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Antti Knowles

With Johannes Alt, Yukun He, Raphaël Ducatez, Matteo Marcozzi



Erdős-Rényi graph and critical regime

Erdős-Rényi graph G(N, d/N): random graph on N vertices where each edge
{i, j} is chosen independently with probability d/N .

We consider N →∞ and d ≡ dN .

Critical regime: d ≈ logN , below which degrees do not concentrate.

d� logNd� logN

Supercritical d� logN : homogeneous.

Subcritical d� logN : inhomogeneous (hubs, leaves, isolated vertices, . . . ).



Eigenvalues and eigenvectors

Let A = (Axy) ∈ {0, 1}N×N be the adjacency matrix of G(N, d/N).

Denote by λ1 > λ2 > · · · > λN the eigenvalues and u1,u2, . . . ,uN ∈ SN−1
the associated eigenvectors of d−1/2A.

Then [Wigner; 1955] the empirical measure 1
N

∑
i δλi converges to the

semicircle law on [−2, 2] iff d→∞.
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Key questions in spectral graph theory

(a) Extremal eigenvalues. Convergence, fluctuations.

(b) Eigenvector (de)localization. Delocalization: ‖ui‖2∞ 6 N−1+o(1).
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(Very incomplete) summary of previous results

• [Vu; 2007]: If d� (logN)4 then λ2 = 2 + o(1).

• [Erdős, K, Yau, Yin; 2012]: If d� (logN)6 then delocalization
everywhere. If d� N2/3 then λ2 has Tracy-Widom fluctuations.

• [Lee, Schnelli; 2016]: If d� N1/3 then λ2 has Tracy-Widom fluctuations.

• [Huang, Landon, Yau; 2017]: If N2/9 � d� N1/3 then λ2 has Gaussian
fluctuations.

• [Bordenave, Benaych-Georges, K; 2017]: If d� logN then λ2 = 2 + o(1).

• [Bordenave, Benaych-Georges, K; 2017]: If d� logN then

λ2 = (1 + o(1))
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Results: overview

From now on, consider only the (unique) giant component of G(N, d/N).

Phase diagram in the (λ, b)-plane, where λ is an eigenvalue and d = b logN .
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Results I: extremal eigenvalues

Define αx ..= 1
d

∑
y Axy and let σ ∈ SN satisfy ασ(1) > ασ(2) > · · · > ασ(N).

Theorem [Alt, Ducatez, K; 2019]. Suppose (logN)1−c 6 d 6 N/2. Set

L ..= max{l > 1 .. ασ(l) > 2 + o(1)} .

Then with very high probability for 1 6 l 6 L we have

|λl+1 − Λ(ασ(l))| 6 d−c , Λ(α) ..=
α√
α− 1

, (1)

and
|λL+2 − 2| 6 (log d)−c . (2)

Remark. Qualitative version of this result for l = O(1) was independently
proved by [Tikhomirov, Youssef; 2019].

Remark. For the subcritical regime d� logN and ασ(l) � 1, (1) was proved
in [Bordenave, Benaych-Georges, K; 2017] using a perturbative argument.



Combine with typical behaviour of degree sequence ασ(1), ασ(2), . . . : (1) occurs

if and only if b > b∗
..= 1

log 4−1 . Graphical analysis of typical behaviour of

Λ(ασ(l)) as a function of b = d/ logN : (λ, b)-plane for N = 50
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To the eigenvectors

Simulation: scatter plot of (λi, ‖ui‖∞). (N = 10′000, b = 0.6)



Results II: delocalization

Recall: delocalization at λi means ‖ui‖2∞ 6 N−1+o(1).

Theorem [He, K, Marcozzi; 2018]. If d > C logN then delocalization
everywhere.

Theorem [Alt, Ducatez, K; 2019+]. If d > C
√

logN then delocalization in

{E ∈ R .. o(1) 6 |E| 6 2− o(1)} .

Remark. The assumptions are optimal in both cases, up to constant C.

Consider two identical stars of central de-
grees D attached to a common vertex.

This gives rise to a localized eigenvector
with eigenvalue

√
D/d.

Such pairs occur up to D = O(1) if d 6
C logN and up to D = O(d) for d 6
C
√

logN .

giant component



Results III: localization

Theorem [Alt, Ducatez, K; 2019+]. Let λ > 2 + o(1) be an eigenvalue with
eigenvector u ∈ SN−1. Define the set of vertices in resonance with λ,

W(λ) ..=
{
x .. αx > 2, |Λ(αx)− λ| = o(1)

}
, Λ(α) ..=

α√
α− 1

.

For r > 1 define the resonant balls Br(λ) ..=
⋃
x∈W(λ)Br(x). Then for r � 1,

with very high probability,∑
x/∈Br(λ)

u(x)2 = o(1) ,
∑

x∈W(λ)

u(x)2 > c .

W(λ)

Br(λ)



Spatial structure of the localized states

For each x ∈ W(λ) define the spherically symmetric vector

v(x) ..=
r∑
i=0

w
(x)
i

1Si(x)

‖1Si(x)‖
,

where

w
(x)
1 =

√
αx√

αx − 1
w

(x)
0 , w

(x)
i+1 =

1√
αx − 1

w
(x)
i (i > 1) .

