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Introduction

Bose-Einstein condensates: in the last two decades, BEC have
become accessible to experiments.

Goal: understand low-energy properties of trapped condensates,
starting from microscopic description.
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Gross-Pitaevskii regime: N bosons in A = [0; 1]3, interacting
through potential with effective range of order N1 as N — ~.

O O

Range of interaction much shorter

@ @ $1/N than typical distance among particles:
@ @ collisions rare, dilute gas.
e AN
N | /

Hamilton operator: has form

N N
Hy= Y —ADz;+ Y N°V(N(z;—=;)), on LI(AY)
=1 1<g

V > 0 with compact support.



Scattering length: defined by zero-energy scattering equation

1
—A + 5V($) f(x) =0, with  f(x) -1 as |z|] — oo
= f(x) =1-— %, for large |z
xr
Equivalently,

Srag = / V(z) f(x)da

By scaling,

N2V (Nx)

1 v(2) = f(Nz
—A+ 5NQV(N:C)] f(Nz) =0 ) = 105

Rescaled potential has
scattering length ag/N.
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Ground state energy: [Lieb-Yngvason '98] proved that
EN = 47TCloN + O(N)

BEC: [Lieb-Seiringer '02, '06] showed that ¢y € L2(AN) with
(YN, HNyn) < 4magN + o(N)

exhibits BEC, i.e. reduced density matrix

/YN(wry) :/de"'dewN(w7x27°°°7wN)@N(ya$2>“'7$N)

is such that

lim (0, YnNPo) =1
N—00

with ¢g(xz) = 1 for all z € A.

Warning: this does not mean that ¢y ~ o5V In fact

N—1)~
( )V(O) > AmagN

N N
(P&, Hy o§™) =

Correlations are important!!



Main results

Theorem [Boccato, Brennecke, Cenatiempo, S., '17]: There
exists C' > 0 such that

|EN—47TC10N| S C

uniformly in N.

Furthermore, if ¢ € L2(AY) such that

(YN, HNYn) < 4magN + ¢
we have

C 1
1 — (¥0,YN¥0) < (C]\_fl_ )

Interpretation: in low-energy states, condensation holds with
optimal rate, with bounded number of excitations.

Question: Is it possible to resolve order one contributions to
the ground state energy?



Theorem [Boccato, Brennecke, Cenatiempo, S., '18]:
Let A% = 27Z3\{0}. Then

En = 47TaO(N — 1)+ e/\a%

Sman)? _
— = Z b + 8mag — \/Ipl* + 167agp? — ¢ 3) + oM
\ 2p
6/\Jr
where
. cos(|pl)
=2 — Ilim
N M — o0 Z p2

p€Z3\{O}:
p1ls|p2l|,lp3|<M

Moreover, for the ground state, we have the BEC depletion

p? + 8mag — \/|p|4 + 167agp?
1—{v0, YN¥0) Z

+O(NT/®)
N eny 2\/Ip|* + 16magp?




Theorem [Boccato, Brennecke, Cenatiempo, S., '18]: The
spectrum of Hy — Ex below a threshold ¢ > 0 consists of eigen-
values

S np\/Ip* + 16magp? + O(N~H4(1 + ¢3))
peAi

where np € N for all p € AL

Interpretation: every excitation with momentum p € /\>‘_<F “‘costs”
energy e(p) = \/|p|* + 16magp?.

Remark: excitation spectrum is crucial to understand the low-
energy properties of Bose gas.

The linear dependence of (p) on |p| for small p can be used to
explain the emergence of superfluidity.



Previous works

Mathematically simpler models described by

N N
1
H]% — z —Aa:j ‘|‘ N Z N3BV(NB(xZ — CU]))
j=1 1<j
for 8 € [0;1).
In mean field regime, 5 = 0, excitation spectrum determined

in [Seiringer, '11], [Grech-Seiringner, '13], [Lewin-Nam-Serfaty-
Solovej, '14], [Derezinski-Napiorkowski, '14], [Pizzo, '16].

