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Local statistics, localization and delocalization

One of the key physical parameter of models is the localization length,
which describes the typical length scale of the eigenvectors of random
matrices. The system is called delocalized if the localization length ` is
comparable with the matrix size, and it is called localized otherwise.

Localized eigenvectors: lack of transport (insulators), and Poisson
local spectral statistics (typically strong disorder)
Delocalization: diffusion (electric conductors), and GUE/GOE
local statistics (typically weak disorder).

The questions of the order of the localization length are closely related
to the universality conjecture of the bulk local regime of the random
matrix theory.
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From the RMT point of view, the main objects of the local regime are
k-point correlation functions Rk (k = 1, 2, . . .), which can be defined by
the equalities:

E

 ∑
j1 6=... 6=jk

ϕk(λ
(N)
j1 , . . . , λ

(N)
jk )


=

∫
Rk
ϕk(λ

(N)
1 , . . . , λ

(N)
k )Rk(λ

(N)
1 , . . . , λ

(N)
k )dλ(N)

1 . . . dλ(N)
k ,

where ϕk : Rk → C is bounded, continuous and symmetric in its
arguments.

Universality conjecture in the bulk of the spectrum (hermitian
case, deloc.eg.s.) (Wigner – Dyson):

(Nρ(E))−kRk
(
{E + ξj/Nρ(E)}

) N→∞−→ det
{sinπ(ξi − ξj)

π(ξi − ξj)

}k

i,j=1
.
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Wigner matrices, β-ensembles with β = 1, 2, sample covariance
matrices, etc.: delocalization, GUE/GOE local spectral statistics
Anderson model (Random Schrödinger operators):

HRS = −4+ V,

where 4 is the discrete Laplacian in lattice box Λ = [1, n]d ∩ Zd, V
is a random potential (i.e. a diagonal matrix with i.i.d. entries).
In d = 1: narrow band matrix with i.i.d. diagonal

HRS =



V1 1 0 0 . . . 0
1 V2 1 0 . . . 0
0 1 V3 1 . . . 0
...

...
...

. . .
...

...
0 . . . 0 1 Vn−1 1
0 . . . 0 0 1 Vn


.

Localization, Poisson local spectral statistics
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Random band matrices

Can be defined in any dimension, but we will speak about d = 1.

Entries are independent (up to the symmetry) but not identically
distributed.

H = {Hjk}Nj,k=1, H = H∗, E{Hjk} = 0.

Variance is given by some function J (even, compact support or rapid
decay)

E{|Hjk|2} = W−1 J
(
|j− k|/W

)

Main parameter: band width W ∈ [1;N].
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1d case

H =



· · · · · 0 0 0 0 0 0 0 0 0 0
· · · · · · 0 0 0 0 0 0 0 0 0
· · · · · · · 0 0 0 0 0 0 0 0
· · · · · · · · 0 0 0 0 0 0 0
· · · · · · · · · 0 0 0 0 0 0
0 · · · · · · · · · 0 0 0 0 0
0 0 · · · · · · · · · 0 0 0 0
0 0 0 · · · · · · · · · 0 0 0
0 0 0 0 · · · · · · · · · 0 0
0 0 0 0 0 · · · · · · · · · 0
0 0 0 0 0 0 · · · · · · · · ·
0 0 0 0 0 0 0 · · · · · · · ·
0 0 0 0 0 0 0 0 · · · · · · ·



W = O(1) [∼ random Schrödinger] ←→ W = N [Wigner matrices]
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We consider the following two models:

Random band matrices: specific covariance

Jij =
(
−W2∆ + 1

)−1
ij ≈ C1W−1 exp{−C2|i− j|/W}

Block band matrices
Only 3 block diagonals are non zero.

