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Introduction EESIAINILE]

The Hamiltonian of the Sherrington-Kirkpatrick (SK) model is

SK
H]<V )( FZQUWJJ
i#]

where

{gij}0;=1 ~ iid N(0,1)

and
{oi}is, € {—1,+1}"

e Introduced in 1975 by [SK] as a mean field model of a spin glass with the
goal of understanding properties of magnetic alloys with competing
ferromagnetic and anti-ferromagnetic interactions

e Scaling is so that the phase transition is at 5 = 1.



Introduction NI

Parisi formula

Fundamental problem is to calculate the N — oo limit f(5%) (B) of the free

energy

1
FY(8) = 5 log 2y (8),

where Zn(B) = >, exp (—BHn(0)).
Famously, Parisi (1980) found a variational formula,
. SK .
Jim F7(8) = inf Pa (€)

where P3(&) is complicated functional, and the infimum is taken over
cumulative distribution functions on [0, 1].

The Parisi formula was rigorously proven by Talagrand (2006)
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Parisi minimizer and the overlap

Given two replicas 1), o(?) (independent samples from the Gibbs measure),
the overlap is,

1 0 ¢
RS0 = L0,
N

The minimizer in the Parisi formula is interpreted as the limiting distribution of
the overlap, and describes the " geometry of the support of the asymptotic
Gibbs measure.”

In the high temperature phase 5 < 1, the Parisi minimizer is the cdf of a trivial

random variable and so R§2 ) concentrates around 0.

In the low temperature phase 5 > 1, the Parisi minimizer and asymptotic Gibbs
measure a complicated ultrametric structure (replica symmetry breaking).



A simpler model is given by the spherical Sherington-Kirkpatrick (SSK)
Hamiltonian,

1
Hy(o) = \/ﬁ Z 9ijoi0y,

i#j

where the disorder g;; are iid Gaussians as before.

Replace the +1 Ising spins with a continuous phase space:
ceSNT1.= {O’ERNIEU?—N}.
i

Note: this is different than replacing each individual spin o; € +1 with o; € S*.



IR, s o

Thermodynamic quantities of interest:

e Partition function is now an integral,
Zn(B) := J e PEN(D) dun 1 (0)
SN—1

where wy_1 is normalized surface measure on SV—1.

o Free energy has the same form as before

Fr(8) = 5108 Zn(9)

e Qverlap is
1
Rig = No(l) o

where (¥ are independent samples from the Gibbs measure (replicas)



SSK model Free energy

SSK was introduced by Kosterlitz, Thouless and Jones (1976) as a simpler
version of the SK model.

[KTJ] calculated the limiting free energy using a contour integral
representation and a non-rigorous saddle point analysis:

im Fn(8) = f(B) = {[34 log(8)+3/2 ’
2

1
N—w ﬁ

VoA

1
L

Note that there is a phase transition at 3 = 1 where f(/3) is C* but not C%.

Talagrand (2006) rigorously proved above formula, using similar methods to
SK.



SRR Fluctuation result of Baik and Lee

Theorem (Baik, Lee, 2015)
Let Fiy(0) be the SSK free energy and f([3) its limiting value as above.
1. In the high temperature regime, g < 1

N(Fw(8) - (8)) — N(m, a)
where N (m, «) is a normal random variable,

2. In the low temperature regime, 3 > 1,

2 . .
ﬁN%(FN(ﬁ) — f(B)) > TW;

where TW is the Tracy-Widom distribution (for the GOE).

o Appearance of random matrix quantities in fluctuations of spin glasses

e High temperature Gaussian fluctuations obtained for SK model by
Aizenman, Lebowitz and Ruelle (1987).

e A similar high temperature result appeared earlier in theoretical statistics
[Onatski, Moreira and Hallin, 2013].



SSK model Overlap fluctuations

Recall that the overlap is defined by,
Rip = —oW) . 5

where o) are two independent samples from the (random) Gibbs measure.

Talagrand and Panchenko proved that R;5 concentrates about the values

+q(3) where,
)0 <1
(1(5) = {1 1 B>1

B

Notation: we will denote expectation wrt the random Gibbs measure by ().



