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Properties of the effective conductivity

The effective conductivity ¢ .is an analytic function
of the component conductivities 01 and g9
With o2 =1, 0,(0;) has the properties of a
Stieltjes function:
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Bergman 1978 (pioneer, but faulty arguments)
Milton 1981 (limit of resistor networks)

Golden and Papanicolaou 1983 (rigorous proof)



More generally, given Subspace Collection[Z(n)]:

H=UDPEDT =P1DPP2D...BP,
t ¢+t t 1 t

Projections: I'n T’y TI's X1 X2 Xn
FO+F1+F2:Ia Xl_I_XQ_I__I_Xn:I?

Pruned if H is the smallest subspace containing

U that is closed under the action of I'; and
X17 X27 © v 7Xn—1



Associated Herglotz function (effective tensor)
defined through the abstract theory of composites

1=1

Given Ey € U solve
J=LE, EcUsé JecUdsJ, Ejg=IgE, Jg=T\J

Since Jo depends linearly on Eg :
Jo = L.Eq defines L. (z1, 22,...2,)

L.(z1,22,...,2n) = Io[(To + I'1) (sz/zz) (To +T1)] Ty



Properties:

Homogeneity:
L.(Az1,A20,...,Az) = ALy (21, 22,...,2n)

Normalization:

Herglotz:
Imag(L,) > 0, if Imag(z;) > 0 for all ¢

e.g., for a composite of n isotropic phases, the z1, 29, ... 2, are
the conductivities o1, 09, ...,0, of the phases and L. is the
effective tensor o, of the composite.



Inverse Problem: Given the function L.(z1, 22,...,2,) can one uniquely
recover the pruned subspace collection (up to an isomorphism)?

If n = 2. Certainly.
If n = 3. Maybe (open problem).

If n > 4. Certainly not.

Resolution of the open problem would be useful for finding the effective
tensor for some coupled field problems e.g. thermoelectricity, given the
effective conductivity function for a composite of three isotropic phases.



A representative class of geometries for two-dimensional,
two-phase conducting composites having isotropic conductivities

Upshot: Any symmetric 2 X 2-matrix valued function satisfying
the Homogeneity, Normalization, and Herglotz properties and the
Keller-Dykhne-Mendelson phase interchange relationship:

o*(09,01) = 0105R | [o* (01, 09) 'R

where R |, with transpose RE 1s the matrix for a 90° rotation:

i1s realizable.



Hierarchical Laminates Suffice:




If the desired conductivity function is isotropic o.(o1,02) = o4(01,02)1,
then it suffices to use multicoated disk assemblages:
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Key Idea
If phase 1 was the last phase used, then by setting o9 = 0 we insulate most
of the geometry from the applied field. Thus, with oo = 1 the “outermost”
geometry is revealed from the residue at o7 = oo of the function o,(o1,1).
One “peels away this layer” making the corresponding adjustment to the
function. This reduces its degree. One proceeds by induction until the rational
function is reduced to a constant, o,(01,02) = 01 or os.



Also a realization for the matrix valued function
o.(0o)

as a function of the matrix g for
two-dimensional polycrystals.
Representative structures:
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with Karen Clark (1994),




Rather than looking at the effective conductivity function the idea is now to
look at the associated subspace collections:

U: space of constant vector fields.
E: space of gradients of periodic potentials
J: space of periodic divergence free fields that have zero mean value

Given a periodic orientation field R(x) that defines the local conductivity:

o(x) = R(x)" oogR(x)

() ()

and the matrix for a 90° rotation,

0 1
= (5o)

vectors,



With
oo — (011 012)
021 022
the local conductivity takes the form
o =011X] +022Xo + 012X R1 + 022X, R 1
where x; and x5 =1 — x, are the projection operators:
x: = R (x)e; ® e1R(x), x, =R"(x)ez ® e2R(x),

We then have the commutation relations:

Rix: =xR1

R, I''=1I2R |
R, I'h=1TvR,



Key Idea:

Approximate the infinite dimensional subspace collection by a finite
dimensional one, and identify fields that correspond to the “last layering”.
Identify v and v; = R v such that

x1v=I1v=0, v #0.

