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Viscodynamics

Wave propagation in poroelastic materials

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated
porous solid, J. Acoustical Society of America (JASA), 1956. Two papers -
one for low frequency and the other for high frequency.

u: displacement vector for solid
U : displacement vector for fluid
�: porosity
p: pore fluid pressure, v := u̇; q := �(U̇ � u̇)

Equations of motion

�@tvj + �f @tqj = [r � � ]j ; j = 1; 2; 3

Generalized Darcy’s Law

�
@p

@xj
= �f

@vj
@t

+

�
�f
�

�
�̌j ?

@qj
@t
; j = 1; 2; 3
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Viscodynamics

Dynamic permeability and tortuosity

Dynamic permeability function K (!)

�i!�(Û � û) =
K (!)

�
(�rp̂ + �f !

2û) (1)

Dynamic tortuosity function �(!)

�(!)�f (�i!)2(Û � û) = (�rp̂ + �f !
2û); (2)

(2) and (1)) �(!) =
i��

!�f
K�1(!) for ! 6= 0

Note: K (0) = K0(static permeability)
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Viscodynamics

Memory term

�
@p

@xj
= �f

@vj
@t

+

�
�f
�

�
�̌j ?

@qj
@t
; j = 1; 2; 3

Note: For the special case of low frequency Biot’s equation,

�@xip = �f @tvi +

�
�f
�

�
�1i@tqi +

�
�

K0i

�
qi

i.e. �̌j(t) = �1j�(t) + ��
K0j�f

H(t) () �j(!) = �1j +
��=(K0j�f )
�i!

�1i : inf-freq tortuosity in the i-th direction
Transform to frequency domain

f̂ (!) := L[f ](s = �i!) :=

Z
1

0
f (t)e�stdt
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Viscodynamics

JKD Model

In [Johnson-Koplik-Dashen-1987], by extending �(!) and K (!) to complex
!-plane and using causality argument, the simplest forms are derived

�Dj(!) = �1j

 
1�

��

i!�1j�fK0j

s
1� i

4�2
1jK

2
0j�f !

�Λ2
j �

2

!

KDj(!) = K0j=

 s
1�

4i�2
1jK

2
0j�f !

�Λ2
j �

2 �
i�1jK0j�f !

��

!
:

with the tunable geometry-dependent constant Λj . inf-freq. model as
! !1

�(!) ! �1

 
1 +

s
i�

�f !

2
Λ

!
; K (!) !

i��

�1�f !

 
1�

s
i�

�f !

2
Λ

!
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Viscodynamics

IRF for JKD dynamic permeability

Theorem ([Ou-2014])

The JKD permeability can be represented as

KD(!) =
�

F

Z �p

0

udG (u)

1� i!u

where the probability measure dG is

dG (u) = �I(u)

�
 (u)

u

�
du +

 
r

�p

!
��p ;
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Viscodynamics

IRF for Dynamic Tortuosity

Theorem (Ou-2014)

The dynamic tortuosity �(!) = i��
!�f

K�1 has the following integral representation
formula for ! such that � i

! 2 C n [0;Θ1]

�(!) = a

�
i

!

�
+

Z Θ1

0

d�(Θ)

1� i!Θ

for some positive measure d�, with a = ��
�f K0

.

(1) �(!) ! �1 as ! !1, d� has a Dirac mass at Θ = 0 with strength �1.
(2) �(!) � a

�i! + �1 +
PM

j=1
rj

�i!�pj
, rj > 0, pj 2 (�1;� 1

Θ1
)

M.Y. Ou, On reconstruction of dynamic permeability and tortuosity from data at
distinct frequencies, Inverse Problems 30(9) 095002, 2014
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Viscodynamics

Wave equations with no explicit memory term
[Ou-Woerdeman-2019]

Θ
xj
k (x ; t) := (�pk)epk t8>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

3X
k=1

@�jk
@xk

= �
@vj
@t

+ �f
@qj
@t
; t > 0;

@tΘ
xj
k (x ; t) = p

xj
k Θ

xj
k (x ; t)� p

xj
k qj(x ; t); j = 1; 2; 3;

�
@p

@xj
= �f

@vj
@t

+

�
�f �1j

�

�
@qj
@t

+

 
�

�j
+
�f
�

MX
k=1

r
xj
k

!
qj

�

�
�f
�

� MjX
k=1

r
xj
k Θ

xj
k ; t > 0; j = 1; 2; 3;

(3)

(4)

(5)
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Viscodynamics

Reconstruction of �(!): Rational function approximation
[Ou-Woerdeman-2019]

sk := �i!k ; k = 1; � � � ;N be the interpolation points with Im(sk) 6= 0

D(sk)� �1 =

Z �

0

d�(t)