Dispersion of excitations given by ems(p) = \/|p|4 + 2V (p)pZ.

For intermediate regimes, 5 € (0;1) (and V small enough)
excitations spectrum determined in [BBCS, '17].

Dispersion of excitations given by eg(p) = \/|p|4 + 2V (0)p2.

For Gross-Pitaevskii regime, 5 = 1, and V small, excitations
spectrum determined in [BBCS, '18].



Extension to BEC in external potentials

Consider N bosons in R3, with Hamilton operator

N N
Hy(Vext) = Y |=Bu; 4 Vext(z))| + 3. N2V(N(z; — 7))
j=1 i<j
with Veyt a trapping potential.

[Lieb-Seiringer-Yngvason, '00] proved that

lim En _ min Egp(p)
Nooss N pel2®):pl=1 o "

with the Gross-Pitaevskii energy functional
Sep(e) = [, [IVel? + Vextlio? + 4maolel*] de

[Lieb-Seiringer, '02]: ground state exhibits BEC into minimizer
pgp Of Gross-Pitaevskii functional, ie.

im (pGp;neep) =1
N—00
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Theorem [Brennecke-S.-Schraven, in progress]:

Optimal BEC: if ¢y € L2(R3V) with

(ON, HN(Vext)YN) < En(Vext) + ¢
then

C 1
1 — (pgp, ITNPGP) < (C; )

Excitation spectrum: let

hgp = —A + Vext + 87TaO|SDGP|2

and eg = info(hgp). Let D = hgp — ¢g and

B = [DY2(D 4 16maolpap2) DV/2]

Spectrum of Hy(Vext) — En(Vext) below threshold ¢ > 0 consists
of eigenvalues having the form

> mnje; +o(1) where e; are eigenvalues of E and n; € N.
ieN
11



Dynamics generated by change of external fields
First results by [ErdOs-S.-Yau, '06, '08], and by [Pickl, '10].

Theorem [Brennecke-S., '16]: let ¢y € L2(R3V) with reduced
density matrix vp such that

ay =1— <SOGP,7NSOGP> — 0
by = [N~ N, Hy(Vext)¥nw) — Ecp(¢ap)| = 0
Let

Hy = Z —Dg; + Z N2V (N(z; — ;) on L2(R3M)
Jj= 1<J

and %DN,t = e—ZHN%N solve many-body Schrodinger equation.
Then

1 — (o1, Yn,eet) < C lay + by + N7t exp(cexp(clt]))

where ¢; solves time-dependent Gross-Pitaevskii equation

i8pr = — Ay + 8ragled 2ot With pi=0 = ¢Gp-

12



T hermodynamic limit

Consider N bosons in A; = [0:L]3, with N,L — oo but fixed
density p = N/L3.

As p — 0, Lee-Huang-Yang predicted
E 128

: N _ 3y1/2 1/2
lim — = 4ma 1 a
MmN Taop +15ﬁ(p 0) <+ o(p ')
N/L3=p

Leading order known from [Lieb-Yngvason, '98].
Upper bound to second order in [Erdds-S.-Yau,’08], [Yau-Yin,’09].
[Fournais-Solovej, '19] got matching lower bound (next talk!).
Remark: Gross-Pitaevskii regime corresponds to limit p = N—2.

Still open: prove BEC and determine excitations in
thermodynamic limit.
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Bogoliubov approximation
Fock space: define F = @®,,>9 L2(A").

Creation and annihilation operators: for p € 2773, introduce
a;;,ap creating and annihilating particle with momentum p.

