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Signomials

Signomials are functions of the form

x 7→
m∑
i=1

ci exp(αi · x)

for real scalars ci, and row vectors αi in Rn.

Write f = Sig(α, c) for an m× n matrix α, and c in Rm.

Signomials have no concept of degree. We measure a signomial’s
“complexity” by number of terms needed in the monomial basis

{x 7→ exp(a · x) : a ∈ Rn}.
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The signomial nonnegativity cone

Define the nonnegativity cone for signomials over exponents α:

CNNS(α)
.
= { c : Sig(α, c)(x) ≥ 0 for all x in Rn}.

These nonnegativity cones exhibit affine-invariance:

CNNS(α) = CNNS(αV ) = CNNS(α− 1u)

for all invertible V in Rn×n, and all row vectors u in Rn.

Checking membership in CNNS(α) ...

is NP-Hard (for general α).

has applications in engineering design problems.

is useful for certifying global polynomial nonnegativity.
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SAGE is sufficient for nonnegativity

Definition. A nonnegative signomial with at most one negative
coefficient is an “AM/GM Exponential,” or an “AGE function.”

For each k, have cone of coefficients for AM/GM Exponentials

CAGE(α, k)
.
= {c : c\k ≥ 0 and c in CNNS(α)}.

We take sums of AGE cones to obtain the SAGE cone

CSAGE(α) =

m∑
k=1

CAGE(α, k).

Crucial question: How to represent the AGE cones?
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The convex duality behind AGE cones

Fix α in Rm×n, and c in Rm satisfying c\k ≥ 0.

Does c belong to CNNS(α)?

Appeal to affine invariance of CNNS(α), and rearrange terms:

Sig(α, c)(x) ≥ 0 ⇔ Sig(α− 1αk, c)(x) ≥ 0

Sig(α\k − 1αk, c\k)(x) ≥ −ck.

Appeal to convex duality. The nonnegativity condition

inf
x∈Rn

Sig(α\k − 1αk, c\k)(x) ≥ −ck

holds if and only if there exists ν in Rm−1 satisfying

D(ν, c\k)− νᵀ1 ≤ ck and [α\k − 1αk]ν = 0.
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Outline

1 Discuss selected results for SAGE-signomial certificates.

M., Chandrasekaran, and Wierman – 2018.

2 Define and prove results for SAGE-polynomial certificates.

M., Chandrasekaran, and Wierman – 2018.

3 A tiny preview of forthcoming work.
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Results for the SAGE signomial cone.
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Standard-form SAGE decompositions

Consider a coefficient vector c ∈ Rm satisfying

c1, . . . , c` < 0 ≤ c`+1, . . . cm,

and suppose we want to test if c belongs to CSAGE(α).

Can show that we only need consider c(k) in CAGE(α, k).

Furthermore, the `×m matrix C with rows “c(k)” looks like

C =
[
diag(c1, . . . , c`) | C̃

]
for some dense, nonnegative `× (m− `) matrix C̃.
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Think Newton polytopes
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Simplicial sign patterns

Theorem (1)

If Newt(α) is simplicial, and ci ≤ 0 for all nonextremal αi,

then c ∈ CNNS(α) if and only if c ∈ CSAGE(α).
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f(x) = (ex1 − ex2 − ex3)2

is clearly nonnegative, but

f − γ is not SAGE ∀ γ ∈ R.
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Partitioning a Newton polytope

We say that α can be partitioned into ` faces if we can permute
its rows so that α = [α(1); . . . ;α(`)] where {Newtα(i)}`i=1 are
mutually disjoint faces of Newt(α).
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Partitioning a Newton polytope

Theorem (2)

If {α(i)}`i=1 are matrices partitioning α = [α(1); . . . ;α(`)], then

CNNS(α) = ⊕`i=1CNNS(α
(i))

–and the same is true of CSAGE(α).

Sanity checks :

All matrices α admit a trivial partition with ` = 1.

If all αi are extremal, then CNNS(α) = Rm+ .

A natural regularity condition: α’s only partition is trivial.
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A Theorem for CSAGE(α) = CNNS(α)

Theorem (3)

Suppose α can be partitioned into faces where

1 each simplicial face has ≤ 2 nonextremal exponents, and

2 all other faces contain at most one nonextremal exponent.

Then CSAGE(α) = CNNS(α).

Is the second (nonsimplicial) case too restrictive? Consider

αᵀ =

[
0 1 2 0 0 2
0 0 0 1 2 2

]
.

The term α6 = [2, 2] prevents us from applying Theorem 3.

Can show [1.8,−4, 3,−2, 2, 1] ∈ CNNS(α) \ CSAGE(α).
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Extreme rays of CSAGE(α)

A circuit is a minimal affinely-dependent pointset of Rn.

We consider circuits “X” that are simplicial : |X \ ext convX| = 1.

Theorem (4)

If c generates a nontrivial extreme ray of CSAGE(α), then
{αi : ci 6= 0} is a circuit.

The # of circuits induced by α ∈ Rm×n can be exponential in m.