1 + skt
� [N � 1=N]D(s)��1

:=
a0 + a1sk + � � �+ aN�1s

N�1
k

1 + b1sk + � � �+ bNs
N
k

; k = 1; 2; � � � ;N:
(6)

D(sk) = D(sk)8>>>><
>>>>:

D (sk)� �1 =
a0 + a1sk + � � �+ aN�1s

N�1
k

1 + b1sk + � � �+ bNs
N
k

; k = 1; : : : ;N; (7)

D (sk)� �1 =
a0 + a1sk + � � �+ aN�1sk

N�1

1 + b1sk + � � �+ bN�1skN
; k = 1; : : : ;N: (8)

JK Gelfgren, Multipoint Padé approximants converging to functions of Stieltjes
type. In Padé Approximation and its Applications Amsterdam, pp.197-207.
Springer, 1981
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Viscodynamics

Method based on two-sided residue interpolation

uk =
1
sk
; vk = D (sk)� �1; k = 1 : : :N

(S1)pq =
�sqD (sq) + s�pD

� (sp)

s�p � sq
� �1; p; q = 1 : : :N;

(S2)pq =
�D (sq) + D� (sp)

sq � s�p
; p; q = 1 : : :N;

C� := (u1; � � �; uN) ; C+ := (v1; � � �; vN)

S1V = S2VΦ

pk = �Φ(k; k)

rk = C+V(:; k)V(:; k)�C �+

D. Alpay, J. A. Ball, I. Gohberg, and L. Rodman. The two-sided residue
interpolation in the Stieltjes class for matrix functions, Linear Algebra and its
Applications, 208/209:485–521, 1994
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Numerics

Pole-residue approximation of D := �D �
a
s

[Ou-Woerdeman-2019]

log10(-pk
)

3 4 5 6 7 8 9

lo
g 1

0(
r k)

3

4

5

6

7

8

9
S5, M=14

Figure: (log10(�pk), log10(rk)), k = 1; ::; 14. Red x: Equally-spaced grid, Green
circle: Log-spaced grids,! 2 [10�3; 2� 106]

Ou and Woerdeman, Operator Theory:Advances and Applications, Springer
Nature, Vol. 272, pp. 341-362, 2019
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Numerics

Comparision with state of the art [Xie-Ou-Xu-2019]
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(b) N=8
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(c) J=6
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Numerics

N 3 6 8 12

J3 augmented JKD log-spaced points 9.976e-04 1.163e-05 5.790e-07 1.229e-09
equally spaced points 1.814e-04 2.280e-08 1.851e-10 6.880e-16

Biot DA log-spaced points 3.587e-03 1.460e-05 8.354e-06 2.740e-07

J4 augmented JKD log-spaced points 3.685e-05 8.057e-09 2.887e-11 4.627e-16
Biot DA log-spaced points 1.745e-03 5.936e-06 6.448e-06 1.010e-07

Table: Relative error of tortuosity approximation for materials J3 and J4 at the
central frequency 200 kHz of a Wicker wavelet.

Jiangming Xie, MYO, Liwei Xu, A discontinuous Galerkin method for wave
propagation in orthotropic poroelastic media with memory terms, Journal of
Computational Physics 2019 (In press)

This works for non-JKD tortuosity, too, because of the results in
Avellaneda-Torquato-91!
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IRF for K0 Background

Motivation

Problem raised: How micro-structural information Γ play a role in
determining the macroscopic property KD , the stationary permeability?
Our (Chuan Bi and I) strategy is to embed this problem into a larger
system where there are two materials following the same physical law.
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IRF for K0 Background

Literature
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Luc Tartar (1980) derived the stationary Darcy’s law by
homogenization theory.
The permeability tensor KD is defined as

KD
i ;j =

1
jQj

Z
Q1

(uiD)jdy

where u i
D 2 (H1(Q1))3 is the periodic solution to the cell

problem

�∆u i
D +rpD = e i in Q1

u i
D

����
Γ

= 0

r � u i
D = 0 in Q1

Q1 is the fluid domain, Γ the fluid-solid interface.



IRF for K0 Background

Strategy and existing works

Lipton et al (1990) derived the self-permeability tensor K for the
Darcy’s law for viscous fluid flow passing stationary viscous bubbles.
Two fluids with constant viscosities �1 and �2.
Bruno et al. (1993) showed that the domain of analyticity for the
deformation u(z) of a two-component elastic composite can be
extended to jz j ! 1 and jz j ! 0 where z 2 C is the ratio between
the material elastic properties.