Canonical commutation relations: for any p,q € 2773,

[a,p,a(ﬂ = 0p,q, [ap,aq] = [a,;;,az;] =0

Number of particles: ajap measures number of particles with
momentum p,

N = ) ajap = total number of particles operator
PEN?
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Hamilton operator: we write

1 ~
Hy= ) p2a’ pap + ~N > V(T/N)a;_|_raf1apaq_|_r
peEN® p,q,rEN*

Number substitution: BEC implies that
aO,aB ~VN>1= [a07a(>|5]

Bogoliubov replaced aE"),ao by factors of v N. He found

Hy =~ (N; Do)+ 3 pPatap +7(0) Y ata
p70 p#£0

—|— Z V(p/N) [Qa ap + ana’, + apa_p}
p#o

\/_ Z V(p/N) [ p_l_qa*_paq + a;a_pap_kq}
p,q70

+ N > V(T/N)a;+ra2apaq_|_r
p,q,m#0
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Diagonalization: neglecting cubic and quartic terms, and using

appropriate Bogoliubov transformation

T = exp{ Yo (a;;a,*_p — apa_p) }

pEAi
one finds
_ (/2
T*HNT ~ (N 1)\/(0) - > ’ %N)
2p#0 2P
_= z 22+ 7(0) = /Ip* + 20(0)p? -
p#O
+ 5 VIpl* + 2V (0)p2 asap
p70

V(OF]

2p2

Born series: for small potentials, scattering length given by

8rag = V(0)

1n
+3 gwn 3

p177pn7'J:O pl ]:1

‘7(191/N)”ﬁ1‘7((pg p3+1)/ ) 7

n/N)
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Scattering length: replacing

02
V(0) — 8mag, V(0) — %Z 4 éZéN)
P

> 8magp

Bogoliubov obtained

T*HNT =~ 47raO(N ~1)

8man)2
— = Z p2+87mo—\/|p|4+167mop2—( 5 S) ]
2 p#o L p
—I—Z\/ | —|—167ra0p aap
p#0
Hence
1 8man)?
En = 4mag(N—1)—— Z p2 + 8mag — \/|p|4 -+ 167Ta0p2 — ( 8)
QP#O 2p

and excitation spectrum consists of

Z np\/|p|4 + 167ra0p2, np € N
p70
Final replacement makes up for missing cubic and quartic terms!
17




Factoring out the condensate

Orthogonal excitations: for ¢ € L2(AY), oo =1 on A, write

Yn = agpd Y + a1 ®s 05N T + a2 05N T 4 Fay

where a; € Li%(/\)@sj.
As in [Lewin-Nam-Serfaty-Solovej, '12], define unitary map
2/ AN <N Al 2 i
U: Li(N )—>]—"_|—_ — .EBOLJ-SOO(A)@)SJ
]:
YN = Uy ={ag,a1,...,an}
Excitation Hamiltonian: we use unitary map U to define

<N <N
Ly =UHNU*: F3V — F3

18



For p,q € N = 277Z3\{0}, we have
Ua;aq U* = a;;aq,
UagagU* = N — N
Ua;aoU*za;\/N—N_|_
Uajap U™ = \/N—N_|_ap

: VN b},
- VN by

Hence, similarly to Bogoliubov substitution,
. (N —-1)

Ly VO + Y Paamt Y Vip/Naae

pEAi pEAi
1 N
+2 2 V(/N) bty + bpby|
pEAi
\/—N Z V(p/N) [ ;_anipaq —I- a;a,_pbp_i_q

+ — > ‘A/(T/N)a;_|_7,a;apaq_|_r
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Renormalized excitation Hamiltonian

Problem: in contrast with mean-field regime, after conjugation
with U there are still large contributions in higher order terms.

Reason: U*Q2 = gp%N not good approximation for ground state!
We need to take into account correlations!

Natural idea: conjugate L with a Bogoliubov transformation,
ie. a unitary map of the form

~

1
pEAi

generating correlations.

Nice feature: action of Bogoliubov transformations is explicit:

~ ~

T*apT = ap cosh(np) + aX,sinh(np)

20



Challenge: T does not preserve excitation space ]—“_|—<_N.

