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Introduction

Bose-Einstein condensates: in the last two decades, BEC have

become accessible to experiments.

Goal: understand low-energy properties of trapped condensates,

starting from microscopic description.
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Gross-Pitaevskii regime: N bosons in Λ = [0; 1]3, interacting

through potential with effective range of order N−1, as N →∞.

Range of interaction much shorter

than typical distance among particles:

collisions rare, dilute gas.

Hamilton operator: has form

HN =
N∑
j=1

−∆xj +
N∑
i<j

N2V (N(xi − xj)) , on L2
s(ΛN)

V ≥ 0 with compact support.
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Scattering length: defined by zero-energy scattering equation[
−∆ +

1

2
V (x)

]
f(x) = 0, with f(x)→ 1 as |x| → ∞

⇒ f(x) = 1−
a0

|x|
, for large |x|

Equivalently,

8πa0 =
∫
V (x)f(x)dx

By scaling,[
−∆ +

1

2
N2V (Nx)

]
f(Nx) = 0

Rescaled potential has

scattering length a0/N .
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Ground state energy: [Lieb-Yngvason ’98] proved that

EN = 4πa0N + o(N)

BEC: [Lieb-Seiringer ’02, ’06] showed that ψN ∈ L2
s(ΛN) with

〈ψN , HNψN〉 ≤ 4πa0N + o(N)

exhibits BEC, i.e. reduced density matrix

γN(x; y) =
∫
dx2 . . . dxN ψN(x, x2, . . . , xN)ψN(y, x2, . . . , xN)

is such that

lim
N→∞

〈ϕ0, γNϕ0〉 = 1

with ϕ0(x) = 1 for all x ∈ Λ.

Warning: this does not mean that ψN ' ϕ⊗N0 . In fact

〈ϕ⊗N0 , HN ϕ
⊗N
0 〉 =

(N − 1)

2
V̂ (0)� 4πa0N

Correlations are important!!
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Main results

Theorem [Boccato, Brennecke, Cenatiempo, S., ’17]: There
exists C > 0 such that

|EN − 4πa0N | ≤ C

uniformly in N .

Furthermore, if ψN ∈ L2
s(ΛN) such that

〈ψN , HNψN〉 ≤ 4πa0N + ζ

we have

1− 〈ϕ0, γNϕ0〉 ≤
C(ζ + 1)

N

Interpretation: in low-energy states, condensation holds with
optimal rate, with bounded number of excitations.

Question: Is it possible to resolve order one contributions to
the ground state energy?
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Theorem [Boccato, Brennecke, Cenatiempo, S., ’18]:

Let Λ∗+ = 2πZ3\{0}. Then

EN = 4πa0(N − 1) + eΛa
2
0

−
1

2

∑
p∈Λ∗+

[
p2 + 8πa0 −

√
|p|4 + 16πa0p

2 −
(8πa0)2

2p2

]
+O(N−1/4)

where

eΛ = 2− lim
M→∞

∑
p∈Z3\{0}:

|p1|,|p2|,|p3|≤M

cos(|p|)
p2

Moreover, for the ground state, we have the BEC depletion

1−〈ϕ0, γNϕ0〉 =
1

N

∑
p∈Λ∗+

p2 + 8πa0 −
√
|p|4 + 16πa0p

2

2
√
|p|4 + 16πa0p

2

+O(N−9/8)
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Theorem [Boccato, Brennecke, Cenatiempo, S., ’18]: The

spectrum of HN −EN below a threshold ζ > 0 consists of eigen-

values ∑
p∈Λ∗+

np

√
|p|4 + 16πa0p

2 +O(N−1/4(1 + ζ3))

where np ∈ N for all p ∈ Λ∗+.

Interpretation: every excitation with momentum p ∈ Λ∗+ “costs”

energy ε(p) =
√
|p|4 + 16πa0p

2.

Remark: excitation spectrum is crucial to understand the low-

energy properties of Bose gas.

The linear dependence of ε(p) on |p| for small p can be used to

explain the emergence of superfluidity.
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Previous works

Mathematically simpler models described by

H
β
N =

N∑
j=1

−∆xj +
1

N

N∑
i<j

N3βV (Nβ(xi − xj))

for β ∈ [0; 1).

In mean field regime, β = 0, excitation spectrum determined
in [Seiringer, ’11], [Grech-Seiringner, ’13], [Lewin-Nam-Serfaty-
Solovej, ’14], [Derezinski-Napiorkowski, ’14], [Pizzo, ’16].

Dispersion of excitations given by εmf(p) =
√
|p|4 + 2V̂ (p)p2.

For intermediate regimes, β ∈ (0; 1) (and V small enough)
excitations spectrum determined in [BBCS, ’17].

Dispersion of excitations given by εβ(p) =
√
|p|4 + 2V̂ (0)p2.

