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The equation

Hyperbolic sine-Gordon equation on T2 with space-time white noise forcing

{‘()iu + (1= A)u+ysin(fu) = ¢

(u, O¢u)|t=0 = (uo,u1)

Here:
> (t,z) e R x T? = R x [0,27)%
> 3, veR.

> ¢ is space-time white noise, £ = dW where W is a cylindrical Brownian
motion.



Space-time white noise

Formally, £ = dW, with W cylindrical Wiener process,

W(t) := Z B, (t)en,

1 in-x

en(z) = 7€

B, (t) complex Brownian motions, independent except for the condition

B_n(t) = Bu(t).



Sine Gordon as PDE

The deterministic sine-Gordon and sinh-Gordon equations

sinu
2 2
Oyt — Oppu = {

sinh u

in 1 dimension have an integrable structure. (On T: McKean, 1981)

Following Friedlander (1984), McKean (1993) constructs Gibbs type invariant
measures for wave equations of the form

Ortu — aizu = f/(u),

including sine-Gordon.



Stochastic wave equations

> Large literature with colored noise, using stochastic analysis methods.
Dalang, Mueller, Walsh, Ondrejat (2010)...

> With white noise. In dimension d = 1, Carmona-Nualart (1988) consider
and general smooth nolinearity.
They use the explicit Duhamel formula and Walsh’s theory of 2 parameter
martingales

» In dimension d = 2 Albeverio et al. construct solutions using Colombeau
algebras. Gubinelli-Koch-Oh d = 2,3 (2017, 2018) and
Gubinelli-Koch-Oh-Tolomeo d = 2 use harmonic analysis methods to solve
the equation with polynomial nonlinearity.



Stochastic Sine Gordon

Parabolic equation
Au+ (1 — A)u + vsin(Bu) = &.

This is an invariant dynamics for continuum SG measure from Roland’s talk

%exp(f%/ﬂ‘2 |Vu|2dx+%/mu2dx+% . : cos(Bu(x)) : dz).

Hairer and Shen (2014) obtain local in time solutions to this equation for
B? € (0,%5%). Chandra, Hairer, Shen (2016) extend this to 3° < 87, expected
to be the optimal threshold.



Thresholds

It is known from work on the static sine-Gordon measure (see introduction to
Roland’s paper!) that there is an infinite sequence of thresholds

8mn
n+1

ﬁn =
where new divergent quantities appear and require renormalization. For

Chandra, Hairer and Shen, this translates into the equation requiring further
renormalizations to obtain local solutions.

In contrast, we can obtain local in time solutions for any 8 > 0.



Singularity

For zero initial data, first Picard iterate solves

LU+ (1— AT =¢.

Solution
[ gy
:ngz /Ot sin((t — )(n) <_n;/)<n>)dBn(t') en.
Here . . 2
FERGTL ) ) = Sln%) It



Variance of Fourier coefficient labelled by n

1 (sin((t —t'){n)
T 4m? (n)

_ i( t sin(2t<n)3)
T 4m2 \2(n)? 4(n)3 -

E [F(¥)(n)?] )2 at’

Sum diverges logarithmically — ¥ is not a L? function.

Cannot define the nonlinearity
sin(BW) = (V)

appearing in the next iterate.



Wick renormalization

For a Gaussian random variable X ~ N(0,0?), define
c xR Hy(X;0),

where Hy, is the kth Hermite polynomial:

Define

ot X :déf i (’Lﬁ)k L xk .= e@ iBX

k=0



Renormalizing ¥

Consider Fourier truncation of Wy
tsin((t — ' {(V ,
Uy = Z XN(”)/ %dBn(t)em
0

x~(-) = x(-/N) smooth cutoff.

Variance
on(t) = E[¥n(t,2)°] ~ tlog N.

We show that ,
PN Ao ok (D) BN

converges in some function space and define ¢**¥ as its limit.



Da Prato-Debussche trick

Look for solutions of form
uny = VYn +on.

Residual term vy satisfies the equation
OZon + (1 — A)uy + S(: YN PNy =0
(v, Oron)|t=0 = (uo, u1).

With renormalization, the terms : ¢?*¥~ : have a limit. We try to solve for vy,

in particular, we need to make sense of the product : e?¥N : P

This type of ansatz has appeared in McKean (1995), Bourgain (1996), Da
Prato-Debussche (2002), Hairer (2014), etc.