Counting argument: &, J necessarily have the same dimension m. Let vy, va, ..., V19
be a basis for U @& J then the set {vi,Vvo, ..., Vinaio, X1V1, X1V2, - -5 X1Vimi2}
must contain exactly two linear relations:

m-—+2 m—2
Z YiVi + X1 Vi = 0, Z Vivi + X1 vi = 0,
i=1 i=1
So we may set
m—+2 m-+2
V= Z(%’ + pi)vi or v = Z(”Yf; + W)V
i=1 i=1

Then we may strip the fields from the subspace collection and repeat.



Representation of the effective tensor function when
both phases are anisotropic, assuming a two-dimensional
geometry with reflection symmetry




Starting Example:

| N0 s 0
o (x) = o1y (x) + (1= x(x)) with o'y = (Ul AQ) oy = (03 )\3)

where
1 1n phase 1 (the mclusions),

0 in phase 2 (the matrix).

The assumed reflection symmetry of the geometry implies the associated

effective tensor 1s diagonal:
o
. (o7 O
of =
0 o3, )"
22

oi1(A1, A2, A3) is a Herglotz function



Theorem

Suppose the conductivity has the form (1) and consider the Domain D(o 1, 02)
of pairs (o1,02) such that the corresponding triplet (A1, A2, A\3) satisfies

C1 S Re(}"z) P‘z‘ E C3, 1= 1 21 3

where c1, co are fixed real constants with co9 > ¢ > 0. Subject to Assump-
tions 1 and 2, the diagonal element o7 (\1, A2, A3) of the effective conductivity
tensor o, can be approrimated arbitrarily closely for (o1, 09) € D(cy,cy) by

(071 (A1, A2, A3)] 7 & B+ (Zoda + Zi A3 + Y1 (A — X)) '3,

where 21, Zo = 1 — 72y are diagonal positive definite 3 X 5 matrices, 3 1s an

m/2-component vector with non-negative entries, and the 5 X 3 matriz Y,

2
takes the form
Y; = KI'(KZ;'K") 'K,

where the n X 5 matriz K has the special form

K= (I H), n = rank(Y,)

in which 1 1s the n X n identity matriz and H is an n X (% — n) matriz.



As 7, is diagonal we may write:

o 0 .- 0 \

A Vo E . lo=1—-17,4
. el e, 0
0 o 0 pup)

where the p; lie between 0 and 1

Assumption 1
Assume that none of the eigenvalues p; of Z; are 0 or 1



When A\ = Ay =1 and A3 = A we have

(Ap1+ (L= py) 0 0\
LN = | 0 e dmel | "
\ 0 0 A+ (1= pm)/
B
- ; Ap; + (1 —Pz)j
where ug = (51, 2.+ -+ . Bmy2. 0. .. ., 0)Y. Assuming none of the 3; are zero for

i < m/2 we can determine from the poles of [¢},(1.1, A\)]~! the parameters p;.
and hence the matrices Z1 and Zs, and from the residues we can determine
the parameters [;.



@b) = () ()= [ abomi + aihedx

P; = all vector fields in H of the form (fl (X)) :

Py = all vector fields in ‘H of the form ( ! ) :
g1(x)

S = all vector fields in H of the form (fZ( ) ) j
g2(x)

PS

with periodic functions fi(x), g1(x), fo(x) and go(x) satistying f;(x)
0 in phase 2 and f3(x) = g2(x) = 0 1n phase 1.

= g1(x)



L 1 0
P denote the orthogonal projection onto P;: Py = (O O) Y.

P, denote the orthogonal projection onto Ps: Py = (8 [1)) Y.

S denote the orthogonal projection onto &: S = ((1) [1)) (I —x).

Then we have

P,+Py+S=1 P/ =P, S"=S, P,P;=/,P;, P;S=SP,=0



U, = the one-dimensional space of fields of the form (%1) 1_}

Us = the one-dimensional space of fields of the form (D ) ‘__u

€2

curl-free fields which derive from periodic potentials,

_ 9%
&= 1.e. fields of the form (%‘“3) for periodic ¢,
dxg
divergence-free fields which derive from a periodic potentials,
T = _9v

1.e. fields of the form ( aﬁifi’) for periodic .



A1 denote the projection onto U; & &,
A5 denote the projection onto Uy & 7.

