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Motivation

Booms and bust are common in Nature
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1700-year series of Pacific sardine and northern anchovy
biomasses off California and Baja California. Source: “History of
Pacific Sardine and Northern Anchovy Populations”,
Baumgartner et. al. CALCOFI Rep. 33 (1992).



Motivation
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Outbreak intensities of the Australian plague Locusts
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http://www.agriculture.gov.au/pests-diseases-weeds/locusts



Motivation

Outline

@ A three species predator-prey model with timescale
separation:

@ Long transient dynamics in a regime close to a supercritical
Hopf bifurcation.

@ Underlying mechanism leading to transition to asymptotics.

© Predict the occurrence of an outbreak based on the
analysis.

© Effect of stochasticity near the Hopf bifurcation.

@ Distribution of the return time between two outbreaks.



The Model

Nondimensional Model

X - prey density,
y, Z - predators’ densities.

x' :x(1 —X— g5~ Bﬁx) = x¢(x,y,2)
v =ey (5% - c—anz) = eyx(x.y.2) (1)
zZ =ez ﬂzix —d— a1y — hz) =ezy(X,y, 2).

Assumptions on the Parameters

@ 0<e<< .

@ 0 < 4, B2 <1, where 3, 3> are the predation efficiencies.
@ We willassume that 0 < ¢, d, aq2, any < 1.




The Model

Preliminaries

X' =xé(x,y,2) ex = xo(x,y,2)
fast-time t < y' =eyx(x,y,2) slow-times ¢ y =yx(x,y,2)
Z/ - gzw(x7 y7 Z)? Z - Zw(x7 y? Z)

where s = ¢t. Here x is the fast variable and y, z are the slow
variables.

As ¢ — 0, we obtain reduced and layer problems respectively:
Reduced problem Layer problem

{ 0 =x9¢(x,y,2) { X =x¢(x,y,2)

y :.yX(Xa.yvz)
z =zY(x,y,2)



The Model

Critical Manifold: Equilibria of the layer problem
M=TuS={(x,y,z) : x=0}U{(x,y,2) : &(x,y,z) = 0}.

Figure: The critical manifold M.



The Model

Oscillatory dynamics exhibited by the full-system

AN > Fast flow
/ o Slowflow
~

0.8 0.8
0.6 0.6
0.4 0.4
X X
0.2 0.2
0 0

2485 2490 2495 2500 1340 1360 1380 1400 1420
Time t



The Model

Variation in the amplitudes of SAOs and LAOs in an MMO orbit
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The Model

MMOs in Ecology

@ MMOs have been observed in the study of chaotic
dynamics in three species food-prey-predator model (an
extension of Hastings-Powell model) (Peet et. al. JTB
(2005)).

@ Also observed in population dynamics of
phytoplankton-zooplankton freshwater ecosystem with
dormancy (Kuwamura & Chiba, Chaos (2008)).
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The Model

Local mechanisms generating SAOs in MMOs

Desroches et. al. SIAM Review (2012)

@ Passage near special points such as a folded node
singularity/canard point (Szmolyan & Wechselberger JDE
(2001))

@ Interaction between the slow manifold and the unstable
manifold of the equilibrium (Guckenheimer SIADS (2008)).

@ Generalized canard mechanism (occurs near FSN |l
bifurcation) (Krupa & Wechselberger JDE (2010)).



Transient dynamics

Transient dynamics in the full-system
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Transient dynamics
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Figure: S. and Chakraborty Thakur, Ecol. Compl. (2017).

Similar transient dynamics were observed in a stage structured
population model with time delay and Allee effect (Morozov
et.al. JTB (2016)).



Transient dynamics

Long term transients with large fluctuations!
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Transient dynamics

One-parameter bifurcation diagram in h
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Transient dynamics

Dynamics past the HB
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Figure: Transient dynamics in the Hopf regime.



Transient dynamics

Ghost attractor near the Hopf regime
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(a) Chaotic MMO orbit and the (b) Local dynamics near the
SAO attractor equilibrium



Transient dynamics

Similar local dynamics with different fates
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Figure: Dynamics preceding an LAO (left). Dynamics preceding an
SAOQO attractor (right).



Transient dynamics

Normal form near FSN Il point

System (1) can be written in the normal form as

% =V + %2 aF 5(a(h)u+ Fisuw + %F111U3) aF 0(52)

& = —ut () )
G — 5(H3W aF 2H11 U2) aF 0(52)
with 6 = O(\/¢) and T = s/d, where

h—h)

€

a(h) = Aox.7.2.)" ") _ (%, 7.2,h)

and (X, ¥, z, h) is a non-degenerate singular Hopf point. The
constants Fi3, F111, H3, H11, Ao, Bo can be explicitly computed
in terms of derivatives of u, v and w at (X,y, z, h).




Transient dynamics

Dynamics of the system in normal form
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Transient dynamics

Dynamics in the singular limit

For 6 = 0:

Figure: Orbits outside the red curve become unbounded.

Red curve: (u? +2v —2) = 0.



Transient dynamics

Existence of a quasi-separatrix in the uv- subsystem

For 0 > 0, replace w(7) by a parameter .

Figure: Behavior of two trajectories starting on the parabola
(u? 4+ 2v — 2) = 0 for a fixed .



Transient dynamics

Dynamic passage through a canard explosion

A 2-parameter bifurcation diagram of the uv subsystem
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Figure: Supercritical Hopf: A = Ay(a). A canard explosion occurs at
A = Ac(a).



Transient dynamics

Returning to the full normal form
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Stochastic Model

Effect of stochasticity

S. Chaos 2017.

aX = X[1-X- 25| ds+ 2L XdWi(s)
4z = Z|z%5-d- hZ} ds + oo ZdWs(s).
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Figure: Locally asympotically stable equilibrium.
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Stochastic Model

Noise-induced mixed-mode oscillations
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Figure: Random sample paths for different noise intensities.



Stochastic Model

Demographic stochasticity on the 3d model

S. and C. Kuehn, Chaos (2018)
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Stochastic Model
Random population fluctuations computed for two sample paths
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Figure: Amplitude of oscillations in the prey population.



Stochastic Model

Distribution of the random number of small oscillations between
two large oscillations with varying noise
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Figure: S. and C. Kuehn, Chaos (2018).



Stochastic Model

Similarity with the distribution of the return time of larch budmoth
outbreaks.
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Figure: Source: “1200 years of regular outbreaks in alpine insects”,
Esper et. al. Proc. Royal Soc. B (2007).



Stochastic Model

Summary

@ Long time transient dynamics in the form of MMOs are
observed in the deterministic model near the supercritical
Hopf bifurcation.

@ These dynamics occur as a result of interplay between
SAOQOs and a suitable global return mechanism.

@ The normal form is used to study the mechanism that
organizes the SAOs in an MMO cycle - a dynamic passage
through a canard explosion.

@ The normal form helps to predict the possibility of an
another large cycle.

@ Noise-induced MMOs provide a realistic representation of
dynamics occurring between outbreaks.



Thank you for listening!
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