H =



A1 B1 0 0 0 . . . 0
B∗1 A2 B2 0 0 . . . 0
0 B∗2 A3 B3 0 . . . 0
. . B∗3 . . . .
. . . . . An−1 Bn−1
0 . . . 0 B∗n−1 An


Aj – GUE-matrices with variance (1− 2α)/W, α < 1

4 ; Bj -
Ginibre matrices with variance α/W

transition here is expected at W ∼ n (n is a number of blocks)
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Anderson transition in random band matrices
Varying W, we can see the transition:

Conjecture (in the bulk of the spectrum):

d = 1 : ` ∼W2 W�
√
N Delocalization, GUE statistics

W�
√
N Localization, Poisson statistics

Partial results (d = 1):
Schenker (2009): ` ≤W8 localization techniques; improved to W7;
Erdős, Yau, Yin (2011): ` ≥W – RM methods;
Erdős, Knowles (2011): `�W7/6 (in a weak sense);
Erdős, Knowles, Yau, Yin (2012): `�W5/4 (in a weak sense, not
uniform in N);
Bourgade, Erdős, Yau, Yin (2016): gap universality for W ∼ N;
Bourgade, Yau, Yin (2018): W� N3/4 (quantum unique
ergodicity);
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Another method, which allows to work with random operators with
non-trivial spatial structures, is supersymmetry techniques (SUSY),
which based on the representation of the determinant as an integral
over the Grassmann (anticommuting) variables.

The method allows to obtain an integral representation for the main
spectral characteristic (such as density of states, second correlation
functions, or the average of an elements of the resolvent) as the
averages of certain observables in some SUSY statistical mechanics
models (so-called dual representation in terms of SUSY). This is
basically an algebraic step, and usually can be done by the standard
algebraic manipulations. The real mathematical challenge is a rigour
analysis of the obtained integral representation.

T. Shcherbina (PU) 08/05/2019 9 / 28



"Generalised" correlation functions

R1(z1, z′1) := E
{det(H− z′1)

det(H− z1)

}
R2(z1, z′1; z2, z′2) := E

{det(H− z′1) det(H− z′2))

det(H− z1) det(H− z2))

}
We study these functions for z1,2 = E + ξ1,2/ρ(E)N,
z′1,2 = E + ξ′1,2/ρ(E)N, E ∈ (−2, 2).

Link with the spectral correlation functions:

E{Tr(H− z1)−1Tr(H− z2)−1} =
d2

dz′1dz
′
2
R(z1, z′1; z2, z′2)

∣∣∣
z′1=z1,z′2=z2

Correlation function of the characteristic polynomials:

R0(λ1, λ2) = E
{
det(H− λ1) det(H− λ2)

}
, λ1,2 = E± ξ/ρ(E)N.
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Integral representation for characteristic polynomials

R0(λ1, λ2) = CN

∫
HN

2

exp
{
− 1

2

∑
j,k

J−1
jk TrXjXk

}∏
j

det
(
Xj − iΛ/2

)
dX,

where {Xj} are hermitian 2× 2 matrices, Λ = diag{λ1, λ2}.

For the density of states or the second correlation function Xj will be
super-matrices

X1,j =

(
aj ρj
τj bj

)
, X2,j =

(
Aj ρ̄j
τ̄j Bj

)
with real variables aj, bj and Grassmann variables ρj, τj, or hermitian
Aj, hyperbolic Bj and Grassmann 2× 2 matrices ρ̄j, τ̄j.
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The formulas can be obtain in any dimension and for any J, although
the specific J =

(
−W2∆ + 1

)−1 gives a nearest neighbour model. In
particular, it becomes accessible for transfer matrix approach.