A +Ay=1 Al =A;, AA; =0;A;

H=P1&PoS=UBU BEDT.



Let R denote the operator which locally rotates the fields by 90°:

R (i) = (0 5) () = Giiy)

Of course we have R = —I and RY = —R. Note that

R, U = Us, R, E=JT. R, J=¢.
R Pi=P, R/ P=P;, R,SE5=S6,

or more specifically, the operators have the commutation properties

R,P;, = P2R;, R/Po=PiR;, R;S=SR|,.
R.T" = 'R, RIA;=AR,, RiA;=AR,.

where I‘,[:,ﬂ 1s the projection onto Y; for 1 =1, 2.



Let I1 be the operator which reflects a vector field about the zs-axis. Thus
if g = I1lh then the two components of g are related to the two components
of h via

g1(z1. x2) = hi(—x1,22), g2(71,72) = —ho(—x1, 72).

This operator is self-adjoint, II? = II, and clearly commutes with Py, Ps,
S. Ay, and Ag:

ITP; = P11, 1IIP; =Poll, 1IIS =SII, TIIA;=AII, 1IIA9= AslIl,

and also anticommutes with R .

IIR, = —-R,II,
sice
1’11 I1,I9 —hQ(ILIQ) —hg(—l‘l,:lig)
IIR = 11 | — ' ,
+ (’12 Ty, T ( hi(xy,z2) —hy(z1, z2)

(71, 72))
- (hlgfl,f%i - ( ha (21, ) ) B (hg(_mhxg)) |

—ha(x1, z9) hi(z1, x9)



Note that IT? = I so the eigenvalues of II are either +1, corresponding to
eigenfunctions h®(zy, z9) that are symmetric vector fields satisfying

hi(xy,x9) = hi(—z1,x2), h5(x1,x2) = —h5(—x1, T9), (3.23)

or —1, corresponding to eigenfunctions h®(z;, z9) that are antisymmetric
vector fields satisfying

htll(ililj :1?2) — —h?(—.’l‘-l,} Ig)ﬂ. = l'aﬂk(Yl)g) — h%(—i{?h IQ). (32"—1)
Accordingly, we can define

H® = all fields h® € H that satisty (3.23),
H* = all fields h* € H that satisfy (3.24), (3.25)

and then (I4+1I1)/2 is the projection onto H?®, while (I—1IT)/2 is the projection
onto ‘H®.



Let us choose an orthonormal basis for U; © E:

Ui, U, U3, ..., Uy,
We take then the fields

vi=Riu, vo=Rjuy. ..., vj =R u,,,

as our basis for U B 7. It follows that the 2m fieldsuy, vy, ... . u,,, vy, vo, ...

form an orthonormal basis for H. With respect to this basis we have

I 0 0 0 0 —I
Al:(o U)“ AQ:(U I)“ RL:(I 0)*‘

where I 1n each case 1s the m X m 1dentity matrix.



Let p denote an eigemfa.lue of the operator A{SA4, with p # 0 or 1.
Let e be a corresponding eigenfield, A1Se =pe. e € U; & &
Consider € = AR ;SeclU; & E.

AiSe’ = A;SA;R,Se
= AiSR, (I —A4)Se (since A;R;, =R Ay)
AiSR Se — A;SR A;Se
= A1R;Se —pA;R;Se (since SR; =R,S
and AjSe = pe)

— (1 — p)AlRlSE
= (1—p)e.

So 1 — p is an eigenvalue and if e is a symmetric field, 1le = e

e’ 1s an antisymmetric field:

l_I'E“‘r — HA1RJ_SE — —A1RJ_SHE — —AIRJ_SE — —EI.



In an appropriate basis

~
o O

-
-

o
—




71 0 0 —(Z1Z5)'/?
0 Zo Z179)"? 0
0 (Z1Z9)"/? Z 0
—(Z1Z5)/? 0 0 Zs
Y, 0o 0 Y:Q
0 Y, | —Y.Q! 0
B O CRE e Ce R (R
QY; 0 0 QY:Q
Q'Y.Q™! 0 0 Q 'Y,
0 QY:Q —-QY; 0
0 -Y:Q Y, 0
YQQ_I 0 0 Yo

Q

VZ.Z;"



We require the technical

Assumption 2

We assume the fields

Wy = Tllll_._ Wy — ‘rlllg_._ C e W, — Tll_ln_._ (375)

are non-zero and independent, where X1 1s the projection onto the range of
Y and the u; are orthonormal eigenfields of A1SA4

Thus Tllli — Zwﬂ,ﬁrﬁij K = (I H) \

a=1

and after some algebra we get

Y= K'(KZ;'K") 'K, Yy=7;-QY1Q, Q= (Z;Z;H)"? and Zy =1—- 174

Having obtained representation formulas for the relevant operators one just
needs to substitute them in the formula for the effective tensor.