For Gross-Pitaevskii regime, β = 1, and V small, excitations
spectrum determined in [BBCS, ’18].
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Extension to BEC in external potentials

Consider N bosons in R3, with Hamilton operator

HN(Vext) =
N∑
j=1

[
−∆xj + Vext(xj)

]
+

N∑
i<j

N2V (N(xi − xj))

with Vext a trapping potential.

[Lieb-Seiringer-Yngvason, ’00] proved that

lim
N→∞

EN
N

= min
ϕ∈L2(R3):‖ϕ‖=1

EGP(ϕ)

with the Gross-Pitaevskii energy functional

EGP(ϕ) =
∫
R3

[
|∇ϕ|2 + Vext|ϕ|2 + 4πa0|ϕ|4

]
dx

[Lieb-Seiringer, ’02]: ground state exhibits BEC into minimizer
ϕGP of Gross-Pitaevskii functional, ie.

lim
N→∞

〈ϕGP, γNϕGP〉 = 1
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Theorem [Brennecke-S.-Schraven, in progress]:

Optimal BEC: if ψN ∈ L2
s(R3N) with

〈ψN , HN(Vext)ψN〉 ≤ EN(Vext) + ζ

then

1− 〈ϕGP, γNϕGP〉 ≤
C(ζ + 1)

N

Excitation spectrum: let

hGP = −∆ + Vext + 8πa0|ϕGP|2

and ε0 = inf σ(hGP). Let D = hGP − ε0 and

E =
[
D1/2(D + 16πa0|ϕGP|2)D1/2

]1/2

Spectrum of HN(Vext)−EN(Vext) below threshold ζ > 0 consists
of eigenvalues having the form∑
i∈N

niei + o(1) where ei are eigenvalues of E and ni ∈ N.
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Dynamics generated by change of external fields

First results by [Erdős-S.-Yau, ’06, ’08], and by [Pickl, ’10].

Theorem [Brennecke-S., ’16]: let ψN ∈ L2
s(R3N) with reduced

density matrix γN such that

aN = 1− 〈ϕGP, γNϕGP〉 → 0

bN =
∣∣∣N−1〈ψN , HN(Vext)ψN〉 − EGP(ϕGP)

∣∣∣→ 0

Let

HN =
N∑
j=1

−∆xj +
N∑
i<j

N2V (N(xi − xj)) on L2
s(R3N)

and ψN,t = e−iHN tψN solve many-body Schrödinger equation.
Then

1− 〈ϕt, γN,tϕt〉 ≤ C
[
aN + bN +N−1

]
exp(c exp(c|t|))

where ϕt solves time-dependent Gross-Pitaevskii equation

i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt, with ϕt=0 = ϕGP.
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Thermodynamic limit

Consider N bosons in ΛL = [0;L]3, with N,L → ∞ but fixed
density ρ = N/L3.

As ρ→ 0, Lee-Huang-Yang predicted

lim
N,L→∞
N/L3=ρ

EN
N

= 4πa0ρ

[
1 +

128

15
√
π

(ρa3
0)1/2 + o(ρ1/2)

]

Leading order known from [Lieb-Yngvason, ’98].

Upper bound to second order in [Erdős-S.-Yau,’08], [Yau-Yin,’09].

[Fournais-Solovej, ’19] got matching lower bound (next talk!).

Remark: Gross-Pitaevskii regime corresponds to limit ρ = N−2.

Still open: prove BEC and determine excitations in
thermodynamic limit.
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Bogoliubov approximation

Fock space: define F =
⊕
n≥0L

2
s(Λn).

Creation and annihilation operators: for p ∈ 2πZ3, introduce

a∗p, ap creating and annihilating particle with momentum p.

Canonical commutation relations: for any p, q ∈ 2πZ3,[
ap, a

∗
q

]
= δp,q,

[
ap, aq

]
=
[
a∗p, a

∗
q

]
= 0

Number of particles: a∗pap measures number of particles with

momentum p,

N =
∑
p∈Λ∗

a∗pap = total number of particles operator
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Hamilton operator: we write

HN =
∑
p∈Λ∗

p2a∗pap +
1

N

∑
p,q,r∈Λ∗

V̂ (r/N)a∗p+ra
∗
qapaq+r

Number substitution: BEC implies that

a0, a
∗
0 '
√
N � 1 = [a0, a

∗
0]

Bogoliubov replaced a∗0, a0 by factors of
√
N . He found

HN '
(N − 1)

2
V̂ (0) +

∑
p 6=0

p2a∗pap + V̂ (0)
∑
p 6=0

a∗pap

+
1

2

∑
p 6=0

V̂ (p/N)
[
2a∗pap + a∗pa

∗
−p + apa−p

]
+

1√
N

∑
p,q 6=0

V̂ (p/N)
[
a∗p+qa

∗
−paq + a∗qa−pap+q

]
+

1

N

∑
p,q,r 6=0

V̂ (r/N)a∗p+ra
∗
qapaq+r
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Diagonalization: neglecting cubic and quartic terms, and using
appropriate Bogoliubov transformation