For the specific covariance (−W24+ 1)−1:

R0(λ1, λ2) = CN

∫
HN

2

exp
{
− W2

2

N∑
j=2

Tr (Xj −Xj−1)2
}
×

exp
{
− 1

2

N∑
j=1

Tr
(
Xj +

iE · I
2

+
iξ̂

2Nρ(λ0)

)2} N∏
j=1

det
(
Xj − iE · I/2

)
dX,

with ξ̂ = diag{ξ,−ξ}
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Now do the change of variables Xj = U∗j AjUj, where Uj is a 2× 2
unitary matrix and Aj = diag {aj, bj}, and integrate out aj, bj (i.e. put
them to be equal to their saddle-point values a± = ±πρ(E), so write
the sigma-model approximation). Then if we use a standard
parametrization of Uj ∈ U(2), we obtain a classical Heisenberg model:

∫
exp

{
π2ρ(λ0)2W2

N∑
j=2

(SjSj−1 − 1) +
iπξ
2N

N∑
j=1

Sjσ3

} N∏
j=1

dSj

−→
∫

eiπξS0σ3/2dS0 =
sin(πξ)

πξ
, W2 � N,

where Sj ∈ S2 corresponds to U∗j LUj, and σ3 = (0, 0, 1).
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Transfer matrix approach for characteristic polynomials:

R0

(
E · I +

ξ̂

nρ(E)

)
= −W−4Ndet−2J · (Kn−1

ξ F ,F),

Kξ(X,Y) =
W4

2π2 Fξ(X) exp
{
− W2

2
Tr (X−Y)2

}
Fξ(Y),

where Fξ(X) is the operator of multiplication by

Fξ(X) = F(X) · exp
{
− i

2nρ(E)
TrXξ̂

}
with

F(X) = exp
{
− 1

4
Tr
(
X +

iΛ0

2

)2
+

1
2
Tr log

(
X− iΛ0/2

)
− C+

}
and some specific C+

Saddle-points: Xj = πρ(E) ·U∗j LUj, Xj = ±πρ(E) · I2
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The main difficulties:
1 the transfer operator is not self-adjoint, and thus the perturbation

theory is not easily applied in a rigorous way;
2 the transfer operator has a complicated structure including a part

that acts on unitary and hyperbolic groups, hence we need to work
with corresponding special functions;

3 the kernel of the transfer operator for the density of states and for
the second correlation function contains not only only the complex,
but also some Grassmann variables. Therefore, for the density of
states K1 is a 2× 2 matrix kernel, containing the Jordan cell, and
for the second correlation function K2 is a 28 × 28 matrix kernel,
containing 4× 4 Jordan cell in the main block.
Using the symmetry of the problem, K2 could be replaced by
70× 70 matrix kernel, but it is still very complicated.
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Step by step project

characteristic polynomials (continuous symmetry, but no
Grassmann variables): we can prove the transition at W ∼

√
n,

and can study the behavior near the threshold

density of states (2 Grassmann variables, but no continuous
symmetry): we can show the local semicircle for the average
density of states

σ-model approximation for second correlation function (4
Grassmann variables & continuous symmetry): we have done the
delocalization side

second correlation function (8 Grassmann variables & continuous
symmetry): we can do the delocalization side (in preparation)
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Results for the characteristic polynomials:

Let D2 = R0(E,E), R̄0(E, ξ) = D−1
2 · R0

(
E + ξ̂/2Nρ(E)

)
.

lim
n→∞

R̄0(E, ξ) =


sinπξ
πξ

, W ≥ N1/2+θ;

(e−C∗t∗∆U−iξν · 1, 1), N = C∗W2

1, 1�W ≤
√

N
C∗ log N

,

where t∗ = (2πρ(E))2,

∆U = − d
dx

x(1− x)
d
dx
, ν(U) = π(1− 2x), x = |U12|2.

Delocalization part: S., 2013 – saddle-point analysis; (the case of orthogonal
symmetry is also done, S., 2015)

Localization part: M. Shcherbina, S., 2016 – transfer matrix approach.

