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Objective 1/34

Propagation of EM waves

in periodic structures : ε(x , y)

(no boundaries)

a
a

x
y

modeling for all frequency and wavevector

Effective homogeneous parameter

for the propagation of EM waves

→ εeff(ω, k)

→ neff(ω, k) =
√
εeff(ω, k)

εeff(ω, k)



Motivation : composite materials (metamaterials) 2/34

Modeling of unusal effective properties : neff < 1, neff < 0, µeff ...
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Objective : modeling of propagation of EM waves 3/34

Propagation of EM waves

in periodic structures : ε(x , y)

(no boundaries)

a
a

x
y

Propagation of EM waves is governed by the dispersion law : ω(k)

ω

k

n0ω = ck ω

k

neff(ω, k)ω = ck

π
a

2π
a− π

a− 2π
a



Objective : modeling of the dispersion law 4/34

The dispersion law : ω(k)

The effective parameter :

neff(ω, k)ω = ck

a
a

x
y

The dispersion law : folded or developed ?

ω

k
π
a− π

a

ω

k

same phase shift
same group velocity
same propagation

π
a

2π
a− π

a− 2π
a



Analytic structure of the developed dispersion law 5/34

The complex frequency : ω → ω + iη = ω

The complex wavevector : k → k + iξ = k

Assumption : analyticity of the developed dispersion law

ω

k
π
a

2π
a− π

a− 2π
a

neff(ω, k)ω = ck

All the information
neff(ω, k) for (ω, k) in

⇐⇒
All the information
neff(ω, k) for all (ω, k)



Main ideas for the modeling of the dispersion law 6/34

a
a

ε(x , y)

dispersion law :
neff(ω, k)ω = ck

ω

k
π
a

2π
a− π

a− 2π
a

→ consider the developed dispersion law

→ consider complex frequency and wavevector (ω, k)

→ assume effective parameters neff(ω, k) analytic of (ω, k)

→ use perturbation technique to obtain information in ◦
→ use analytic continuation (Kramers-Kronig relations)

to obtain neff(ω, k)



A motivation

An opportunity to investigate

spatial dispersion (ω, k)



Outline of the presentation 8/34

1 Arguments supporting analyticity of neff(ω, k)

2 Kramers-Kronig relations extended to (ω, k)

3 Perturbation technique

4 Application to the 1D case

5 The imaginary part of the effective permeability



Outline of the presentation 8/34

1 Arguments supporting analyticity of neff(ω, k)

2 Kramers-Kronig relations extended to (ω, k)

3 Perturbation technique

4 Application to the 1D case

5 The imaginary part of the effective permeability



Analytic property from causality principle 9/34

P(x, t) =
∫ t

−∞
ds χ(x, t − s) E(x, s)

Analytic property from time causality

χ(x, t) = 0 in the domain t < 0
⇐⇒†

ε(x, ω), E(x, ω), R(ω)... analytic in the domain Im(ω) > 0

Re(ω)

Im(ω)

† Related to the Paley-Wiener theorem.



Analytic property from causality principle 10/34

P(x, t) =
∫ t

−∞
ds
∫
|x−y |≤ct

χ(x − y , t − s) E(y , s)

light cone :

Analytic property from space-time causality

χ(x, t) = 0, G(x, t) = 0 in the domain t < |x|/c
⇐⇒†

ε(k, ω), E(x, k, ω)... analytic in the cone Im(ω)− c|Im(k)| > 0

t

x

|x| = ct
Im(ω)

Im(k)

c|Im(k)| =
Im(ω)

† Related to the Paley-Wiener theorem.



Analytic property of the dispersion law 11/34

Time harmonic Maxwell’s equations :
∇×H(x, ω) = −iωε(x, ω)E(x, ω) ,

∇× E(x, ω) = iωµ0H(x, ω) .
Periodicity and Bloch decomposition : ∇ −→∇ + ik

[∇ + ik]×H(x, k, ω) = −iωε(x, ω)E(x, k, ω) ,

[∇ + ik]× E(x, k, ω) = iωµ0H(x, k, ω) .
The fields E(x, t) can be expressed from the dispersion
law ω(k) or k(ω) : E(x, t) =

∫
dωdk exp[ik · x − iωt]Ê(k, ω(k))

space-time causality : analytic if Im(ω)− c|Im(k)| > 0

→ ω(k) or k(ω) have analytic properties 1, 2

1. H. Knörrer and E. Trubovitz, Comment. Math. Helvetici 65, 114-149 (1990).
2. http ://arxiv.org/abs/1807.01658 (Editors V. Markel and I. Tsukerman)



