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Governing equations of wave propagation in poroelastic materials
Memory terms and the visco-dynamics
Permeability and tortuosity

Stieltjes function representation of Johnson-Koplik-Dashen (JKD)
permeability and tortuosity

Padé approximation and two-sided approximation with built-in
asymptotic behaviors

Preliminary results on Integral representation of stationary permeability
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Viscodynamics
Wave propagation in poroelastic materials

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated
porous solid, J. Acoustical Society of America (JASA), 1956. Two papers -
one for low frequency and the other for high frequency.

u: displacement vector for solid
U: displacement vector for fluid

¢: porosity '
p: pore fluid pressure, v :=a, q:=¢(U — i)

e Equations of motion
patvj + Pfat% = [v ’ T]j).j =123

@ Generalized Darcy's Law

Bp 8\/J (pf) . Oq .
P & 2% j=1,2,3
“og e T\g ) B!
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Viscodynamics

Dynamic permeability and tortuosity

Dynamic permeability function K(w)

Dynamic tortuosity function a(w)

a(w)pr(~iw)P(U - 8) = (~Vp + prw?), (2)

(2) and (1) = a(w) = ﬁKl(w) for w # 0

Note: K(0) = Ko(static permeability)
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Viscodynamics
Memory term

op dv; Pf>v 9q; .
Bx; pfat+<¢ Gx e T e

Note: For the special case of low frequency Biot's equation,

—0,,p = prO:vj + (FZ) Ooo;0:qi + <}?0,) qi

e, &(t) = eoj8(t) + L H(t) <= aj(w) = atoq + ML)

Qo inf-freq tortuosity in the i-th direction
Transform to frequency domain

~

F(w) = L[f](s = —iw) := /o°° F(t)etdt
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JKD Model

In , by extending a(w) and K(w) to complex
w-plane and using causality argument, the simplest forms are derived

2 2

:,7¢ .4aoojK0j’0fw

. — i\ 1= [l i
aDJ("J) Qoo ( iwaoojproj\/ I 77/\12¢2

4ia? -K2.pfw 10eei Kgiprw
Kpj(w) = Koj/ (J 1- ;";\2212 - “fngfp ~1.
\j

with the tunable geometry-dependent constant A;. inf-freq. model as
w — 0

in 2 ing in 2
a(w) = as (1—1—1/%/\) , K(w) — o pr (1 - MW/\)
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Viscodynamics

IRF for JKD dynamic permeability

Theorem ([Ou-2014])

The JKD permeability can be represented as

/5p udG(u)
- F 1—iwu

where the probability measure dG is

dG(u) = xz(u )(W )>d +<6p>6
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Viscodynamics

IRF for Dynamic Tortuosity

Theorem (Ou-2014)

The dynamic tortuosity o(w) = %K ~1 has the following integral representation
formula for w such that —L € C\ [0, 0]

(1) a(w) = 0 as w — o0, do has a Dirac mass at © = 0 with strength a.
a M rj
(2) a(w) = +a00+2j:1 5 i >0, pje(—OO,—e%)

—iw —iw—pj

Inverse Problems 30(9) 095002, 2014
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Viscodynamics

Wave equations with no explicit memory term

[Ou—\/Voerdemanf2019]

3
67'jk 8\/1 aq;
= p—2 t>0 3
Zeax Pt TPraer P70 3
8:0% (x,t) = PO (x,t) — paj(x, 1), j = 1,2,3, (4)
9 by Pfaooj) 8q;i  (1m | prn 5\
8x; p8t+< ¢ Bt fcj+¢kz::1rk 9
M;
—(‘Z)eref,wo,j:l,z,& (5)
k=1
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Viscodynamics

Reconstruction of a(w): Rational function approximation

[Ou-Woerdeman-2019]

Sk = —iwk, k=1,---, N be the interpolation points with Im(sy) # 0
¢ do(t
D(sk) — 0oo = / . (t) ~ [N = 1/N]p(s)-ac
o 1+ skt (6)
ap + a1Sk+ -+ aN,ls/(V*l
= N ’k:112)"'1N'
1+ bysg + - + bys)
D(sk) = D(sk)
N—1
a + a1k + -+ -+ an-15;
D (sk) — o = , 1,...,N, 7
() = aco 1+ bisk + -+ + bysp (7)
So4 ..  N-1
D (5) — Ot = 0T AWK T NSy N (8)

14 b3+ -+ by 136N
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Viscodynamics

Method based on two-sided residue interpolation

1
ue = 5, Vk:D(Sk)—aoo,kZI...N
—5qD (sq) + s5D* (sp)
(Sl)pq = 1 q* P P — Qoo, pzq:1N7
Sh— Sq
—D(sq) + D* (s
(52)pq = (q) * (p),p,qzl,”N,
Sq—Sp
= (ulx"': UN), C+ = (V17"'7VN)
S1V =5,Vo
e = —0(kK)

e = CyV(, kV(, k)*Ct

D. Alpay, J. A. Ball, I. Gohberg, and L. Rodman. The two-sided residue
interpolation in the Stieltjes class for matrix functions, Linear Algebra and its
Applications, 208/209:485-521, 1994
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Numerics