SSK model Overlap fluctuations at high temperature

Theorem (Nguyen, Sosoe, 2018)
Let (-) be the Gibbs expectation of the SSK model and R, the overlap. In the
high temperature phase 8 < 1 and for all ¢,

(etf12)y = et 1 o(1)

with very high probability as N — 0.

e In particular, R;5 converges almost surely (with respect to the disorder)
to a normal random variable.

e Result holds even for § = Gy tending to 1 as long as,

1_6>N71/3+T7 >0

e This is expected to be optimal, in that a different distribution should
emerge for 1 — 3 ~ N~1/3

o Annealed result for SK model due to Talagrand



Theorem (L.-Sosoe, 2019)

Let Ryo be the overlap in the SSK model. In the low temperature phase
[ > 1, we have the convergence in distribution of

ﬂZ

2(8-1)

where = is a random variable defined in terms of the Airy; random point field.

x Jim N'? ((REy) — a(9)*) ==

o The presence of the square (R7,) removes the +¢(/3) ambiguity.
e Can prove {(R?, — q(3)%)?) < CN~2/* and so a similar result holds for

(|Raz2l)-

e Presently, only “annealed” result available, but higher moments ((R;2)*)
are in principle accessible.

e Similar results obtained in parallel in forthcoming work of Baik, Le

Doussal and Wu by non-rigorous methods (also are investigating the cases
of external fields)



Connection to random matrix theory: Note,

1
005 = —7G'TAJO',

HN(O' 2

1
_ — q;
)= o ; 9i
where M is a zero-diagonal Gaussian Orthogonal Ensemble matrix:

_Yij T Gji

Mg =="5N

M,;; = 0.
e Part 1: with high probability,

N
(Rl —q(B)* = % (;; N i " + 1) + o(N71/3)

where Ay = Ay > ... = Ay are the eigenvalues of M.
e Part 2: convergence in distribution of

v = N3 ijz\f] 1 +1| =
SN = NjZQ/\j*M =.




Proof overview Contour integral representation

Due to continuous nature of phase space, observables in the SSK are
accessible through contour integral representations:

Lemma

We have,

and

e 2 (G(2)+CG(w) 1 zdw

where I' = {y +it: t € R} and v > Ay, and

T
G(z) = Bz — N i;log(z

e Such representations used by Kosterlitz-Thouless-Jones, Baik-Lee,
Nguyen-Sosoe.



Proof overview Contour integral representation

Idea of Lemma: replace the integrals over the N — 1 sphere:
Zn(B) = J CgJTJWde(O') — ()gUT(J\sz)ado_
SN RN

by an integral over R" (and adding a complex convergence factor z) which is
a calculable Gaussian integral:

éUT [I—z)o —1/Z
J‘RN ez (M—=z) do = CN_ﬂ H(Z — )\J) 1/2
J

On the other hand, after switching to polar coordinates and a change of

variable:
o0

J e%UT(]\/sz)O'dO_ _ J efzrj(r)dr
RN

0

where 7(r) is a spherical integral such that J (NTB) = Zn (D).

Apply Laplace inversion formula.



Proof overview Contour integral representation

Proof of part 1: Saddle point analysis using contour integral representation

Recall,

1
N

1
)\fz

\\Mz

1 N
G(z) = fz— 5 Dlog(z=X),  G'2) =8+

In the low temperature regime, the saddle ~ (i.e., solution to G'(v) = 0) is
close (O(N~1)) to a branch point of the integrand due to the log(z — A1)
term.

Branch point causes problems in the analysis; use level repulsion of
Knowles-Yin to control Ay — A1, as well as rigidity from Erdés-Schlein-Yau-Yin.



Proof overview: step 2

Part 2 of proof: Convergence of =5 — =.

Recall, from part 1:

- N'Y? ((Rfy) —q(B)?) = N3 li L 1) +o(1) =t Ex-+o(l)
206 — 1) 12, — W) = N &= A o) e

Two RMT ingredients:
e Scaling limit of the extremal eigenvalues:

k
{N2/3(2 - )\i)}izl =
where {x;},-, is the Airy; random point field.

o Erdds-Schlein-Yau-Yin rigidity: A; concentrates around its classical
location v; (the N-quantiles of Wigner's semicircle distribution ps.(E)).