Analytic property of neff(ω, k) 12/34

• The dispersion law ω(k) or k(ω) has the analytic
property related to the space-time causality

• The effective parameters neff(ω, k) are derived from
the dispersion law

Assumption∗ : neff(ω, k) analytic if Im(ω)− c|Im(k)| > 0

Consequence (related to the Paley-Wiener theorem) :

neff(ω, k) =
∫ ∞

0
dt
∫
|x|≤ct

dx exp[iωt − k · x]χeff(x, t)

−→ True in 1D∗†

† Phys. Rev. B 88, 165104 (2013).
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Kramers-Kronig relations 14/34

ε(ω) = ε0 +
∫ ∞

0
dt exp[iωt]χ(t) , σ(ν) = Im[ ν ε(ν) ]

π
> 0 .

use of causality / analyticity : ε(ω)− ε0 = χ̂ = θ̂ ∗ χ̂ = 1
ω
∗ χ̂ ...

“Kramers-Kronig relations” for Im(ω) > 0
−→ “representation of Herglotz-Nevanlinna functions”

ε(ω) = ε0 −
∫
R

dν σ(ν)
ω2 − ν2 .

Superposition of elementary resonances†: ε(ω) = ε0 −
Ω2

ω2 − ν2

Simple models for elementary resonances :
→ elastically bound electron†
→ coupling of EM waves with quantized atom
→ any causal and passive system...



Kramers-Kronig relations with spatial dispersion 15/34

ε(ω, k) = ε0 +
∫ ∞

0
dt
∫
|x|≤ct

dx exp[iωt − k · x]χ(x, t) ,

→ introduction of σ(ν,κ) = Im[ ν ε(ν,κ) ]
π

and use of causality...

Different results depending on x , k ∈ R , R2 , R3 :

1D : ω[ε(ω, k)− ε0] = − i
πc

∫
R

dν
∫
R

dκ σ(ν, κ)
(ω − ν)2/c2 − (k − κ)2 .

2D : ω[ε(ω, k)− ε0] = 1
2πc

∫
R

dν
∫
R

dκ σ(ν, κ)
[(ω − ν)2/c2 − (k − κ)2]3/2 .

3D : ω[ε(ω, k)− ε0] = i
π2c

∫
R

dν
∫
R

dκ σ(ν, κ)
[(ω − ν)2/c2 − (k − κ)2]2 .



Kramers-Kronig relations with spatial dispersion 16/34

“Kramers-Kronig relations” for neff(ω, k), x and k ∈ R

ω[neff(ω, k)− ε0] = − i
πc

∫
R

dν
∫
R

dκ σ(ν, κ)
(ω − ν)2/c2 − (k − κ)2 ,

where :
σ(ν, κ) = Im[ ν neff(ν, κ) ]

π
> 0 .

Superposition of elementary convolutions with 1
ω2/c2 − k2

Simple model for elementary resonances :

→ convolution with the free scalar EM Green’s function
→ may be not a coincidence...
→ related to a “Herglotz-Nevanlinna representation” ?



Numerical check of the Kramers-Kronig relation in 1D 17/34

µ0, ε1/ε0 = 2

µ0, ε2/ε0 = 12

f1 = 0.8

f2 = 0.2
neff(ω)

The effective index of a multilayer

0 2 4 6 8 10

0.5

1.0

1.5

2.5

ω = Re(z)

←− Re
[
neff(z)/

√
ε0µ0

]

←− Im
[
neff(z)/

√
ε0µ0

]

〈
√
ε/ε0 〉

√
〈ε/ε0 〉

0 2 4 6 8 10

 0.2

 0.4

 0.6

 0.8

 1.0

+ Kramers-Kronig relations ; – exact retrieval expression
Phys. Rev. B 88, 165104 (2013)
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Perturbation technique 19/34

Kramers-Kronig relations for ω and k :

ω[neff(ω, k)−n0(ω)] = − i
πc

∫
R

dν
∫
R

dκ σ(ν, κ)
(ω − ν)2/c2 − (k − κ)2 ,

where

σ(ν, κ) = Im[ ν neff(ν, κ) ]
π

6= 0

is attenuation

in stop bands

ω

neff(ω, k)
π
a

2π
a− π

a− 2π
a



Perturbation technique 20/34

Small contrast (perturbation) : stop band width � ωp(k)

σ(ω, k) = Im[ω neff(ω, k) ]
π

≈
∑

p
δ
[
ω2 − ω2

p(k)
]

Ω2
p(k) .