Pole-residue approximation of D := ap — 2

S5, M=14

3 a 5 6 7 8 9
logio(-p,)

Figure: (logio(—pk), logio(rk)), k =1,..,14. Red x: Equally-spaced grid, Green
circle: Log-spaced grids,w € [1073,2 x 10°]

Ou and Woerdeman, Operator Theory:Advances and Applications, Springer
Nature, Vol. 272, pp. 341-362, 2019
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Comparision with state of the art
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Numerics

N 3 6 8 12
auemented JKD log-spaced points 9.976e-04 1.163e-05 5.790e-07 1.229e-09
J3 € equally spaced points 1.814e-04 2.280e-08 1.851e-10 6.880e-16
Biot DA log-spaced points 3.587e-03 1.460e-05 8.354e-06 2.740e-07
Ja augmented JKD log-spaced points 3.685e-05 8.057e-09 2.887e-11 4.627e-16
Biot DA log-spaced points 1.745e-03 5.936e-06 6.448e-06 1.010e-07

Table: Relative error of tortuosity approximation for materials J; and J, at the
central frequency 200 kHz of a Wicker wavelet.

Journal of
Computational Physics 2019 (In press)

This works for non-JKD tortuosity, too, because of the results in
Avellaneda-Torquato-91!
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IRF for Ko Background

Motivation

Problem raised: How micro-structural information I play a role in
determining the macroscopic property K, the stationary permeability?
Our (Chuan Bi and |) strategy is to embed this problem into a larger
system where there are two materials following the same physical law.
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IRF for Ko Background

Literature

Luc Tartar (1980) derived the stationary Darcy's law by
homogenization theory.
The permeability tensor KP is defined as

1 .
K’D = — u’ dy
J ‘Q| Ql( D)J

where ul, € (H1(@1))? is the periodic solution to the cell
problem

aQ

|
|

—Aub +Vpp=e; in@ i .
. [

up| =0 )'_,____

r e
V- U’D =0 in Ql

Q1 is the fluid domain, I the fluid-solid interface.
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IRF for Ko Background

Strategy and existing works

e Lipton et al (1990) derived the self-permeability tensor K for the
Darcy’s law for viscous fluid flow passing stationary viscous bubbles.
Two fluids with constant viscosities p1 and uo.

@ Bruno et al. (1993) showed that the domain of analyticity for the
deformation u(z) of a two-component elastic composite can be
extended to |z| — 00 and |z| — 0 where z € C is the ratio between
the material elastic properties.

To derived the IRF, we take the two steps

(1) Derive the IRF for the self-permeability K in Lipton's paper with two
fluids 1 = 1 and varying complex valued u5. It turned out the moments
are determined by the case p1 = uo.

(2) Treat the permeability KP as the limit case of up = 00. To do this, we
prove that the support of measure is bounded away from oo by using the
extension techniques in Bruno's paper to construct analytic solutions
outside a large ball |uz| > C.

M.Y.Ou Integral representation formulas (IRF) for permeability and tortuosity for por 17 / 29



IRF for Ko The cell problem

Function spaces

Define the Hilbert space H(Q) of admissible functions for the velocity

H(Q) = {v v e H'(Q)
v is Q- periodic} (9)

divyv =0, v-n=0

endowed with inner product

(u,v)g = /02//,1e(u) ce(v)dy (10)

where n is the unit normal pointing inward towards Q, e(u) is the strain
tensor with e(u) = 1(Vu + VTu).
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IRF for Ko The cell problem

The cell problem and existence of weak solution

The cell problem is to find solution
u*(y; z) € H(Q) such that

divy (2ﬁ(y;z)e(uk) - pkl) +er=0 in QU
[7K]n = ([[ﬂ'kn]] : n) nonl

where viscosity fji = (X141 + x22#1)ljks, fluid
stress wk = 2fie(u*) — pI.

@ Existence and uniqueness of weak solution is
ensured by Lax-Milgram lemma.

e Domain of analyticity is z € C\{®z < 0}.
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IRF for Ko The cell problem

The self-permeability tensor K

The self-permeability K (as opposed to Darcy's permeability KP) is
defined as (Lipton '90)
1 .
Kij = —/ u;dy 11
TRl e (1

or equivalently, in terms of total energy:

1 L N ——
Ky = rg1 [, 2y 2)e(ur) - e(u)dy (12)
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IRF for Ko Extension of analyticity

Extension of analyticity

We look for a form of Laurent series of w = % near w = 0:
U(y; €, W) = Z uk(y)Wka u, = UZ, + uiUt (13)

where ui" € H(Qy), and u$“t € H(Q1) denote the restrictions of velocity

uy |nS|de and outside I'. They satisfy the following PDEs for each order of
o(wk):