Near the crossover: S., 2018
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Sigma-model R(σ)
2

The model can be obtained by some scaling limit (α = β/W, W→∞,
β,n-fixed) from the expression for R2.
The crossover is expected for β ∼ n. First result is a rigorous derivation of
sigma-model approximation:

R(σ)
2 =

∫
exp

{β
4

∑
StrQjQj+1 +

ε+ iξ
4n

∑
StrQjΛ

}∏
dQj

Here Qj is a 4× 4 super matrix of the block form:

Qj =

(
U∗j 0
0 S−1

j

)(
(I + 2ρ̂jτ̂j)L 2τ̂j

2ρ̂j −(I− 2ρ̂jτ̂j)L

)(
Uj 0
0 Sj

)
,

dQ =
∏

dQj, dQj = (1− 2ρj1τj1ρj2τj2) dρj1dτj1 dρj2dτj2 dUj dSj

with

ρ̂j = diag{ρj1, ρj2}, τ̂j = diag{τj1, ρj2}, L = diag{1,−1}.

Here {Uj} are unitary matrices, {Sj} are hyperbolic matrices, Q2
j = I.
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Result for R(σ)
2 [M. Shcherbina, S., 2018]

In the dimension d = 1 the behavior of the sigma-model approximation
R(σ)

2 of the second order correlation function, as β � n, in the bulk of
the spectrum coincides with those for the GUE. More precisely, if
Λ = [1, n] ∩ Z and HN, N = Wn are block RBM with
J = 1/W + β∆/W2, then for any |E| <

√
2

(Nρ(E))−2R2

(
E +

ξ1
ρ(E)N

,E +
ξ2

ρ(E)N

)
−→ 1− sin2(π(ξ1 − ξ2))

π2(ξ1 − ξ2)2 ,

in the limit first W→∞, and then β, n→∞, β ≥ Cn log2 n.

"Right" limit: β = αW, α is fixed, W, n→∞, W� n.
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The full model for the block band matrices

Theorem [M. Shcherbina, S., 2019] (in preparation)
In the dimension d = 1 the behaviour of the second order correlation
function of the Gaussian block band matrices, as W� n, in the bulk of
the spectrum coincides with those for the GUE. More precisely, if
Λ = [1, n]∩Z and HN, N = Wn are block RBM with J = 1/W +α∆/W,
α < 1/4, then for any E ∈ (−2, 2)

(Nρ(E))−2R2

(
E +

ξ1
ρ(E)N

,E +
ξ2

ρ(E)N

)
−→ 1− sin2(π(ξ1 − ξ2))

π2(ξ1 − ξ2)2 ,

in the limit W, n→∞, with W ≥ n logp n.
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Non-transfer matrix approaches to SUSY representation

delocalization regime for characteristic polynomials: S., 2013

the local semicircle for the average density of states for
J = (−W2∆ + 1)−1:

I 3d: Disertori, Pinson, Spencer, 2002 via cluster expansion;

I 2d: Disertori, Lager, 2016

the full model for the block band matrices

I finite number of blocks, any dimension: S., 2014

I W� N6/7, more general element’s distribution (subexponential
tails, four Gaussian moments): Erdős, Bao, 2015
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Resolvent version of the transfer operator approach

(Kn−1f, ḡ) = − 1
2πi

∮
L
zn−1(G(z)f, ḡ)dz, G(z) = (K − z)−1

where L is any closed contour which contains all eigenvalues of K.

Set
λ∗ = λ0(K), (λ∗ ∼ 1),

then it suffices to choose L as L0 = {z : |z| = |λ∗|(1 + O(n−1))}.
We choose L = L1 ∪ L2 where L2 = {z : |z| = |λ∗|(1− log2 n/n)}, and L1 is
some special contour, containing all eigenvalues between L0 and L2. Then

(Kn−1f, ḡ) = − 1
2πi

∮
L1

zn−1(G(z)f, ḡ)dz

− 1
2πi

∮
|z|=|λ∗|(1−log2 n/n)

zn−1(G(z)f, ḡ)dz
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The second integral is small comparing with |λ∗|n−1, since

|z|n−1 ≤ |λ∗|n−1 · e− log2 n

Definition of asymptotically equivalent operators (n,W→∞)