Generalized Bogoliubov transformations: we use

1
T = exp 5 > mp <b;;b*_p — bpb_p)

] pEAi |

where
N — N N — N
e

N N

Recall:
ag ag
U U = a) ——, U*b,U = a
P p\/ﬁ p \/N P

Action: on states with few excitations, b, ~ ap, b, ~ a;. Thus

*
D

where
ldp€]l < CNTYH|(Ng + 1)/ %]

21



Choice of correlations: consider

[—A + %V] f=0, with f(x) — 1, as |z| = oo

and let w=1— f. We define
1 C |
___~ ~ — o—Ipl/N
=2 @/ = mp e
We set

T = exp { > (0507~ b))
Py

Observation: recall that
T*apT ~ cosh(np)ap + sinh(np)a’,,
Hence
(QT*NLTQ) ~ Y sinh?(np) <CY n2 < C
(Q,T*KTQ) ~ Y p?sinh?(np) ~ Y p?ng ~ CN

T generates finitely many excitations but macroscopic energy.
22



Renormalized excitation Hamiltonian: define

Gn = T*LNT = T*UHNUT : FEN — FEV

Bounds on Gy: with Hy = K + Vpy, we find
ON =4magN +Hy +En
where, for every 6 > 0, there exists constant C > 0 with

+Ey < OHy + CVIING

Condensation: for small potential, we can use gap
Ny < (2m)72K < (2m)*Hy
to conclude that

1
gN—47TClON 2 E%N_C

This implies BEC for low-energy states.
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Commutator bounds: we also obtain

+ [N, Ny| < CGHN +1)

This is important for dynamics and also for moments of N_|_.

Corollary: Let ¢y = X(HN < Enx + C)lﬁN and &y = T*UQﬁN
Then, for every k € N, there exists C > 0 such that

(En, (Hn + D WV4 + DFen) < ¢+ DR

With these improved bounds, we can go back to Gy.
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T heorem: renormalized excitation Hamiltonian is such that

OGN =Cn+ Q9N +Cny+VN+idN

where C)p is a constant, Oy is quadratic,

1 [/ * *
O == Z* V(p/N) [ 5 g (Vabg + ogb™ ) + h.c.]
pg€A+
1
VN = N > V(’r'/N)ap_Haq g+-r0p
quAi
and, where,
C 3
£y < T [y + DOVG + 1) + Wy + 1))

Problem: Gy still contains non-negligible cubic and quartic
terms! This is substantial difference compared with case 5 < 1!
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New cubic phase: we define

1
A= > M| oub b by A Yubl b by — h.c.

VN ir|>V'N,|v|<vVN

Set S = e and introduce new excitation Hamiltonian

Jn = S*GnS = S*T*UNHNURTS : F3© — 3V

Remark: a similar cubic conjugation was used in [Yau-Yin, 09].

26



Proposition: we can decompose

Iv=CNn+Qn+ VN +én
where Cy is a constant, Qu is quadratic and where

C
N1/4

+oy < (Hy + DW4 4+ 1) + Wy + 1)3]

Mechanism: we have

1
In = e AGyet ~ Gy + [Gn, A] + Slon. AL Al + ..
where

ON~2CN+QN+CNn+ VN

Combine [Qn, A], [Vn, A] with Cxn (use scattering equation).

At same time, [Cy, A] modifies constant and quadratic terms.

27



Diagonalization: with last Bogoliubov transformation R, set
My = R*JyR = R*S*T*"UNHNURTSR : F3¥ — F©
Then
My = 4ray(N — 1)

1
) Z p2 + 8mag — \/|p|4 —+ 167raop2 —
peN¥ L

(877610)2]
2p2

_|_
+ Z \/p|4+167TClop2a;ap—|—VN—|—5§V
pEAi

where

+5h < CN~1/4 [(’HN + 1N 4+ 1) + (V4 + 1)3}

Main theorem follows from min-max principle, because on |low-
energy states of diagonal quadratic Hamiltonian, we find

Vv < CN-L(¢+1)7/2
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