX X J
[ X JeXoXoXoXoXoNeoX X )
[ X JNeoXoXoXoXoNoNoNeXeoX ]
00000000000
00000000000
0000000000
[ X NeJeoXoXoXoXoXeXe]
[ X JNoNoXoXeXeXeXe]

o
(¢]
(¢]
o
(¢]
o



A key step in Buhovsky-Logunov-Malinnikova-Sodin

[ ]
00
0000
000000
000000000
0000000000
000000000000
[ X _JeXeXeXoJoJooXoXoXeXo)oNeo]
00000000 0OOOOOOO0OO
00000000000 OOOOOOOO0
0000000000000 OOOOOOOO
0000000000000 OOOOOOOO0OO
0000000000000 0OOOOOOOO0OO
0000000000000 OOOOOOOOOO
0000000000 OOOOOOOOOO
0000000000 OOOOOOOO
00000000000 OOOOO
0000000000000 O0
000000000000

0000000000
00000000
(X ] (o))

o

[e}exe]
@000
L o]
(]

e Given values of a harmonic
function on black and red bullets
(in particular, assume 0 on
black), one can inductively
determine the values on all
circles;

e The values on blue circles is a
polynomial on its northeast
coordinate;



A key step in Buhovsky-Logunov-Malinnikova-Sodin

e Given values of a harmonic
function on black and red bullets

[ ]
[ X X6 . .
®e000 (in particular, assume 0 on
000000 . .
00000000 black), one can inductively
[ X NoNoNoNoNoNoNoXoXe) .
©000000000000 determine the values on all
[ X _JoXoNoXoXoXeXoXoNoRoXoXoXe) .
[ X _NeXeooNoXoXoXoXoXoNoXoRoXoXoXe) CIrCles;
[ X _NoXooXoNoNoNoXoXoNoJoRoRoXoXoXoXe] . .
©00000000000000000000 e [he values on blue circles is a
0000000000000 OOOOOOOOOO . .
[ X JoNoJoNoJoNoNoNoRoXoXoXoXoXNOoNONONONONONOXO) polynomlal on |tS northeast
[ X _NoXoXoXoXeXeJoNoJoXoXoXoXoXoNoNoRoXoXoXeXe] .
©00000000000000000000 coordinate:
0000000000000 OOOOOO ! ) )
©0000000000000000 e Apply Remez ineauality:
[ X _NoXoXoNoXoNoXoRoXoNoNoROXO] nd
0000 0OOOOOO0OO
00090000000 max; |p| < (4[1]/[1'])* max [p|
©20000000 for a polynomial p of degree d.
O

[e}exe]
@000
L o]

(]



A key step in Buhovsky-Logunov-Malinnikova-Sodin

e Given values of a harmonic
function on black and red bullets

[ ]
[ X X6 . .
®e000 (in particular, assume 0 on
000000 . .
00000000 black), one can inductively
[ X NoNoNoNoNoNoNoXoXe) .
©000000000000 determine the values on all
[ X _JoXoNoXoXoXeXoXoNoRoXoXoXe) .
[ X _NeXeooNoXoXoXoXoXoNoXoRoXoXoXe) CIrCles;
[ X _NoXooXoNoNoNoXoXoNoJoRoRoXoXoXoXe] . .
©00000000000000000000 e [he values on blue circles is a
0000000000000 OOOOOOOOOO . .
[ X JoNoJoNoJoNoNoNoRoXoXoXoXoXNOoNONONONONONOXO) polynomlal on |tS northeast
[ X _NoXoXoXoXeXeJoNoJoXoXoXoXoXoNoNoRoXoXoXeXe] .
©00000000000000000000 coordinate:
0000000000000 OOOOOO ! ) )
©0000000000000000 e Apply Remez ineauality:
[ X _NoXoXoNoXoNoXoRoXoNoNoROXO] 1nd
0000 0OOOOOO0OO

00090000000 max; |p| < (4[1]/[1'])* max [p|
©90000000 for a polynomial p of degree d.
o Conclusion: If blue circles are

[o)eXe]
@000
00 X L.
° bounded on half fraction, it is
bounded on all (up to an
exponential factor).



Main challenge with presence of potentials

[ ]
00
0000
[ X _JeXeXeXeXe)
00000000
0000000000
000000000000
0000000000000 OO
0000000000 OOOOOOO
[ X JeJeoXeXeXeXoXoJoNooJoXoXoXoRoRoKo]
00000000000 0OOOOOOO0O0OO
0000000000000 OOOOOOOOOO
0000000000000 OOOOOOOOOO
00000000000 0OOOOOOOOOOOO
000000000 OOOOOOOOOOO
®@0000000O00O00OO0O0O0O0OO0O0
0000000000000 0O0OO
000000000000 0OO
000000000000
®000000O0O0OO0O0
®@000000O0O0O
000000
®@000O0
L X Je]
L]



Main challenge with presence of potentials

Our main challenge: the presence
° of potentials eliminates the
00

0000 polynomial structure.
[ X _NoXoNoNoXe)
[ X _JoNoXoNoXoXeXe]
[ X _JoJeXoJoXoXoXeXoXe)
[ X _JoJeXoJoXoJoXeXoXoXoke)
000000000000 OO
000000000 OOOOOO0OO
00000000 OOOOOOOOOOO
0000000000000 OOOOOOOO
0000000000000 OOOOOOOO0OO
0000000000000 OOOOOOOOOO
000000000000 OOOOOOOOOOO
000000000 OOOOOOOOOOO
0000000000000 OOOOOO
0000000 O0OOOOOOOOOO
L X _JoleoXoJoXeJoXoXoXoNooXoXo)
000000000000
0000000000
00000000
000000
®000O0
[ X Xe]
[ ]



Main challenge with presence of potentials

[ ]
00
0000
[ X _JeXeXeXeXe)
00000000
0000000000
000000000000
0000000000000 OO
0000000000 OOOOOOO
[ X JeJeoXeXeXeXoXoJoNooJoXoXoXoRoRoKo]
00000000000 0OOOOOOO0O0OO
0000000000000 OOOOOOOOOO
0000000000000 OOOOOOOOOO
00000000000 0OOOOOOOOOOOO
000000000 OOOOOOOOOOO
®@0000000O00O00OO0O0O0O0OO0O0
0000000000000 0O0OO
000000000000 0OO
000000000000
®000000O0O0OO0O0
®@000000O0O0O

Our main challenge: the presence
of potentials eliminates the
polynomial structure.

Our main idea: Show that if the
max on red bullets is 1, then at
least a linear fraction of blue
circles is lower bounded by
exponential decay.

e Apply union bound with
regularity on red input.

e Regularity is poor due to
inhomogeneity for influences
from different red bullets.

e Thus can only work in a thin
rectangle.
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Recent progress on d = 3

Linjun Li (Penn) and Lingfu Zhang (Princeton) proved an
analogous result for d = 3.

e By our work, the remaining challenge for d = 3 is to prove a
version of UCP where the support (with exponential lower bound)
is much larger than v/ volume.

e In d = 2, proving such a UCP necessarily has to use the
randomness of the potential, as the worst potential has solutions
(to eigenfunction equation) supported on a diagonal line.

e But, in d = 3, it seems even with worst potential the support of
any solution is at least two-dimensional.

e Li—Zhang proved a weaker version: for d = 3, with any potential
any solution has support with exponential lower bound on at least
N3/2+¢ vertices.
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Happy birthday to HT!
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