A ∼ B ⇔
∮

L1

zn−1((A−z)−1f, ḡ)dz =

∮
L1

zn−1((B−z)−1f, ḡ)dz·(1+o(1))

for certain L1
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Mechanism of the crossover for R0

Key technical steps
Kξ ∼ Kξ,± (projection to the neighborhoods of saddle-points)

Kξ,± ∼ K∗ξ ⊗A,

K∗ξ(U1,U2) = e−iξν(U1)/NK∗0(U1U∗2)e−iξν(U2)/N, K∗0 : L2(Ů(2))→ L2(Ů(2)),

A(x1, x2, y1, y2) = A1(x1, x2)A2(y1, y2), L2(R2)→ L2(R2).

Here ξ1 = −ξ2 = ξ, and ν(U) = π(1− 2|U12|2)

Then

R0 = (KN
∗ξ ⊗ANf, ḡ)(1 + o(1)) = (KN

∗ξ · 1, 1)(ANf1, ḡ1)(1 + o(1)).

Here we used that both f, g asymptotically can be replaced by 1⊗ f1(x, y).
After normalization we get:

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=

(KN
∗ξ · 1, 1)

(KN
∗0 · 1, 1)

(1 + o(1))
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Spectral analysis of K∗ξ

A good news is that K∗0 with a kernel

K∗0 = t∗W2e−t∗W2|(U1U∗2)12|2

is a self-adjoint "difference" operator. It is known that his
eigenfunctions are Legendre polynomials Pj. Moreover, it is easy to
check that corresponding eigenvalues have the form:

λj = 1− t∗j(j + 1)/W2 + O((j(j + 1)/W2)2), j = 0, 1 . . . .

Besides,
K∗ξ = K∗0 − 2iξν̂/N + O(N−2)

where ν̂ is the operator of multiplication by ν. Thus the eigenvalues of
K∗ξ are in the N−1-neighbourhood of λj.
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Mechanism of the Poisson behavior for W2 � N
For W−2 � N−1 (the spectral gap is much bigger then the perturbation
norm)

λ0(K∗ξ) = 1− 2N−1iξ(ν · 1, 1) + o(N−1),

|λ1(K∗ξ)| ≤ 1−O(W−2) ⇒ |λj(K∗ξ)|N → 0, (j = 1, 2, . . . ).

Since
(ν · 1, 1) = 0,

we obtain that
λ0(K∗ξ) = 1 + o(N−1),

and

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=
λN

0 (K∗ξ)
λN

0 (K∗0)
(1 + o(1))→ 1

The relation corresponds to the Poisson local statistics.
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Mechanism of the GUE behavior for W2 � N

In the regime W−2 � N−1 we have KN
∗0 → I in the strong vector

topology, hence one can prove that

K∗ξ ∼ 1 + O(W−2)−N−12iξν ⇒ (KN
∗ξ · 1, 1)→ (e−2iξν̂ · 1, 1)

and

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=

(e−2iξt∗ν̂ · 1, 1)

(1, 1)
(1 + o(1))→ sin(2πξ)

2πξ
.

The expression for D−1
2 R0 coincides with that for GUE.
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In the regime W−2 = C∗N−1 observe that K∗ξ is reduced by the
subspace E0 of the functions depending only on |U12|2.
Recall also that the Laplace operator on Ů(2) is reduced by E0 and
have the form

∆U = − d
dx

x(1− x)
d
dx
, x = |U12|2.

Besides, the eigenvectors of ∆U and K∗0 coincide (they are Legendre’s
polynomials Pj) and corresponding eigenvalues of ∆U are

λ∗j = j(j + 1).

Hence we can write K∗ξ as

K∗ξ ∼ 1−N−1(C∗t∗∆U+2iξν)+o(N−1)⇒ (KN
∗ξ ·1, 1)→ (e−C∆U−2iξν̂ ·1, 1)
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