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Outline

@ Physical background - Electromagnetic (EM) waves
© The self-adjoint case
© Non-self-adjoint cases

@ Ongoing work
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EM waves in (non-magnetic) dielectric medium

Maxwell's equations in E

curIcurIE+ 2 =0, x=(x1,x,x3)€eQcR
with .
D(x,t)z{E(x,t)—i—f K(X,t—T)E(X,T)dT}.
—o0
The Fourier transform f(w) = { e™tf(t)dt gives

S(W)E =0, S(w) = curlcurl — w?e(x,w),

where e(x,w) = 1+ K(x,w) is the permittivity and w € D c C.
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What do we want to know?

Properties of the spectrum: o(S) ={weD : 0€o(S(w))}
Resolvent estimates: Behaviour of ||S™1(w)|

Properties of the evolution Maxwell equations:
2

t
curl curl E—i—% {E(x, t) —l—f K(x,t —T1)E(x,7) d’]’} =0
-0

+ boundary and initial conditions.
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Drude-Lorentz = damped harmonic oscillator

@ d - damping
@ ./c - resonant frequency of undamped oscillator

e /b - plasma frequency
0:=4/Cc— %2 # 0 (under/over - damping):
K(t) = ge_td/Q sin(0t).
Assume 6 := 0 (critical damping):

K(t) = bte /2

e =000
° e(x,w) =1+ R(x,w) = xq, (X) + e2(w)xq,(x)
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Analytic properties of S?

o Silicon
1 Lorentz

e Silicon
—1 Lorentz

30
£ 20

10

gSO 400 450 500 gSO 400 450 - 500
wavelength wavelength
L by
oW =1+ Kw) =1+ — 5. b >0,¢,>0,d,>0.
7 Z_ICg—/dgw—w

v w > we(w) maps C* on C*,
@ But is the operator function

S(w) = curl curl — w?e(x,w)

Nevanlinna (after change of variables)?
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Consider S with the multi-pole Drude-Lorentz model:

S(w) = Ayg — w? —w22

dgw c — dpw — w?’

with Ag = curlcurl, and My, = byxq,.
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Consider S with the multi-pole Drude-Lorentz model:

L

M
A2 2 ¢
Sw) = Ao —w w;ce—dgw—wz’
with Ag = curlcurl, and My, = byxq,.
Set w = —VA. Then —S()\) : L2()3 — L2(Q)3 with

S =Ao—A= )\ZCg—i-/dg\f by

is Nevanlinna if
e A is self-adjoint & M, >
@ dy=0o0r¢ < d;/4fora||€—12 , L
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Polynomial long division gives

ceby

L L
Ae(x,A) = A= > bpxa,(x) + D X, (%)
/=1 /=1

Cg—)\

Set

e A= Ao + Zé:l b@XQz

o B} = \/aibixa,, where X, : L3(Q)? — Ha, Ha = ran xq,.
Then
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Equivalent block operator matrix

L
S\ =A-r=>

(=1

BB}
-\

domS(N\) =domA, XeC\{cy,co,...,cL},

where By : Hp — [2(Q)3, 6 =1,2,..., L.

o H=12Q30H H=H®  ®Ha
S is the Schur complement of A : H—H,

A B B---B
Bf ¢ 0---0
A B * N
A:(B* D): By 0c--0] domA=domAQ®H.

Bf 00 -c
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Classical min-max principle for self-adjoint operators

Assumptions
@ A has discrete spectrum, (e.g. E = (0,0, u(x1,x2)) in electromagnetics )
@ A is self-adjoint and bounded from below
@ By, £ =1,2,... L are bounded

Then
Q 0.ss(A) = {c1, @, ..., cL}(Adamjan, Atkinson, H. Langer, Mennicken, Shkalikov)
@ A is self-adjoint and bounded from below
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Classical min-max principle for self-adjoint operators

Assumptions
@ A has discrete spectrum, (e.g. E = (0,0, u(x1,x2)) in electromagnetics )
@ A is self-adjoint and bounded from below
@ By, £ =1,2,... L are bounded

Then

O o0.s(A) = {c1,0,...,c}(Adamjan, Atkinson, H. Langer, Mennicken, Shkalikov)
@ A is self-adjoint and bounded from below

From the min-max principle (Rayleigh-Ritz, Courant-Fischer) follows

o _ (Au,u)
An = min , max plu), plu) := = "
dim L=n u#0

where ((A — A)u, u) = 0 has solution p(u) and A\, = minoess(A) = ¢1.
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Variational principles in (¢, cp41)?