Proof overview: step 2

Basic scheme:

1. Realize that the 1 in =y is:

1 1S 1
1= —p(E)E ~ —
gDy 45
2. Write =y as,
N
_ 1 < 1 )
=N ‘ +1
1 i( 1 1 )
N2/3j:2 )\j—/\l Vi
1 i( 1 1 )
N2 AN N

+ (Error Term).



Proof overview: step 2

For fixed K > 0, the first term converges to

1

1 < 1 5
li . -
) e T

So, define = to be
K 1 1

=:=— lim -
Al e

e But there is an interchange of limits!
e How to deal with the (Error Term)?



Proof overview: step 2

For fixed K > 0, the first term converges to

1

1 ¥ 1 o
li - —
Nll}lx NQ/J].ZQ(Aj_)\l "/ ’}/1> ; (77)2/3 (?71—)2/3

So, define = to be

K 1 1

=Z:=— lim —
Al e

e But there is an interchange of limits!
e How to deal with the (Error Term)?

| am a student of Yau, so try rigidity!



Proof overview: step 2

Try to use rigidity: [A; —~;| < N~3%¢j~3, for any £ > 0.

Z Lo |1 i A=l + 1A =
N2/3 SN )\ Y- m N33 L (A=A —m)
N i 1
= ON2/3 N2/3 ()\ - M) (v —m)

. ! N*
<CN Z}]{ 5 < Cx
7>

e We lose a polynomial factor - need to take K > N3¢

e Proving convergence of first N¢ eigenvalues to Airy; seems beyond reach
of literature.

e Erd6s-Schlein-Yau-Yin rigidity alone is insufficient.



e For the GUE, Gustafsson (2005) proved that
Var(N'(2 — sN~2/3)) < C(1 + |log(s)]), (1)

where NV (E) = [{\; = E}| is the eigenvalue counting function.
e Eigenvalue rlgldlty would lose an N¢ factor on RHS of (1)
e Can extend to the GOE using a coupling of Forrester and Rains (1999)
e Use duality V(E) < j <= ); < E to find,

1 2+1
E‘Ng/g(% *%‘)‘ < cllel 1)/|3 =
No N dependance on RHS!
e Markov's inequality shows that
S | = ox()
= 0K
N2/2 K+1)\ ’Yj*’h

with probability 1 — ok (1).



Proof overview: step 2

What about existence of

1 1
Kow S\~ (320)%8 _ (32)73

2

Soshnikov (1999) proved for the Airyy rpf that
Var(NV(E)) < C(1 + |log(E)|)

where N'(E) is the Airy, particle counting function.

Similarly, we use the Forrester-Rains coupling as well as the fact that
Airys are limits of GOE/GUE to extend this to the Airy; rpf

Similar arguments imply the a.s. existence of =.



Comparison with [PT]

o Interesting to compare the expansion

N
(R1y) —q(B)* = % (;7 ; >\J1)\1 + 1) + o(N71/3)

with a result of Talagrand and Panchenko (2006)

e They observed that P [(R?,) = ¢* + €| < e " for all positive € > 0, but
observed that P [(R?,) < ¢* — €| could not be controlled at the level of
large deviations.

e Due to having a relatively large probability error, we can not rigorously
address this, but:

o Zn < N Y3FE with very high probability due to eigenvalue rigidity

1 . . :
* oD has a (relatively) heavy negative tail due to

P[N??(A\1 — X\2) € (5,5 + ds)] ~ sds

for small s.



Looking forward

Looking forward:

e Investigate the case of a magnetic field Hy (o) + ho - v, for general v
Different scaling regimes for h (Fyodorov- Le Doussal), and different
statistics.

e Find order of fluctuations for Fiy () at 8 = 1. For SK (and SSK by same
method Chen and Lam find O(log(N)/N). Likely that it is

«/log )/N).

e "Quenched” result for R?Q - calculation of higher moments?



Happy Birthday!



Looking forward

Thank you to the organizers for a wonderful conference!
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