ω

ωneff(ω, k)
π
a

2π
a− π

a− 2π
a

ω1(k)

ω2(k) Perturbation
technique :

→ ω2
p(k)

→ Ω2
p(k)



Perturbation technique 21/34

Kramers-Kronig relations for ω and k :

ω[neff(ω, k)−n0(ω)] = − i
πc

∫
R

dν
∫
R

dκ σ(ν, κ)
(ω − ν)2/c2 − (k − κ)2 .

Small contrast and perturbation technique :

σ(ν, κ) ≈
∑

p
δ
[
ν2 − ω2

p(κ)
]

Ω2
p(κ) .

Resulting expression :

neff(ω, k)− n0(ω) ≈ −
∑

p

Ω2
p(k)

ω2 − ω2
p(k) .
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Application to the 1D case 23/34

Approached expression :

neff(ω, k)− n0(ω) ≈ −
∑

p

Ω2
p(k)

ω2 − ω2
p(k) .

with :

n0(ω) =
[∫ a

0
dx ε0

ε(x , ω)

]−1/2

ω2
p(k) = c2

n2
0(ωp(k))

[
p2π2/a2 + k2]

Ω2
p(k) = c2

n2
0(ωp(k))

[
p2π2/a2 + k2]2

p2π2/a2 αp(ωp(k))α−p(ωp(k))

αp(ω) = n2
0(ω)

[∫ a

0
dx ε0

ε(x , ω) exp[i2pπx/a]
]



Application to the 1D case 24/34

Approached expression : neff(ω, k)− n0(ω) ≈ −
∑

p

Ω2
p(k)

ω2 − ω2
p(k)

ω

k

πc
n0a

ω1(k)

2πc
n0a

ω2(k)

3πc
n0a

ω3(k)

Case without dispersion : ω2
p(k) = [p2π2/a2 + k2]c2/n2

0 −→
neff(ω, k) as a sum of hydrodynamical model resonances :

ε = ε0 −
Ω2

ω2 − ω2
0 − v2k2



Application to the 1D case 25/34

µ0, ε1/ε0 = 2

µ0, ε2/ε0 = 2.2

f1

f2

neff(ω)

104
CHAPTER 3. ALL-FREQUENCY HOMOGENIZATION OF ONE-DIMENSIONAL PERIODIC

STRUCTURES

This formula indicates that the expression of index can be approximated analytically by a sum of

resonant function with ωp as the resonant frequencies. The curve of Re(neff) versus frequency is

drawn in Fig. 3.18 by plus markers, and a good agreement can be observed as expected in compa-

rison with the solid line obtained from (3.80). Fig. 3.18(a) shows a range of 0 to 10 for normalized

frequency ω′, the limit of the curve at infinity frequency is equal to n∞, which is consistent with

Fig. 3.8 ; Fig. 3.18(b) shows the curve in the first period ω′ ∈ [0,2], the peak in the center of the stop

gap contributes to the resonance of z on ωp in (3.158).

0 2 4 6 8 10
1.44

1.45

1.46

ω′ = Re(z)/ω0

〈
√

ε/ε0 〉

√
〈ε/ε0 〉

Re [neff(z)]

(a)

0 0.5 1 1.5 2
1.4

1.45

1.5

ω′ = Re(z)/ω0

R
e
[n

e
ff
(z
)]

(b)

Figure 3.18 — Real part of the effective refractive index neff(z) for z = ω+ 0.001× i : the solid line

is obtained from equation (3.80), and the results given by analytic expression (3.158) is denoted by

plus markers in panel (a) for a range of frequency including first ten periods, while in dotted line in

panel (b) for the first period. ε1 = 2ε0, ε2 = 2.2ε0, Re[
√

〈ε/ε0〉] = 1.4483ε0, Re[〈
√
ε/ε0〉] ≈ 1.4479ε0.

3.6.3 Proof of the index limits

In the pervious sections, we have numerically found that : the limits of the index at zero fre-

quency is equal to
p〈ε/ε0〉 while n∞ is the mean of the refractive index, respectively. Based on the

analytic expressions of neff in (3.158), we would like to prove these two limits analytically, although

a simple periodic structure consisting of two dielectric layer with same optical length n1h1 = n2h2,

it does not lose the generality.

