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Erd6s-Rényi graph and critical regime

Erd6s-Rényi graph G(N,d/N): random graph on N vertices where each edge
{4,j} is chosen independently with probability d/N.

We consider N — oo and d = dy.

Critical regime: d ~ log N, below which degrees do not concentrate.
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d>log N d < log N

Supercritical d > log N: homogeneous.

Subcritical d < log N: inhomogeneous (hubs, leaves, isolated vertices, ...).



Eigenvalues and eigenvectors

Let A= (A,,) € {0,1}V*Y be the adjacency matrix of G(N,d/N).

Denote by A\; > Xy > --- > Ay the eigenvalues and u;,us,...,uy € SV-1
the associated eigenvectors of d~1/2A.

Then [Wigner; 1955] the empirical measure - >, 0, converges to the
semicircle law on [—2, 2] iff d — oc.

)\N )\2 )\1



Key questions in spectral graph theory

(a) Extremal eigenvalues. Convergence, fluctuations.

(b) Eigenvector (de)localization. Delocalization: [Jug||2, < N~1+o(),
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(Very incomplete) summary of previous results

[Vu; 2007]: If d > (log N)* then Ay = 2 + o(1).

[Erdés, K, Yau, Yin; 2012]: If d > (log V) then delocalization
everywhere. If d > N?/3 then \y has Tracy-Widom fluctuations.

[Lee, Schnelli; 2016]: If d > N'/3 then Xy has Tracy-Widom fluctuations.

[Huang, Landon, Yau; 2017]: If N?/9 < d < N'/3 then Ay has Gaussian
fluctuations.

[Bordenave, Benaych-Georges, K; 2017]: If d > log N then A2 = 2 + o(1).

[Bordenave, Benaych-Georges, K; 2017]: If d < log N then
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Results: overview

From now on, consider only the (unique) giant component of G(N,d/N).

Phase diagram in the (A, b)-plane, where )\ is an eigenvalue and d = blog N.



b d=blog N

() no eigenvalues

() delocalized

() localized

1 ~
b, = Togd—1 ~ 2.59

N1=b/bx+0(1) gigenvalues




Results I: extremal eigenvalues

Define a, := ézy Azy and let o € Sy satisfy aq1) = ag2) = -+ = ag(n).-
Theorem [Alt, Ducatez, K; 2019]. Suppose (log N)!7¢ < d < N/2. Set

L:=max{l >1:a,q =2+o0(1)}.

Then with very high probability for 1 <1 < L we have

A1 = Moo <d™°, Aa) == ; (1)

and
Ariz — 2| < (logd)~°. (2)

Remark. Qualitative version of this result for I = O(1) was independently
proved by [Tikhomirov, Youssef; 2019].

Remark. For the subcritical regime d < log N and a4 ;) > 1, (1) was proved
in [Bordenave, Benaych-Georges, K; 2017] using a perturbative argument.



Combine with typical behaviour of degree sequence o, (1), @g(2), ... (1) occurs
if and only if b > b, := log%' Graphical analysis of typical behaviour of
A(aq(y) as a function of b = d/log N: (A, b)-plane for N = 50
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To the eigenvectors

Simulation: scatter plot of (A, ||u;|o). (N = 10000, b = 0.6)




Results II: delocalization
Recall: delocalization at \; means ||u;||%,

<
Theorem [He, K, Marcozzi; 2018]. If d >
everywhere.

Theorem [Alt, Ducatez, K; 2019+]. If d > C+/log N then delocalization in

N—1+o(1)
C'log N then delocalization

{E€R:0(1) < |E| <2—o(1)}.

Remark. The assumptions are optimal in both cases, up to constant C.

Consider two identical stars of central de-
grees D attached to a common vertex.

This gives rise to a localized eigenvector
with eigenvalue y/D/d.

giant component

Such pairs occur up to D = O(1) if d
Clog N and up to D = O(d) for d
C+/log N.
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Results Ill: localization

Theorem [Alt, Ducatez, K; 2019+]. Let A\ > 2+ o(1) be an eigenvalue with
eigenvector u € SV ~!. Define the set of vertices in resonance with \,

WO = {22 a0 2 2, M) =M =0}, Ae) = o

For r > 1 define the resonant balls B,() := U,ew () Br(x). Then for r > 1,
with very high probability,
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Spatial structure of the localized states

For each x € W(\) define the spherically symmetric vector

T

1g.
v@® .— Zw(r) Si(z)

= sl
where
(@) _ V%  (x) @ _ 1 (@)
wy” = —az = 1“’095 ) wij—l = —am = lwix (i=1).