‘ PDE ‘ Interface condition ‘
plt()ut/)) — out 7Tk )n n) n
out

2 oW (d'Vy(2/‘1€ up’) UiUt uy?
outl))
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IRF for Ko Extension of analyticity

Two important lemmas #1: in—out

Lemma 1:

Let @, be a connected, open bounded set of class C? that does not
intersect the boundary Q. For any vector field u™ € H(Q,), there exists a
unique weak solution u°“t(y; f°'*) € H(Q1) that satisfies the following
Stokes equation with non-homogeneous boundary condition

out in (14)

divy (2uie(u®) — p®tl) =" in Q
u’* =u onl

where in our context, f°Ut = 0 or foUf = —e,.
The solution u®“t is bounded by

Ju* g, < G2l 120y +2C0 ™

Q2

where Gy, C1, and G, depend only on the micro-structure.
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IRF for Ko Extension of analyticity

Two important lemmas #2: out—in

Lemma 2:

Let @, be a connected, open bounded set of class C2. For any pair of
(u®Ut, poUt) € H(Q1) x L2(Q1)\R that satisfies the PDE in Lemma 1 with
exerted force £, there exists a unique vector field u”(y; ") € H(Q)
that satisfies the Stokes equation with continuity of tangential traction on I’

divy (2yle(ui”) - pi"I) =f" inQ

<ﬂ_out _ ,n_in) n= ((ﬂ_out _ 7‘_in) n- n) n, onT (15)

where in our context, f" = 0 or fi" = —e.
The solution u' is bounded by

in

+ GGG 2y + Collu™ g,

], < el

L2(Q2)

where Cy, C1, and G, depend only on the micro-structure.
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IRF for Ko Extension of analyticity

Extension procedure

© O(w™1): there exists a unique ul" € H(Q>) satisfying the PDE:

divy (2,u.1e(u )) =0 inQ (16)
2ure(un = C(y)n onT
@ O(wP): there exists a unique ug"t € H(Q@,) satisfying the PDE:
divy (2u1e(ug") — pg“l) = —e in @ (17)
ud* =ul =0 onT
© O(w?): there exists a unique u” € H(Q,) satisfying the PDE:
divy (2uie(u) — piil) = —e in @

(778‘” 7r’1”> n= ((wg”f 7r’1"> n- n) n onl
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IRF for Ko Extension of analyticity

Extension procedure: induction step

For any kK > 1:
© Given ul € H(Q2), there exists a unique u$“t(y) € H(Q1) that
satisfies
{diVy (Quie(ud"™) — pR") =0 in & (19)

udt =u onT

@ Given uf“t € H(Q1), there exists a unique uff',,(y) € H(Q,) that
satisfies

divy (2p1e(ufy) = pf1) =0 in @

) (- rb) o) ot
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IRF for Ko Extension of analyticity

nce Results

@ On the complex disk |w| < 5 2 with R < 1, the partial sums for u/"

and uQ"t

n
Sim=>"upwk, St = Z uj
k=0

converge to unique analytic functions u™ (y; e, w) € H(Qz) and
ull(y;e,w) € H(@1), as n — .

o ul +u%’ = u(y;e,w) in the cell problem.

e Asw — 0
Q u"(y;e;,w)— 0 uniformly in Q,
Q u(y;e;,w) — uh(y) uniformly in Q.

© The self-permeability K converges uniformly to the permeability tensor
KPin the classical derivation of Darcy's law at a rate of /]
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IRF for Ko Extension of analyticity

Numerical Results for convergence Bi-Ou-zhang-2019

—e

@ r

Table: Computed permeability Kij.

Q: |

level KP K

z=10*| z=1 | z=10"%
0.0105 | 0.0105 | 0.0122 | 0.0140
0.0119 | 0.0119 | 0.0144 | 0.0181
0.0125 | 0.0125 | 0.0154 | 0.0209
0.0128 | 0.0128 | 0.0159 | 0.0228
0.0129 | 0.0129 | 0.0161 0.0240
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IRF for Ko Extension of analyticity

Representations formula

Define the self-adjoint operator for any u € H(Q):

Mu= —A;FLI (divy (x2e(u)))

o // (M(dr)a5"e )d
ii(s)
4 waw s—1-x 7
with measures
@) 1 r)Aazle;) d 21
5 = g Jo (10" A5'ei) dy (21)
s=77
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IRF for Ko Extension of analyticity

Matching moments

Both series representation of Kj; should equal to each other, this yields
nf ==, fora,p>1

hence the dependence of micro-structure through I',, become explicit, for
example, a =8=1

= (—,(13‘/ 2p1e(u’(y: 1)) :e(U"(y:l))dy> (/01 Mii(‘”‘))
= g [, 2mceelu(y: 1)) - efu(y: D)y

hence

/ M;i(d) _ Jo2pxae(u ’(y:l)):e(fl’(y:l))dy
Jo2me(u'(y;1)) : e(u'(y;1))dy
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