Firstly, when the frequency z → 0, the wavelength λ correspondingly be infinity, since the

thickness of the unit cell of the periodic structure h is much smaller than the wavelength, the

two layers structure can be regarded as a homogeneous medium with an effective permittivity

〈ε/ε0〉 = ε1/ε0 f1 +ε2/ε0 f2, which leads to a refractive index

neff(0) =
√
〈ε/ε0〉 =

√
ε1/ε0 f1 +ε2/ε0 f2 =

√
n2

1 f1 +n2
2 f2 . (3.159)

However, when z →∞, the term with the factor 1/(z−ω2
p ) in the right hand side of (3.158) can take

infinite values at z =ωp , which makes it impossible to derive the expression for n∞ directly. In fact,

we can solve this problem from neff(0) instead of substituting z →∞ into (3.158) straightforwardly.

+ model ; – exact retrieval expression
Y. Liu, PhD thesis, Aix-Marseille university (2013)
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Imaginary part of the permeability 27/34

Kramers-Kronig relations for Im(ω) > 0
−→ representation of Herglotz-Nevanlinna functions

µ(ω) = µ0 −
1
π

∫
R

dν
Im
[
νµ(ν)

]
ω2 − ν2 .

At the nul frequency (static) :

µ(0) = µ0 + 2
π

∫ ∞
0

dν
Im
[
νµ(ν)

]
ν2

Paramagnetic media: µ(0)− µ0 = 2
π

∫ ∞
0

dν
Im
[
νµ(ν)

]
ν2 > 0 .

Diamagnetic media: µ(0)− µ0 = 2
π

∫ ∞
0

dν
Im
[
νµ(ν)

]
ν2 < 0 .

Imaginary part of the permeability : positive or negative ?



Anomalies in the dispersion of effective permeability 28/34

Questions on the sign of the imaginary part of ωµeff(ω)†

Can the imaginary part of permeability be negative?

Vadim A. Markel*
Departments of Radiology and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

�Received 25 February 2008; published 18 August 2008�

When new composite optical materials are developed experimentally or studied in numerical simulations, it
is essential to have a set of fundamental constraints that the optical constants of such materials must satisfy. In
this paper I argue that positivity of the imaginary part of the magnetic permeability may not be one of such
constraints, particularly in naturally occurring diamagnetics and in artificial materials that exhibit diamagnetic
response to low-frequency or static magnetic fields.

DOI: 10.1103/PhysRevE.78.026608 PACS number�s�: 41.20.Jb, 75.20.�g, 78.20.�e

I. INTRODUCTION

In this paper, I argue that there is no solid theoretical basis
to believe that the imaginary part of the magnetic permeabil-
ity is always positive for any frequency and any material. I
will further argue that, in the case of diamagnetics �1�, there
is a strong indication to the contrary.

The paper is motivated by a recent controversy �2,3�
which touched on the subject of whether the imaginary parts
of the permittivity ����=�����+ i����� and permeability
����=�����+ i����� of a material can ever be negative. The
controversy was, in turn, sparked by the publication of Ref.
�4� by Koschny et al. in which numerical simulations of the
effective parameters of an artificial composite optical me-
dium have been reported. In particular, it was claimed that
both �� and �� can be negative in some frequency ranges.
Koschny et al. and the authors of the subsequent comments
�2,3� have relied in their arguments on a standard expression
for the rate at which the energy of a monochromatic electro-
magnetic field of frequency � is dissipated into heat at a
point r inside a spatially uniform medium. I will refer to this
quantity simply as the heating rate and denote it by q�r�. The
standard expression for the heating rate is �5�

q�r� =
�

8�
�������E��r��2 + ������H��r��2� , �1�

where E� and H� are the complex amplitudes of the electric
and magnetic fields while the real-valued fields are obtained
from E�r , t�=Re�E��r�exp�−i�t�� and analogously for the
magnetic field. Note that formula �1� should not be confused
with the expression for the energy density W�r� stored in the
medium which is discussed, for example, in Ref. �6� �see
Eqs. �4� and �5� of this reference�. The latter quantity can be
defined only approximately in the spectral region where the
material is nearly transparent ��5�, Sec. 80�. In contrast, q�r�
is well defined for arbitrary dispersion; its integral over the
body volume gives the absorption cross section which is a
well-defined thermodynamic quantity.