@ (S(A)u,u) = 0 has solution pyi1(u) in (cp, cr41)
From the Nevanlinna property follows
L
LA

d
arSWu ) = =l =31 2

Morover, S(A) = dom A independent of .

@ These properties (and some additional) imply variational principles
(M. Langer/Eschwé (2004))

< —|u|?, wedomS,u#0
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Simplified result for one rational term

Assume A > ¢1. Then the eigenvalues of A (and S) are

A, = min max u AM.n— C
Ln = lomA el pi(u), Ln 1
dim L=n us#0

A2p = min_ max pa(u), A, — 0,
’ Lcdom A uwel )
dim L=n u#0

where

1/ (Au, u) _ 1/ (Au,u) > |Biul?
p12(u) = < —|—c1) +\/< —ca | + .
2\ Jul? 4\ ul? ul?

Note that p; »(u) are the solutions of (P(\)u, u) = 0, where

P(\) = (a1 = ANS(\) = X2 = XA+ c1) — BBy
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Main results in E./Langer/Tretter (2017)

v/ gaps in the spectrum to the right of ¢;, £ =1,...,L
v/ ¢ is an accumulation point of eigenvalues of A from the left

v/ min-max characterisation of the eigenvalues:

Aen=min  maxpg(u
Z’” Lcdom A uel pﬁ( )
dim L=n+ Ky u7#0

where £ is the number of negative eigenvalues of S(n,").

e No index shift (i.e. k, =0)if A> ¢.

A1 Ao A2 Ao,
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Extensions to d; > 0 (joint work with Axel Torshage)

What can we say about the spectrum of

M,

L
= Ay — 22
S(w) 0 — W —w ;Cg—dgw—w2’

when dy; > 0 for some /7
@ The tools used when dy = 0 can not be applied

@ We need different tools and will use theory of bounded operator
polynomials (Keldysh, Krein, Langer, Markus, Matsaev, Russu,...)
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Theory of polynomial operator functions

The theory is difficult to use since

@ We need good knowledge of the numerical range
W(S) = {weD: Juedom(A)\{0},|u]| = 1,so that (S(w)u,u) = 0}

@ We can only show accumulation of eigenvalues in bounded
components of the numerical range
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Basic steps to show accumulation when dy > 0

@ Reformulate the problem as an operator polynomial P with bounded
operator coefficients (of a special form)
@ Show that it exists operator polynomials R and @ such that

Pw) = R(w)Qw),o(R) =T no(P),o(Q) = C\T,

where ' = C is bounded.

0 ' 0,
-1 "‘: -1
- ( o
-3 -3

4 2 0
(a)

2 4 4 2

0
(b)
I is the dotted line (S has one rational term)
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Application to lossy photonic crystal

Poles at +4/8 — i for S with one rational term

@ We can prove accumulation of eigenvalues to the poles
@ Solid lines bound the spectrum
@ The circles are numerically computed eigenvalues (p-FEM)
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Where are we going now?

Other equations
o Full Maxwell’s equations with double negative and lossy materials
e Wave equations with viscoelastic materials (Bolzmann integral)
@ Scattering resonances (nonlinearity in the DtN-map)

Evolution problems

@ Get to know the resolvent — get to know the semigroup

{f'

(r

Is |[S71()\)|| a Mouse or an Elephant (or a Duck)?
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Properties of the eigenvectors

Problem in 1D (E./Grubigi¢, 2015):

2
=

Problem in 2D:

@ We can prove that the eigenvectors behave as in the 2D example if the
eigenvalues do not accumulate too quickly

@ This accumulation rate depends on the geometry!
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1

@ We can in some cases guarantee a band gap by using verified
eigenvalue enclosures to show that Ax > ¢
Hoang/Plum/Wieners (2009)

@ In general no accumulation for fixed k, but no gap for all k
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min-max principle for the rational function (main results)

@ Define py(u) € [¢y—1, ¢/] for u e dom (A) = dom (S(\)) by
)\g(u) if (S(/\g(u))u, u) =0 for )\g(u) € (Cg_l, Cg),
pe(u) =<3 ¢—1 if (S(N)u,u) <0 forall A€ (¢—1, ),
< if (S(A)u,u) >0 forall \e (¢—_1,¢c),

v/ The spectrum of S consists of L + 1 eigenvalue sequences
(/\gd-)l'.’il < (ce—1,¢), ng € Ng U {0}, which may be characterized as

Mp= min  maxpp(u
br = hom (a) el pe(u)
dimL:nJrne u#0

PYSEIREE Aol A2 Aet1,1
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