Let Π denote the orthogonal projection onto Span{v(x) .. x ∈ W(λ)}. Then

‖(1−Π)u‖ = o(1) .



Outline of proof for locations of extremal eigenvalues

Basic observation: The normalized degrees αx = |S1(x)|/d do not concentrate.
However, if αx is sufficiently large then there is r � 1 such that with very high
probability:

(a) For each 1 6 i 6 r, the ratio |Si+1(x)|/|Si(x)| concentrates around d.

(b) The subgraph G|Br(x) is a tree up to a bounded number of edges.

Consider the toy tree graph T on N vertices: root x with degree αxd, up to
radius r all other vertices have degree d+ 1.



Use the tridiagonal representation of A around x: Let f0, . . . , fr be the
orthonormalization of 1x, A1x, A

21x, . . . , A
r1x, completed to an orthonormal

basis of RN . Define

M (x) ..= F ∗AF , F = [f0f1 · · · fN−1] .

Then M (x) is tridiagonal.

For the tree T , the upper (r + 1)× (r + 1) block of M (x) is

√
d



0
√
αx√

αx 0 1
1 0 1

1 0
. . .

. . .
. . . 1
1 0


.

For αx 6 2, spectrum is in [−2, 2]. For αx > 2, there are two eigenvalues
±Λ(αx) outside [−2, 2].



Let w be the eigenvector corresponding to Λ(αx). A transfer matrix analysis
yields

w
(x)
1 =

√
αx√

αx − 1
w

(x)
0 , w

(x)
i+1 =

1√
αx − 1

w
(x)
i (1 6 i 6 r) .

Exponential decay for αx > 2.

Back to full graph G(N, d/N): we expect that for αx > 2 the vector

v(x) ..=
r∑
i=0

w
(x)
i

1Si(x)

‖1Si(x)‖
,

is an approximate eigenvector with eigenvalue near Λ(αx). This is in fact true.



Two key steps in proof:

(L) Every vertex x with αx > 2 gives rise to a unique eigenvalue near Λ(αx).
Lower bound on λk.

(U) There are no other eigenvalues in [2 + o(1),∞).
Upper bound on λk.

For Step (L), we construct a subgraph G2 ⊂ G such that

• G2 is close to G (in some appropriate sense).

• All balls {BG2
r (x) .. αx > 2} are disjoint.

Then by previous construction all approximate eigenvectors are orthogonal ⇒
unique eigenvalues.



For the proof of Step (U), consider for simplicity H ..= d−1/2(A− EA), with
eigenvalues λ1 > λ2 > · · · . (Going back easy.)

Let V ..= {x .. αx > 2}. By Step (L), it suffices to prove that λ|V|+1 6 2 + o(1).

By min-max principle,

λ|V|+1 6 max
w∈S(V)

〈w , Hw〉 , S(V) ..= {w ∈ SN−1 .. w(x) = 0∀x ∈ V} .

Let the maximum be attained at w̃.

Lemma 1. H 6 I +D + o(1) where D = diag(α1, . . . , αN ).

Proof. Define the nonbacktracking matrix B = (Bef )e,f∈[N ]2 associated with
H through

B(ij)(kl)
..= Hkl1j=k1i6=l . i

j = k
l

Then, by [Bordenave, Benaych-Georges, K; 2017], ρ(B) = 1 + o(1). Moreover,
using an Ihara-Bass-type formula from [Bordenave, Benaych-Georges, K; 2017],
we deduce H 6 ρ(B) +D + o(1).



Using Lemma 1, we deduce that

λ|V|+1 − o(1) 6 〈w̃ , (I +D)w̃〉 ,

where w̃ is the largest eigenvalue of H|[N ]\V . We choose 1 < τ < 2 and write
the right-hand-side as

1 +
∑

x:αx<τ

αxw̃(x)2 +
∑

x:τ<αx62

αxw̃(x)2 .

Choosing τ = 1 + o(1), we conclude that

λ|V|+1 6 2 + o(1) +
∑

x:τ<αx62

αxw̃(x)2 .

We’ll be done if we can prove the following delocalization estimate.

Lemma 2.
∑
x:τ<αx62 αxw̃(x)2 = o(1) for τ = 1 + o(1).



Proof of Lemma 2. As before, we construct a subgraph Gτ ⊂ G such that

• Gτ is close to G (in some appropriate sense).

• All balls {BGτr (x) .. αx > τ} are disjoint.

Then the main work is to prove that

w̃(x)2 6 o(1)
∥∥w̃|BGτr (x)

∥∥2 (3)

whenever αx > τ . We do this using the tridiagonal representation around x.

Using (3) we conclude∑
x:τ<αx62

αxw̃(x)2 6 2 o(1)
∑

x:τ<αx62

∥∥w̃|BGτr (x)

∥∥2 6 2o(1) ,

by disjointness of balls.



To Yau:

And many more happy mathematical adventures!