Let TT denote the orthogonal projection onto Span{v(®) : 2 € W()\)}. Then

I(1 = Tull = o(1).



Outline of proof for locations of extremal eigenvalues

Basic observation: The normalized degrees o, = |S1(z)|/d do not concentrate.
However, if o is sufficiently large then there is r > 1 such that with very high
probability:

(a) For each 1 <i < r, the ratio |S;41(x)|/|S:(x)| concentrates around d.

(b) The subgraph G|p, (4 is a tree up to a bounded number of edges.

Consider the toy tree graph 7 on N vertices: root = with degree a,d, up to
radius r all other vertices have degree d + 1.




Use the tridiagonal representation of A around z: Let fy,...,f, be the
orthonormalization of 1,, A1, A?1,,..., A"1,, completed to an orthonormal
basis of RY. Define

M®) .= F*AF F=Ifof1---fn_1].

Then M) is tridiagonal.
For the tree 7, the upper (r + 1) x (r + 1) block of M) is

0] Vo
/Oy 0 1
1 0 1
v 1 0
P |
1 0

For a, < 2, spectrum is in [—2,2]. For «a,, > 2, there are two eigenvalues
+A(ay) outside [—2,2].



Let w be the eigenvector corresponding to A(a,). A transfer matrix analysis
yields

V% () (x) @ (1<i<r).

ng) = Wy~ Wiy = F7——=W
oy — 1

Exponential decay for a, > 2.

Back to full graph G(N,d/N): we expect that for oy, > 2 the vector

T

v@ Zw(x) 1s,(2)

K2

— " sl

is an approximate eigenvector with eigenvalue near A(ay). This is in fact true.



Two key steps in proof:

(L) Every vertex x with a; > 2 gives rise to a unique eigenvalue near A(ay).
Lower bound on \g.

(U) There are no other eigenvalues in [2 + o(1), c0).
Upper bound on Ag.

For Step (L), we construct a subgraph G2 C G such that

o G5 is close to G (in some appropriate sense).
o All balls {B&2(x) : a,, > 2} are disjoint.

Then by previous construction all approximate eigenvectors are orthogonal =
unique eigenvalues.



For the proof of Step (U), consider for simplicity H := d~'/?(A — EA), with
eigenvalues A\; > Ay > ---. (Going back easy.)

Let V:= {z: o, > 2}. By Step (L), it suffices to prove that Ajy|;; <24 0(1).

By min-max principle,

A+t < mga(}\(})(w,Hw}, S(V) :i={w e SN w(x)=0Vr e V}.
we

Let the maximum be attained at w.
Lemma 1. H < I+ D+ o(1) where D = diag(az,...,an).

Proof. Define the nonbacktracking matrix B = (Bey)e, re[n)2 associated with
H through
J=k

Bijykty = Hrlj= iz - z‘/\ol

Then, by [Bordenave, Benaych-Georges, K; 2017], p(B) = 1 + o(1). Moreover,
using an lhara-Bass-type formula from [Bordenave, Benaych-Georges, K; 2017],
we deduce H < p(B) + D + o(1). O



Using Lemma 1, we deduce that
Apj+1 —o(1) < (W, (I + D)w),

where W is the largest eigenvalue of H|;y)\y. We choose 1 < 7 < 2 and write
the right-hand-side as

1+ Z () + Z W (x)? .

T <T <o, <2

Choosing 7 =1+ o(1), we conclude that

Al+1 < 2+0(1) + Z a,w(x)?.
TT<g K2

We'll be done if we can prove the following delocalization estimate.

Lemma 2. > __ -, a,w(z)? =o(1) for 7 =1+ o0o(1).



Proof of Lemma 2. As before, we construct a subgraph G- C G such that

o G, is close to G (in some appropriate sense).
o All balls {BS"(z) : iy > 7} are disjoint.

Then the main work is to prove that
_ - 2
0(2)* < o(1)|[[W] gor | (3)

whenever a,, > 7. We do this using the tridiagonal representation around x.

Using (3) we conclude

S asi(@)?<20(1) Y |[Wlger o) < 20(1),

<oy <2 <oy <2

by disjointness of balls. O



To Yau:
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And many more happy mathematical adventures!
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