Koschny et al. did not dispute that q�r� must be positive
but argued that there is no requirement that ����� and �����
be positive simultaneously; instead, they suggested that only
the sum of the two terms in the right-hand side of Eq. �1� is

required to be positive. The main point of the comments
�2,3� was that it is possible to envision a geometrical ar-
rangement in which either one of these two terms is arbi-
trarily small while ����� and ����� are properties of the
medium and, therefore, are independent of the geometry.
Therefore, both ����� and ����� must be positive indepen-
dently of each other to ensure the positivity of q�r� for all
possible medium geometries and illumination patterns. In
their reply to the above two comments, Koschny et al. have
argued that what they retrieve are some “effective” param-
eters of a periodic structure which are wave vector dependent
and that such parameters are not subject to the same con-
straints as those of homogeneous materials. Koschny et al.
did not indicate whether they think that the same reasoning
applies to materials which exhibit spatial dispersion and did
not reflect any further on the generality of Eq. �1�. Simula-
tions in which negative values of either ����� or ����� are
reported continue to appear in the literature �7�.

The purpose of this paper is to point out that one encoun-
ters a serious difficulty when the requirement ������0 is
imposed. Specifically, it is difficult to reconcile the analytical
properties of ����, the above inequality and the existence of
diamagnetics. In fact, this difficulty is known. In particular, it
is discussed, although somewhat indirectly, in Electrodynam-
ics of Continuous Media by Landau and Lifshitz �5�. It is
suggested in this text that the Kramers-Kronig relations for
���� must be modified �as compared to those for ����� to
allow for the existence of diamagnetics. This argument is
reproduced below. However, the justification for this proce-
dure is hardly satisfying; in particular, it results in an expres-
sion for ����� which has an incorrect high-frequency as-
ymptote. In what follows, I will argue that the proofs of
positivity given in the comments �2,3� fully apply to ��, but
not to ��. In other words, I think that the possibility is open
for �� to be negative in diamagnetics without violating any
of the fundamental laws of nature. If this is indeed so, the
need for the modification of the Kramers-Kronig relations
for � disappears and a more logical and self-consistent
theory results.

II. SIGN OF ��(�) AND CAUSALITY

The nature of the difficulty noted above is quite elemen-
tary. Consider the standard Kramers-Kronig relation written*vmarkel@mail.med.upenn.edu

PHYSICAL REVIEW E 78, 026608 �2008�

1539-3755/2008/78�2�/026608�5� ©2008 The American Physical Society026608-1
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Restoring the physical meaning of metamaterial constitutive parameters

Andrea Alù*

Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
(Received 6 December 2010; revised manuscript received 28 January 2011; published 17 February 2011)

Metamaterial homogenization is often based on implicit assumptions inspired by natural material models.
However, retrieved permittivity and permeability frequently retain nonphysical values, especially near the
metamaterial resonances where most interesting features are expected. We explain here the nature of typical
homogenization artifacts, relating them to an inherent form of magnetoelectric coupling associated with the finite
phase velocity along metamaterial arrays. Our findings allow restoring the proper definition and physical meaning
of local constitutive parameters for metamaterials.

DOI: 10.1103/PhysRevB.83.081102 PACS number(s): 78.67.Pt, 42.25.Bs, 42.70.Qs, 78.20.−e

Negative-index metamaterials (NIMs), ε-near-zero and ε-
very-large metamaterials,1 i.e., artificial materials supporting
negative refraction or anomalous values of permittivity, have
been theoretically shown to possess features not available
in nature and ideal for radiation, imaging, cloaking, and
waveguiding applications. From the theoretical standpoint,
such anomalous properties may revolutionize several applied
fields, but the same definition of metamaterial constitutive
parameters has proven to be challenging, in particular when
extreme (very large, very low, or negative) values are
considered.2,3 Several homogenization models have been put
forward to macroscopically describe the wave propagation in
metamaterials, with the goal of treating complex arrays of
resonant inclusions as bulk materials.3–11 The most common
definition of homogenized metamaterial parameters is based
on retrieval methods,12 which implicitly postulate that a
metamaterial may be described as a natural material, with
local effective permittivity and permeability, and aims at
extracting these parameters from scattering measurements.
This method cannot ensure that the extracted parameters have
a proper physical meaning, as it implicitly relies on the validity
of the chosen model. Indeed, the metamaterial parameters
retrieved from experiments within such schemes often do not
satisfy basic passivity and causality constraints12,13 required by
the second law of thermodynamics and by causality, energy
conservation, and the Kramers-Kronig relations14