Results: Local existence

We show the solutions to

Zun + (1 — Auy +ynsin(Buy) = Pyt
~~—
Fourier truncation

(UN7 (%UN)‘t:() = (u()? ul)

with
ﬁa (t)
N (t,B)=e2 VY = oo

converge in probability in a suitable space of distributions.



Results: Local existence

Theorem (Oh, Robert, S., Wang, 2019)

Let B #0, and s > 0. For any (uo,u1) € H® x H*™"', there exists
To(Jlwollzs s |utl| gs—1) such that for any T < Ty, 3Qn(T') such that

1. forw € Qn(T), there exists a unique un to the truncated SSG in form
U + vy C O([0,T), H™(T?)).
vn has positive regularity.

P(QN(T)) — 0

uniformly in N as T — 0.



Results: local existence

There exists a stopping time 7 and a stochastic process u in
C([0,T]; H™¢(T?)), of the form

u=WY+4 v,

where v has positive regularity, such that, for each T' > 0, un converges in
probability to u in C([0,T); H~¢(T?)) on {7 > T}.



Results: Triviality

Theorem (Oh, Robert, S., Wang, 2019)

Let B € R\ {0} and fix (ug,u1) € H® x H*™' for some s > 0. Given any small
T > 0, the solutions to the non-renormalized SSG equation

Fun + (1—-A)uny +sin(Bun) = Pné&
(un, Orun)|e=o = (uo,u1)

converge in probability to the solution of the linear stochastic wave equation

{aftw (1—Au =¢

(u, Opu) =0 = (uo,u1)

in C([0,T], H"¢(T?)), e > 0 as N — cc.



GKO

Gubinelli, Koch, Oh (2017) study solutions of the nonlinear wave equation in
2d:
Onun + (1 — A)un= : uby == Pné,

with k > 2 an integer.
They show convergence in probability of the ux in C([0,T], H™°).

Renormalization is simpler, because the nonlinearity is of power type.



Chandra-Hairer-Shen

Hairer-Shen (2014) and Chandra-Hairer-Shen consider the equations
Orun + (1 — 85) sun 4y :sin(Bun) := Pné

and show that for 3% < 8m, the solutions converge in some negative Holder
space to a limiting stochastic process.



Regularity of nonlinearity

Equation for vy = Uy — un
AN + (1 — Aoy + S(: €PN PN,
Rewrite as
un (L) = 0¢S(t)uo + S(t)ur — /t St —t)3(: PN ePNYar
0

S(t) = sinEéY}).

We would like to control vx a priori in Sobolev space H?, s > 0.

To proceed, need to investigate regularity of : e’?¥~ ..



Regularity of nonlinearity

Let @ > 0. Expand the exponential and use the identities

b sin((t — s)(n>)2
mr ¢

S,

]E[\If]\](t,xl)‘l/]\r(t,mz)} = Z en($1*$2)/0

[n|<N
find

E[[(V)™* : ™ 1 |[72(n)]

<Y g )

k20 [nyl,...s|ng|<N

SC(B% a) < oo,

independently of V.



Higher moments

We will need higher moments of (V)™ : e/®¥~ : to close a fixed point
argument.

For power type nonlinearity, we can control higher powers of the second
moment, since

E(|Pi(¢)"] < p™/E[| Pu()"]"/?,

if ¢ is Gaussian and Py has degree k.



iBY N .

Regularity of : €

W7P(T?) is defined by the norm

1 lwre ey = I{V) Flle z2)-

Theorem

Let B0 and 3°T < 8. Given any 1 < p,q < co and a > 'BSZ—WT, the sequence

of random variables : €?¥N : js Cauchy in LP(; L([0, T]; W~ (T?))).



W =P norm of : PN

. . HBYN
Goal: compute || : 7N : ||LZ;DL%WI—O¢,OC.

Define J, by
<V)6_af =Ja—s*f, Ja(x)~ |:z:\a_d.

Need to estimate
E[(V)° =" YN (t,2) : 7]

2p
5 )
— PP on (t) /(‘ . E[ez,ﬁZ;?:l(\I/N(t,yzj)—\llzv(t,wjfl))] H Jo—s(z — yk)dy.
T2)P k=1



Gaussian computation

Expectation is a characteristic function

E [eiﬁ Zizl(‘I’N(tyzj)*‘I’N(t7y2j71))]
_ e—g]E“ Z?:l(‘I’N(tﬂlﬁj)_\I’N(taijfl)F]

2 2
_ e*% i1 cselN (b —uk)

Here, I'y is the covariance kernel

t _
T (o = y) = E[Wn(,2)Un(ty)] » = log(le —y[+ N 7).