T = exp
{ ∑
p∈Λ∗+

τp
(
a∗pa
∗
−p − apa−p

) }
one finds

T ∗HNT '
(N − 1)

2
V̂ (0)−

1

2

∑
p 6=0

V̂ 2(p/N)

2p2

−
1

2

∑
p 6=0

[
p2 + V̂ (0)−

√
|p|4 + 2V̂ (0)p2 −

V̂ (0)2

2p2

]

+
∑
p6=0

√
|p|4 + 2V̂ (0)p2 a∗pap

Born series: for small potentials, scattering length given by

8πa0 = V̂ (0)

+
∞∑
n=1

(−1)n

2nNn

∑
p1,...,pn 6=0

V̂ (p1/N)

p2
1

n−1∏
j=1

V̂ ((pj − pj+1)/N)

p2
j+1

V̂ (pn/N)
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Scattering length: replacing

V̂ (0)→ 8πa0, V̂ (0)−
1

N

∑
p

V̂ 2(p/N)

2p2
→ 8πa0

Bogoliubov obtained

T ∗HNT ' 4πa0(N − 1)

−
1

2

∑
p 6=0

[
p2 + 8πa0 −

√
|p|4 + 16πa0p

2 −
(8πa0)2

2p2

]

+
∑
p 6=0

√
|p|4 + 16πa0p

2 a∗pap

Hence

EN = 4πa0(N−1)−
1

2

∑
p 6=0

[
p2 + 8πa0 −

√
|p|4 + 16πa0p

2 −
(8πa0)2

2p2

]

and excitation spectrum consists of∑
p 6=0

np

√
|p|4 + 16πa0p

2, np ∈ N

Final replacement makes up for missing cubic and quartic terms!
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Factoring out the condensate

Orthogonal excitations: for ψN ∈ L2
s(ΛN), ϕ0 ≡ 1 on Λ, write

ψN = α0ϕ
⊗N
0 + α1 ⊗s ϕ

⊗(N−1)
0 + α2 ⊗s ϕ

⊗(N−2)
0 + · · ·+ αN

where αj ∈ L2
⊥ϕ0

(Λ)⊗sj.

As in [Lewin-Nam-Serfaty-Solovej, ’12], define unitary map

U : L2
s(ΛN)→ F≤N+ :=

N⊕
j=0

L2
⊥ϕ0

(Λ)⊗sj

ψN → UψN = {α0, α1, . . . , αN}

Excitation Hamiltonian: we use unitary map U to define

LN = UHNU
∗ : F≤N+ → F≤N+
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For p, q ∈ Λ∗+ = 2πZ3\{0}, we have

U a∗paq U
∗ = a∗paq,

U a∗0a0U
∗ = N −N+

U a∗pa0U
∗ = a∗p

√
N −N+ =:

√
N b∗p,

Ua∗0apU
∗ =

√
N −N+ ap =:

√
N bp

Hence, similarly to Bogoliubov substitution,

LN =
(N − 1)

2
V̂ (0) +

∑
p∈Λ∗+

p2a∗pap +
∑
p∈Λ∗+

V̂ (p/N)a∗pap

+
1

2

∑
p∈Λ∗+

V̂ (p/N)
[
b∗pb
∗
−p + bpb−p

]

+
1√
N

∑
p,q∈Λ∗+:p+q 6=0

V̂ (p/N)
[
b∗p+qa

∗
−paq + a∗qa−pbp+q

]

+
1

2N

∑
p,q∈Λ∗+,r∈Λ∗:r 6=−p,−q

V̂ (r/N)a∗p+ra
∗
qapaq+r
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Renormalized excitation Hamiltonian

Problem: in contrast with mean-field regime, after conjugation

with U there are still large contributions in higher order terms.

Reason: U∗Ω = ϕ⊗N0 not good approximation for ground state!

We need to take into account correlations!

Natural idea: conjugate LN with a Bogoliubov transformation,

ie. a unitary map of the form

T̃ = exp

1

2

∑
p∈Λ∗+

ηp
(
a∗pa
∗
−p − apa−p

)
generating correlations.

Nice feature: action of Bogoliubov transformations is explicit:

T̃ ∗ ap T̃ = ap cosh(ηp) + a∗−p sinh(ηp)
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Challenge: T̃ does not preserve excitation space F≤N+ .