Im[εeff] > 0, ∂εeff/∂ω � 0, ∂(ωεeff)/∂ω � 0, (1)

and similarly for the effective permeability μeff , under an e−iωt

time convention.
In particular, frequency bands in which one of the two

retrieved parameters experiences an unphysical “antiresonant
response” with a negative slope and a negative imaginary
part12 are common in metamaterial retrieval procedures. These
artifacts have often been justified with creative but unpersua-
sive arguments, generically associated with spatial dispersion,
influence of higher-order multipoles, neglected bianisotropic
effects in the inclusions, and other related issues.12 The
presence of these antiresonances has been verified in dozens
of papers on metamaterial characterization and experiments,
and it has been accompanied by serious doubts on whether
the same meaning of such extreme metamaterial parameters,
which go beyond what is commonly available in nature,
is acceptable. In particular, the same possibility to define

metamaterial parameters is doubted near the array resonances,
where the most interesting effects usually take place. In the
following, we thoroughly address this issue, showing that
these antiresonance artifacts may be traced back to a weak
form of spatial dispersion effects associated with the finite
phase velocity along the metamaterial array, which is usually
neglected in metamaterial homogenization. Properly taking
into account these effects, we put forward a way to restore
physically meaningful local metamaterial parameters that may
properly describe the exotic properties of metamaterials even
in regimes associated with extreme or anomalous parameters.

In Ref. 11, we have proposed a general analytical ho-
mogenization method that can rigorously describe the wave
interaction with periodic metamaterial arrays formed by
arbitrary magnetodielectric inclusions. For simplicity, let us
consider here the special situation in which the array is
formed by a cubic lattice with period d, much smaller than
the wavelength of operation λ0, made of center-symmetric
inclusions with no bianisotropic effects. In such case, the
inclusions may be effectively described by their electric and
magnetic scalar polarizabilities αe and αm, which relate the
electric and magnetic dipole moments to the local electric and
magnetic fields at their center. This is the most ideal situation
to homogenize metamaterial arrays, and it is widely believed
that a simple isotropic model based on scalar permittivity and
permeability should be accurate to describe a metamaterial
under these conditions. A rigorous analysis of the coupling
among the inclusions,11 however, shows that the effective
constitutive relations should be written, for an arbitrary eiβ·r
space variation, where β is the Bloch-wave vector, as

Dav = ε0Eav + Pav = εeffEav − κeffβ × Hav,

Bav = μ0Hav + Mav = μeffHav + κeffβ × Eav,
(2)

where closed-form analytical expressions for the effective
constitutive parameters εeff , μeff , and κeff have been derived in
Refs. 11 and 15 and, in the present scenario, the average fields
are defined as Fav = 1

d3

∫
V

F(r)e−iβ·r dr, with V being the
unit-cell volume, in analogy with Ref. 10. Due to the array and
inclusion symmetries, the constitutive parameters are indeed
isotropic, but an inherent form of magnetoelectric coupling
at the lattice level, represented by κeff , arises despite the
assumed symmetries. This coupling, which is consistent with
recent homogenization studies,8,9 is related to the asymmetry
introduced by the finite phase velocity along the array
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We critically analyze the anomalies in the frequency dispersion of the magnetic permeability, showing that it
may be sometimes—without contradicting causality—inconsistent with the Kramers-Kronig relations for passive
materials, as formulated by Landau and Lifshitz, even at extremely low frequencies where the permeability has
definitely a very precise physical meaning. This suggests that in general the permeability may not satisfy the
Kramers-Kronig formulas for passive materials, and an alternative set of relations to link the real and imaginary
parts of the permeability in the frequency region where the permeability retains its physical meaning is proposed.
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I. INTRODUCTION

One of the most exciting developments in electromagnetism
in the last decade was the discovery of novel media with
unusual electromagnetic properties mainly determined by the
microstructure, and not directly by the chemical composition.
In particular, it was shown that by structuring conventional
bulk metals (with no intrinsic magnetism) it is possible to
induce a strong magnetic response.1 However, one of the most
debated features of the permeability of metamaterials is that
sometimes, even in the case of very low loss, the permeability
may exhibit an antiresonant response, which is inconsistent
with the Kramers-Kronig (KK) formulas for passive media
(e.g., Refs. 2 and 3). Up to now, it has been believed that such
pathology is invariably a consequence of the effects of spatial
dispersion and of higher-order multipoles.3,4 Here, we present
examples of metamaterials with negligible spatial dispersion
and such that the magnetic permeability is characterized by an
anomalous dispersion (i.e., with an antiresonant response) for
arbitrarily low frequencies, even when material absorption is
vanishingly small. It is argued that these findings put into
question, without contradicting the causal response of the
materials, the application of the standard KK relations for
passive media to the magnetic permeability.