Obtain

E[[(V)° ™ PPN (¢, ) : 7]

2p 524 2p 4
< _ —€i€5 T _ afd.
N/(TQV(HM il ) T = — el "dy

G k=1 k=1

Analogy between (static) sine-Gordon and the dimension in other field theories
> Euclidean 3 with d =2+ 2.
» Euclidean <I>§ with d =2 + %.

. 52
> KPZ with d = 7-.



An inequality

To bound the integrals

2p
Eéﬁ a—
/m TT toe = el %) T be = el

J k=1 k=1
use
Lemma
Let A\ >0 andp € N. Given j € {1,...,2p}, set
€5 = (—1)j.

Let S, be permutations of {1,...,p}.

For any {y;};=1,...,2p of 2p points in T? and any N € N,

I Gy =yl + NHwHr < max IT (ves = oryial +N°H 72

1<j<k<2p Pi<i<p



An inequality

—1\eiep A —1\—A
T Gy =yl + N7Hyec < max IT (ves = voryial + N°H7A

1<j<k<2p P1<i<p

» A similar but more general result appears in Hairer-Shen (“dipole
computation” ).

» Froehlich '76 obtains a related estimate by exact identity due to Cauchy

H1§i<j§2n |z — 2j]*w; — w;[®

[, |2 — wal™

= |det(1/(zi — wj))1<i j<zn|-



Closing the argument

Residual equation for vy = uny — ¥Un
t . .
on (t) = 9eS(t)uo 4 S(t)us —/ S(t—t)S(: PN 1 ePUNY = D (w).
0

. 2
Input: || : ¥~ < C for a > % uniformly in N.

: HLiquTWz—o/‘oc

S(t) = % gains one derivative. Fix T and assume (uo,u1) € H® x H*™*

for s =1 — = close to 1:

GBYN . BN

o llze < (w0, wn) | o xmi—s + ||SC: Moy mg—)-



Closing the argument

JehVs L 1/2 ) LW
[S(: ¥ :ezB”N)HLlTH;,l <TY |\ewv||L%cHi,s|| PN 2wy -or2/-0-

By “fractional chain rule” (see e.g. Christ and Weinstein, 1991)

e N3-S 14+ B2(V)' 0|72 (1)

~

We use a fixed point argument for small 7" on the probability set

Qv ={ll: €™ )|, 2 <1},

2w, 17

This works if 1 — s is small, so that we have the required regularity —a for
D ePUN



Closing the argument: differences

In estimating the nonlinearity using the fractional chain rule, we did not have
to face the nonlineartiy yet. Right side of (1) was of the form “constant +
linear in vn".

For the difference of solutions, we have

IT(w) = D(w)llzge s < IS =)™ N || 11 o
STV?|F () = Fw)l -,

where

Now write



Estimates for fractional derivatives

To control the product, we use the fractional product rule. Let s € [0, 1]. For
r,pj,q; € (1,00) with i + % =1 45=1,2then
J J

T

Ifgllwsr Sf e llgllwsa + | fllweaz gl Lo



Applying this with p; = ﬁ Q= % p2 = lisi

[1F(v) = F(w)llg1--

/01 F'(ro+(1 - T)w)dTH

S llv = wlfze

wl—s.q1

+ v — wllpr-s.p2

/1 Flro+(1— T)w)dT‘
0

raz’

We conclude using the Sobolev embeddding.

Slv = wl|as

/01 F'(ro+ (1 - T)w)dTHHS

1
v — w| e / Flro+(1— T)w)dTHLg.
0 s




Strichartz estimates

In the argument above, we made an assumption on the regularity s (depending
on T, B) of the initial data (uo,u1) to close the argument. To access lower
regularities, we use mixed space-time Strichartz spaces.



Invariant measure

The hyperbolic stochastic sine-Gordon measure

%exp(—%/p|Vu|2d‘7[:—}—%/ﬂ?u?dgc—o-%/Tz : cos(Bu(w)) : dz)

is formally invariant

In upcoming work, we use this invariance to construct global solutions to the
equation when % < 8. This type of argument was used by Bourgain (1993).

To construct the measure, we use a recent variational method of
Barashkov-Gubinelli (2018).



The end

Thanks for your attention, and Happy Birthday, H.T. Yau!