Generalized Bogoliubov transformations: we use

T = exp

1

2

∑
p∈Λ∗+

ηp
(
b∗pb
∗
−p − bpb−p

)
where

b∗p = a∗p

√
N −N+

N
, bp =

√
N −N+

N
ap

Recall:

U∗ b∗pU = a∗p
a0√
N
, U∗bpU =

a∗0√
N
ap

Action: on states with few excitations, bp ' ap, b∗p ' a∗p. Thus

T ∗bpT = cosh(ηp)bp + sinh(ηp)b
∗
−p + dp

where

‖dpξ‖ ≤ CN−1‖(N+ + 1)3/2ξ‖
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Choice of correlations: consider[
−∆ +

1

2
V

]
f = 0, with f(x)→ 1, as |x| → ∞

and let w = 1− f . We define

ηp = −
1

N2
ŵ(p/N) ⇒ ηp '

C

p2
e−|p|/N

We set

T = exp
{1

2

∑
p∈Λ∗+

ηp
(
b∗pb
∗
−p − bpb−p

) }
Observation: recall that

T ∗apT ' cosh(ηp)ap + sinh(ηp)a
∗
−p

Hence

〈Ω, T ∗N+TΩ〉 '
∑

sinh2(ηp) ≤ C
∑

η2
p ≤ C

〈Ω, T ∗KTΩ〉 '
∑

p2 sinh2(ηp) '
∑

p2η2
p ' CN

T generates finitely many excitations but macroscopic energy.
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Renormalized excitation Hamiltonian: define

GN = T ∗LNT = T ∗UHNU
∗T : F≤N+ → F≤N+

Bounds on GN : with HN = K+ VN , we find

GN = 4πa0N +HN + EN

where, for every δ > 0, there exists constant C > 0 with

±EN ≤ δHN + C‖V ‖N+

Condensation: for small potential, we can use gap

N+ ≤ (2π)−2K ≤ (2π)−2HN
to conclude that

GN − 4πa0N ≥
1

2
HN − C

This implies BEC for low-energy states.
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Commutator bounds: we also obtain

±
[
GN ,N+

]
≤ C(HN + 1)

This is important for dynamics and also for moments of N+.

Corollary: Let ψN = χ(HN ≤ EN + ζ)ψN and ξN = T ∗UψN .

Then, for every k ∈ N, there exists C > 0 such that

〈ξN , (HN + 1)(N+ + 1)kξN〉 ≤ C(ζ + 1)k+1

With these improved bounds, we can go back to GN .
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Theorem: renormalized excitation Hamiltonian is such that

GN = CN +QN + CN + VN + δN

where CN is a constant, QN is quadratic,

CN =
1√
N

∑
p,q∈Λ∗+

V̂ (p/N)
[
b∗p+qb

∗
−p
(
γqbq + σqb

∗
−q
)

+ h.c.
]

VN =
1

2N

∑
p,q∈Λ∗+

V̂ (r/N)a∗p+ra
∗
qaq+rap

and, where,

±δN ≤
C√
N

[
(HN + 1)(N+ + 1) + (N+ + 1)3

]

Problem: GN still contains non-negligible cubic and quartic

terms! This is substantial difference compared with case β < 1!
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New cubic phase: we define

A =
1√
N

∑
|r|>
√
N,|v|<

√
N

ηr
[
σvb
∗
r+vb

∗
−rb
∗
−v + γvb

∗
r+vb

∗
−rbv − h.c.

]

Set S = eA and introduce new excitation Hamiltonian

JN = S∗GNS = S∗T ∗UNHNU
∗
NTS : F≤N+ → F≤N+

Remark: a similar cubic conjugation was used in [Yau-Yin, 09].
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Proposition: we can decompose

JN = C̃N + Q̃N + VN + δ̃N

where C̃N is a constant, Q̃N is quadratic and where

±δ̃N ≤
C

N1/4

[
(HN + 1)(N+ + 1) + (N+ + 1)3

]

Mechanism: we have

JN = e−AGNeA ' GN + [GN , A] +
1

2
[[GN , A], A] + . . .

where

GN ' CN +QN + CN + VN

Combine [QN , A], [VN , A] with CN (use scattering equation).

At same time, [CN , A] modifies constant and quadratic terms.
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Diagonalization: with last Bogoliubov transformation R, set

MN = R∗JNR = R∗S∗T ∗UNHNU
∗
NTSR : F≤N+ → F≤N+

Then

MN = 4πaN(N − 1)

−
1

2

∑
p∈Λ∗+

[
p2 + 8πa0 −

√
|p|4 + 16πa0p

2 −
(8πa0)2

2p2

]

+
∑
p∈Λ∗+

√
|p|4 + 16πa0p

2 a∗pap + VN + δ′N

where

±δ′N ≤ CN
−1/4

[
(HN + 1)(N+ + 1) + (N+ + 1)3

]

Main theorem follows from min-max principle, because on low-

energy states of diagonal quadratic Hamiltonian, we find

VN ≤ CN−1(ζ + 1)7/2
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