II. PERMEABILITY WITH ANOMALOUS DISPERSION

In the first example, we consider a metamaterial formed
by long rods standing in air and oriented along the z direction,
arranged in a triangular (hexagonal) lattice with lattice constant
a. We restrict our attention to the case where the direction
of propagation and the electric field are in the xoy plane,
so that, for simplicity, in this first example the geometry is
intrinsically two dimensional. The rods have radius R = 0.4a,
and a plasmonic-type electrical response characterized by a
Drude dispersion model εinc = 1 − ω2

p/ω(ω + i�) and μ = 1
(the time variation e−iωt is assumed). The emergence of
artificial magnetism in metamaterials formed by particles
with a plasmonic-type response is well documented in the
literature.5–9 In particular, a metamaterial with a structure
similar to the one that we consider here was studied in Ref. 6,
and the coherent-potential approximation (CPA) was used to
extract the effective parameters. In simple terms, the idea of
the CPA is to embed a single cell of the metamaterial into

a uniform isotropic unbounded medium with parameters εe

and μe. If εe and μe are chosen in such a way that they are
coincident with the effective parameters of the metamaterial,
then the scattering from the metamaterial cell under plane wave
incidence should vanish. Based on these simple and intuitive
physical ideas, it is demonstrated in Ref. 6 that εe and μe can
be obtained by numerically solving the pair of equations given
by Eq. (2) of Ref. 6 with m = 0, 1. This ensures that the
scattering from the electric and magnetic dipoles induced in
the “unit cell” vanishes. For more details the reader is referred
to Ref. 6.

In Fig. 1 we plot the effective permeability (along the z
direction) calculated with the coherent-potential approxima-
tion in the limit of vanishingly small loss (� = 0+) and for
a plasma frequency such that ωpa/c = 10.0. We plot in the
same figure the effective permeability calculated using the
Clausius-Mossotti (CM) formula μCM = 1 + 1

Acell

1
α−1

m,zz−Cint,zz
,

where αm,zz is the magnetic polarizability of the rods (per

unit of length),10 and Cint,zz ≈ (ω
c

)2[−i 1
4 + 1

2π
ln(ω

c

√
Acell

4π
)] is

an interaction constant.11 The interaction constant takes into
account the frequency dispersion. It should be mentioned that
the interaction constant does not reduce to the usual value
Cint,xx = Cint,yy = 1/(2Acell) in the static limit, because in the
two-dimensional case Cint,zz �= Cint,xx (Ref. 10).

Notwithstanding the absence of loss mechanisms, it is seen
in Fig. 1 that both the CPA and the CM formula predict that
the permeability decreases monotonically with the frequency,
clearly violating the KK relations which, for passive materials,
completely preclude any anomalous dispersion effects in such
circumstances. In contrast with the results for the permeability,
the dispersion of the in-plane permittivity of the material is
completely consistent with the KK formulas (inset of Fig. 1).

The first reaction to these unsettling results is to argue
that the CPA and the CM theories break down. To shed
some light on this matter, we have calculated the effective
permeability using the full wave method of Ref. 12, and
the corresponding results are shown in Fig. 2. Specifically,
the curves associated with the labels μ

(1)
ef , μ

(2)
ef , and μ

(3)
ef were

obtained from the second-order derivatives of the nonlocal
dielectric function with respect to the wave vector,12 and the
corresponding formulas are given in Ref. 13. As discussed
in Ref. 13, in order that the material’s response is effectively
local and the effects of higher-order multipoles is negligible, it

165119-11098-0121/2011/83(16)/165119(9) ©2011 American Physical Society

→ test with the effective parameters of a 1D system

†The Kramers-Kronig relations are modified for µ(ω) in the book by Landau
and Lifshitz, Electrodynamics of continuous media.



Spatial dispersion and permeability 29/34

Maxwell’s equations in magneto-dielectric media

−∇× 1
ωµ(ω)∇× E(x) + ω ε(ω)E(x) = 0 (source free)

→ can be written

−∇× 1
ωµ0

∇×E(x)−∇×
[

1
ωµ(ω)−

1
ωµ0

]
∇×E(x) + ω ε(ω)E(x) = 0

and, in a homogeneous medium, ∇× ←→ ik×

−∇× 1
ωµ0

∇×E(x) + k ×
[

1
ωµ(ω)−

1
ωµ0

]
k ×E(x) + ω ε(ω)E(x) = 0 .