The case where both phases are anisotropic.

P; = all vector fields of the form (f1[(]}i) ) :

P>, = all vector fields of the form ( , ) 1
g91(x)

Ps = all vector fields ot the form (fg[(]}{) ) ;

Py = all vector fields of the form ( ; ) :
g2(x)

with periodic functions fi(x), g1(x), fo(x) and ga(x) satisfying fi(x) = g1(x) =
0 in phase 2 and fo(x) = g2(x) = 0 in phase 1.



P, denote the orthogonal projection onto P; :

Py denote the orthogonal projection onto Ps :

P35 denote the orthogonal projection onto Ps :

P4 denote the orthogonal projection onto Py :

-
P (!
P (!
.

0 I
0 :’\.'.I
0 I
1 X
0
0



Y, 0 0 Y:Q
0 Y, ~-Y,Q ! 0
0 —-Q'Y, Q'Y,Q! 0 ’
QY 0 0 QY,Q/
Q'Y,Q' 0 0 Q7Y
0 QY.Q -QY; 0
0 -Y:Q Y, 0
YQQ_l 0 0 Y, )
Y, 0 0 Y,Q! \
( 0 Y, -Y,Q 0
0 —QY,; QY4Q 0 |
Q'Y; 0 0 Q'YsQ !/
(QY.Q v 0 QY
0 Q'Y:Q' —-Q'Ys 0
0 —YgQ_l Y 0
\ Y.Q 0 0 Y, )

-0 O O

7o =1—-74
0\
: 0
0 Pmﬂ/
10
0 -1
0 0
0 0




Y, = K{ (KiZ;'K] ) 'Ky,
Y, = KI(K,2: K1) 'K,

Kl — (I Hl) . I iS the 1 X nq identit}r, Hl iS ny X (% L ﬂ-l)a
KE — [I Hg) . I iS thE 9 X Ny ldEIltlt“ﬁ I—I2 iS no % (%

ni=rankY i,

[ (1—p1)B1
(1 — p2)Be

\(1 - ﬁ;n1).-"3n1)

no=rankYj

((1 o pn1—|—1),-8n1—|—1\
(1 — pn1—|—2).-8n1—|—?

\ (I — pﬁ;fﬁ).ﬁmfg ),

YE — Zl o QYIQ
Yi=7Z,—-Q'Y3Q !

([ 151\

p2/32

\.-O n2 .-"8713 )

/Png+1..5n2+1\
Pra+20na+2

\ pm;’?i-gmﬁ )



01,11 01,12 0211 0212
= oix+oy(l—x) = X + (1—x)
0121 0122 0221 0222

(o O, (0 0 ;

- (O U)K—I_(O 0'1?22) X
1 01,12 0 0 1 ) 0 0 0 1 )
—1 0)X7\0 o101 ) =1 0)N

0 0

0211 0 L 0 0 .
(0 0) =0+ () ) -0

= o1uP1+012Py+0110P1R; —0121P2R
+0911P3 + 02920P4 + 092 19P3R | — 0921P4R .



More generally, for elasticity and other coupled equations

(060\ (@) a0 e (el(x)
1900 | _|o®x) @) .. o0 | | eix
U909/ \e®m0 a6 . o™ \eix)

V-ih=0, 9 =VV, o¥W(x)=x(x)o” +[1-x(x)]s”

o) = ﬂfﬁﬂpl + JE%}QPQ + JE:{}QPIRL — cri‘f%}lPaRL
+o éﬁ}lpa + J;E'f%}zpal + Jgﬁ‘]zPBRL — oy P4R .



Question (open):
Are laminates, and laminates of laminates
a representative class of structures?



[ hank You!
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