Possible that every circuit supports extreme rays in CSAGE(α).

Yet, we can represent CSAGE(α) with an REP of size O(m2)!

Nonnegativity via Relative Entropy and Convex Duality Riley Murray 15
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Global Polynomial Nonnnegativity.
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Basic definitions

Fix α in Nm×n. Write p = Poly(α, c) to mean

p(x) =

m∑
i=1

cix
αi , where xαi .=

n∏
j=1

x
αij

j .

The matrix α induces a nonnegativity cone

CNNP(α)
.
= { c : Poly(α, c)(x) ≥ 0 for all x in Rn}.

Observe: Sig(α, c) is PSD on Rn iff Poly(α, c) is PSD on Rn+.

Thus results for signomials directly extend to even polynomials.
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One construction of SAGE polynomials

Call cix
αi a “monomial square” if αi is even and ci ≥ 0.

p is an “AGE polynomial” – in the monomial basis specified by α –
if p(x) contains at most one cix

αi which is not a monomial square.

In conic form, write

CPOLY
AGE (α, k) = { c : c ∈ CNNP(α), c\k ≥ 0, and

ci = 0 for all i 6= k with αi 6∈ 2Nn}

and define

CPOLY
SAGE (α) =

m∑
k=1

CPOLY
AGE (α, k).

Nonnegativity via Relative Entropy and Convex Duality Riley Murray 18
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Another construction, with representation!

Define the set of signomial representative coefficient vectors

SR(α, c) = {ĉ : ĉi = ci whenever αi is in 2Nn, and

ĉi ≤ −|ci| whenever αi is not in 2Nn}.

If ĉ belongs to SR(α, c), then (by a trivial termwise argument)

Sig(α, ĉ) nonnegative ⇒ Poly(α, c) nonnegative.

Theorem (5)

CPOLY
SAGE (α) = {c : SR(α, c) ∩ CSAGE(α) is nonempty }

Theorem 5 can be leveraged to produce many corollaries.

Nonnegativity via Relative Entropy and Convex Duality Riley Murray 19
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Select corollaries

Let p be a polynomial in the monomial basis specified by α.

1 If p is a SAGE polynomial with ` terms that are not monomial
squares, then it admits a decomposition of ` nonnegative
polynomials, all of which are supported by exponents α.

2 If Newtα is simplicial and nonextremal αi are linearly
independent mod 2, then p is nonnegative iff p is SAGE.

3 If p has ≤ 1 extremal term, p is nonnegative iff it is SAGE.

4 The nontrivial extreme rays of CPOLY
SAGE (α) are generated by

vectors c where {αi : ci 6= 0} are simplicial circuits.

Nonnegativity via Relative Entropy and Convex Duality Riley Murray 20
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Relationship to SONC certificates

Corollaries 3 and 4 in the previous slide imply a given polynomial
admits a SAGE certificate iff it admits a SONC certificate.

Does this mean SAGE and SONC are the same thing?

NO.
Which is more efficient: SAGE-polynomials, or SONC?

SAGE polynomials.
Can SONC-type analysis still be useful for theoretical purposes?

Of course!

Nonnegativity via Relative Entropy and Convex Duality Riley Murray 21
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Polynomial Optimization.

Nonnegativity via Relative Entropy and Convex Duality Riley Murray 22
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Primal and dual formulations

Fix p = Poly(α, c), where exponents α ∈ Nm×n have α1 = 0.

The primal SAGE relaxation for p? = infx∈Rn p(x) is

pSAGE = sup{ γ : c− γe1 in CPOLY
SAGE (α)} ≤ p?

Applying conic duality, the dual SAGE relaxation is

pSAGE = inf{ cᵀv : eᵀ1v = 1, v ∈ CPOLY
SAGE (α)

†}.

If pSAGE = p?, how can we recover a minimizer x? ∈ Rn?

Nonnegativity via Relative Entropy and Convex Duality Riley Murray 23
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Dual solution recovery

In terms of standard primitives (LP and REP), can express

CPOLY
SAGE (α)

† = {v : there exists v̂ in CSAGE(α)
† with

|v| ≤ v̂, and vi = v̂i when αi ∈ 2Nn}, and

CSAGE(α)
† = {v̂ : there exist z1, . . . ,zm in Rn satisfying

v̂j log(v̂/v̂j) ≥ [α− 1αj ]zj for all j in [m]}.

Our solution recovery algorithm is simple.

1 Recover magnitudes |x| ← exp(zj/v̂j),

2 recover signs “s” from sgnv, by linear algebra over GF(2),
3 and stitch them together: x← |x| � s.

This procedure comes with guarantees under natural conditions.
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Concluding remarks

Review!

We ...

defined signomial and polynomial SAGE certificates,

discussed recent results concerning these certificates,

clarified the relationship between SAGE and SONC, and

outlined solution recovery from moment-SAGE relaxations.

Keep an eye on arXiv for

Signomial and Polynomial Optimization via Relative Entropy and
Partial Dualization

by Murray, Chandrasekaran, and Wierman.
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