Permittivity ε(ω, k) with spatial dispersion (ω, k) defines
permeability µ(ω) :

ω ε eff(ω, k) = ω εeff(ω) + k ×
[ 1
ωµeff(ω)−

1
ωµ0

]
k×
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multilayered stack
(symmetric)

effective medium
k = (k‖, k⊥)

x⊥ k⊥
k‖
x‖

ε eff(ω, k)ε(ω, x⊥)

The effective permittivity with spatial dispersion (ω, k) is

ωε eff(ω, k) = ωεeff(ω, k‖) + k ×
[

1
ωµeff(ω, k‖)

− 1
ωµ0

]
k×

where, for ξeff(ω, k‖) = εeff(ω, k‖), µeff(ω, k‖) :

ξeff(ω, k‖) =

 ξ‖(ω, k‖) 0 0
0 ξ‖(ω, k‖) 0
0 0 ξ⊥(ω, k‖)

 .
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Four effective parameters :
ε‖(ω, k‖) , ε⊥(ω, k‖) , µ‖(ω, k‖) , µ⊥(ω, k‖)

Four parameters in the transfer matrices s and p : cos
[
ks,p
⊥ (ω, k‖)

] [
Z s,p(ω, k‖)

]−1 sin
[
ks,p
⊥ (ω, k‖)

]
−Z s,p(ω, k‖) sin

[
ks,p
⊥ (ω, k‖)

]
cos

[
ks,p
⊥ (ω, k‖)

]


Exact retrieval method (no approximation) :

ω ε‖(ω, k‖) = kp
⊥(ω, k‖)/Zp(ω, k‖)

ω µ‖(ω, k‖) = ks
⊥(ω, k‖)Z s(ω, k‖)

1
ωε⊥(ω, k‖)

=
kp
⊥(ω, k‖)Zp(ω, k‖)− ks

⊥(ω, k‖)Z s(ω, k‖)
k‖2

1
ωµ⊥(ω, k‖)

=
ks
⊥(ω, k‖)/Z s(ω, k‖)− kp

⊥(ω, k‖)/Zp(ω, k‖)
k‖2
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In the domain Im(ω)− c|Im(k‖)| > 0

The four effective parameters are (ω, k‖)-analytic† :
ωε‖(ω, k‖) , ωµ‖(ω, k‖) ,

1
ωε⊥(ω, k‖)

,
1

ωµ⊥(ω, k‖)
.

The absence of Bloch modes‡ implies :
Imks

⊥(ω, k‖) > 0 Imkp
⊥(ω, k‖) > 0

Im
[
ωε(ω, x⊥)

]
− c|Im(k‖)| > 0 of the permittivity implies† :

Im
[
ωε‖(ω, k‖)

]
> 0 , Im

[
ωε⊥(ω, k‖)

]
> 0 ,

ReZ s(ω, k‖) > 0 , ReZp(ω, k‖) > 0 .

−→ No condition on Im
[
ωµ‖(ω, k‖)

]
and Im

[
ωµ⊥(ω, k‖)

]
.

† Phys. Rev. B 88, 165104 (2013)
‡ J. Phys. A : Math. Gen. 33, 006223 (2000)



The imaginary part of the effective permeability 33/34

Let Im(ω) = η > 0 be fixed : from the (ω, k‖)-analyticity∫
R+iη

dω
[

1
ωµeff(ω, k‖)

− 1
ωµ0

]
= 0 .

Taking the limit η ↓ 0

PV
∫
R

dω
[

1
ωµeff(ω, k‖)

− 1
ωµ0

]
= iπ

[
1

µeff(0, k‖)
− 1
µ0

]
.

Since µeff(0, k‖) = µ0 :

Im
∫ ∞

0
dω
[

1
ωµeff(ω, k‖)

− 1
ωµ0

]
= 0 =⇒

∫ ∞
0

dω
Im
[
ωµeff(ω, k‖)

]∣∣ωµeff(ω, k‖)
∣∣2 = 0 .

ωµeff(ω, k‖) is not a Herglotz function −→ ωε eff(ω, k‖) is !
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multilayered stack effective medium

ε eff(ω, k)ε(ω, x⊥)

The system is passive : Im
[
ωε(ω, x⊥)

]
≥ Im(ωε0) ≥ 0

The imaginary part of ωε eff(ω, k) is positive :

Im
[
ωεeff(ω, k‖) + k ×

(
1

ωµeff(ω, k‖)
− 1
ωµ0

)
k×
]
≥ Im(ωε0) ≥ 0 ,

while Im
[
ωµeff(ω, k‖)

]
takes both positive and negative

values since ∫ ∞
0

dω
Im
[
ωµeff(ω, k‖)

]∣∣ωµeff(ω, k‖)
∣∣2 = 0 .
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