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FORMULATION OF THE PROBLEM

Goal: Determination of the volume
fraction of the inclusion f = |Q4|/[21 4+ Q5
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+BC: V(x) = Wy(x) or n(x) - J(x) = qo(x)
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FORMULATION OF THE PROBLEM

Goal: Determination of the volume
fraction of the inclusion f = |Q4|/[21 4+ Q5

EX.V(x)=Vp(x)on I
Measure ¢(x) = n(x) - J(x)

Then the Dirichlet-to-Neumann map (DtN)

DtN : V(x) > g(x) gives information about f
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BOUNDARY CONDITIONS

Special Dirichlet BC:  V(x) = —-Eg-x on I

Measure ¢(x) = n(x) - J(x)on I, then:
J / : / (x)xdx k
= (J(x) — x)xdx known
] 9 Jr* )
Eq = (E(x)) = Jo=L"Ey (L* dependson )

ANALOGY WITH THE THEORY OF COMPOSITES!



ANALYTICITY OF L~

[Bergman (1978), Milton (1981), Golden and Papanicolaou (1983)]

Hyp: the two materials are isotropic: A1 and As

Then L*(\q, A2) is an analytic function of \; and \y whenever

A2
= 0,1
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For rational functions: . B.
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ANALYTICITY OF L~

[Bergman (1978), Milton (1981), Golden and Papanicolaou (1983)]

m™m
For rational functions: L™ ( E )
S - S'I/

1=1
0<s51<---<s,,, <1 B, >0 for all ¢
SUM RULES:
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e Positive semi-definiteness: Z <1
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e Volume fraction: ZBZ- = f1 «
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THE PROBLEM IN THE TIME DOMAIN
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* = convolution In time



THE PROBLEM IN THE TIME DOMAIN

) ; — B, A2
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J()(t) — ()\2 *EQ) (t) — ZBZ (Ll _8 iQS,L'_ *E0> (t)

Constant term =~ —cl
for a specific moment of time t = %y

v
Sum rule: Z B, |= fI —> Jo(to) > ()\2 * E()) (to) —+ CfI
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* = convolution In time




TIME-HARMONIC LOADING

Focusing only on the first components:

Ey(t) = Re Z e Wnt
L n=1 _

Therefore, ifat ¢t =0

Re Z oang C_dz

X

—c for all s; € [0,1)

then Jo(0) = Re Z anLo(wn)| +cf




TIME-HARMONIC LOADING

N
nL n
Re Z j(wnj(f S)i N —C for all s; € [0, 1)

Place the zeros around the interval [0,1) to force the function
to be zero on such an interval



FURTHER REMARKS

[Milton (1981)]



NON-TIME-HARMONIC LOADING

Focusing only on the first components:
N
=) anH(t —ty)
n=1

Therefore, if at ¢t = ¢,

N _ _
Z o (/Ll A2 *x H(t,— tn)> (to) = —c for all s; € [0,1)
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WHAT ABOUT OTHER MOMENTS OF TIME?

Jo(t) = (A2 x Ep) ( ZB (c 1| A2 _*E()) (t)
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BOUNDS ON THE RESPONSE OF THE BODY!



MATERIAL MODELS

Phase 1: Maxwell material Phase 2: Elastic material

Stress-relaxation test Stress-relaxation test

Strain
Strain

Time . Time

Stress
|
|
Stress

Maxwell model

)\1(t) — GM eXp[—GMt/nM] >\2(t) — GQ



TIME-HARMONIC LOADING

g(p) =0 forpe|0,1)




TIME-HARMONIC LOADING

—— No information
— Volume fraction
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TIME-HARMONIC LOADING




HEAVISIDE-TYPE LOADING

—— No information
— Volume fraction

//]

\

—_—

NN




CONCLUSIONS

Analogy between the problem of finding the DtN map for an
iInhomogeneous body and the problem of finding the effective
tensor of a composite

v

Analytic method

v

Sum rules in terms of the volume fraction

v

One measurement of the response of the body at a specific time
determines the volume fraction of the inclusion




Thank you for your attention!
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OPTIMIZATION PROBLEM
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LINEAR PROGRAMMING THEORY:
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ANALOGY WITH THE THEORY OF COMPOSITES

e UNIT CELL PROBLEM: [Milton, 2016]
J=LE V.J=0 E=-VV V(x)=-Ey- -x

Jo+J =L([EJ+E) =  Jo=L"E
where: L:H —H Jg,EoccU J eJ FEe¢&

H = space of square integrable fields = (/ & & © J
U = subspace of constant vector fields
& = subspace of the gradients of periodic potentials

J = subspace of divergence-free vector fields with zero average
on the unit cell



ANALOGY WITH THE THEORY OF COMPOSITES

e BODY WITH INCLUSION PROBLEM: [Milton, 2016]
J=LE V-J=0 E=-VV V() =k

Jo+J =L([EJ+E) =  Jo=L"E
where: L: H—>H Jog,EocU J eJ FE c&

H = space of square integrable fields = U/ © & O T
U = subspace of the fields solutions of the homogeneous prob.

£ = subspace of the gradients of periodic potentials with zero
potential at the boundary

J = subspace of divergence-free fields with zero flux at the
boundary



BOUNDS FOR THE WELL-ORDERED CASE
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