To derived the IRF, we take the two steps
(1) Derive the IRF for the self-permeability K in Lipton’s paper with two
fluids �1 = 1 and varying complex valued �2. It turned out the moments
are determined by the case �1 = �2.
(2) Treat the permeability KD as the limit case of �2 = 1. To do this, we
prove that the support of measure is bounded away from 1 by using the
extension techniques in Bruno’s paper to construct analytic solutions
outside a large ball j�2j > C .
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IRF for K0 The cell problem

Function spaces

Define the Hilbert space H(Q) of admissible functions for the velocity

H(Q) =

�
v : v 2 H1(Q)3

���� divy v = 0; v � n = 0

v is Q- periodicg (9)

endowed with inner product

(u; v)Q =

Z
Q
2�1e(u) : e(v)dy (10)

where n is the unit normal pointing inward towards Q2, e(u) is the strain
tensor with e(u) = 1

2(ru +rTu).
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IRF for K0 The cell problem

The cell problem and existence of weak solution
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The cell problem is to find solution
uk(y ; z) 2 H(Q) such that8><
>:
divy

�
2�̃(y ; z)e(uk)� pk I

�
+ ek = 0 in Q1 [ Q2

JπkKn =
�
JπknK � n

�
n on Γ

where viscosity �̃ijkl = (�1�1 + �2z�1)Iijkl , fluid
stress πk = 2�̃e(uk)� pk I .

Existence and uniqueness of weak solution is
ensured by Lax-Milgram lemma.
Domain of analyticity is z 2 Cnf<z � 0g.



IRF for K0 The cell problem

The self-permeability tensor K

The self-permeability K (as opposed to Darcy’s permeability KD) is
defined as (Lipton ’90)

Kij =
1
jQj

Z
Q
uijdy (11)

or equivalently, in terms of total energy:

Kij =
1
jQj

Z
Q
2�̃(y ; z)e(u i ) : e(u j)dy (12)
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IRF for K0 Extension of analyticity

Extension of analyticity

We look for a form of Laurent series of w = 1
z near w = 0:

u(y ; e;w) =
1X
k=0

uk(y)wk ; uk = u in
k + uout

k (13)

where u in
k 2 H(Q2), and uout

k 2 H(Q1) denote the restrictions of velocity
uk inside and outside Γ. They satisfy the following PDEs for each order of
O(wk):

PDE Interface condition

u in
k

P
1

k=0 w
k
�
divy

�
2�1
w e(u in

k ) (πout
k�1 � πin

k )n =

�poutk I )) = �e
�

(πout
k�1 � πin

k )n � n
�
n

uout
k

P
1

k=0 w
k
�
divy (2�1e(uout

k ) uout
k = u in

k

�poutk I )) = �e
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IRF for K0 Extension of analyticity

Two important lemmas #1: in!out

Lemma 1:
Let Q2 be a connected, open bounded set of class C2 that does not
intersect the boundary @Q. For any vector field u in 2 H(Q2), there exists a
unique weak solution uout(y ; f out) 2 H(Q1) that satisfies the following
Stokes equation with non-homogeneous boundary condition

(
divy

�
2�1e(uout)� poutI

�
= fout in Q1

uout = u in on Γ
(14)

where in our context, fout = 0 or fout = �ek .
The solution uout is bounded by



uout



Q1
� C1C2



fout

L2(Q1) + 2C0




u in




Q2

where C0;C1, and C2 depend only on the micro-structure.

M.Y.Ou Integral representation formulas (IRF) for permeability and tortuosity for porous media22 / 29



IRF for K0 Extension of analyticity

Two important lemmas #2: out!in

Lemma 2:
Let Q2 be a connected, open bounded set of class C2. For any pair of
(uout ; pout) 2 H(Q1)� L2(Q1)nR that satisfies the PDE in Lemma 1 with
exerted force f out , there exists a unique vector field u in(y ; f in) 2 H(Q2)
that satisfies the Stokes equation with continuity of tangential traction on Γ8><

>:
divy

�
2�1e(u in)� pinI

�
= f in; in Q2�

πout � πin
�
n =

��
πout � πin

�
n � n

�
n; on Γ

(15)

where in our context, f in = 0 or f in = �ek .
The solution uin is bounded by


u in





Q2
� C1C2




f in




L2(Q2)

+ C0C1C2


f out



L2(Q1) + C0


uout




Q1

where C0;C1, and C2 depend only on the micro-structure.
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IRF for K0 Extension of analyticity

Extension procedure

1 O(w�1): there exists a unique u in
0 2 H(Q2) satisfying the PDE:8<

:
divy

�
2�1e(u in

0 )
�

= 0 in Q2

2�1e(u in
0 )n = C (y)n on Γ

(16)

2 O(w0): there exists a unique uout
0 2 H(Q1) satisfying the PDE:

(
divy

�
2�1e(uout

0 )� pout0 I
�

= �e in Q1

uout
0 = u in

0 = 0 on Γ
(17)

3 O(w0): there exists a unique u in
1 2 H(Q2) satisfying the PDE:8><

>:
divy

�
2�1e(u in

1 )� pin0 I
�

= �e in Q2�
πout

0 � πin
1

�
n =

��
πout

0 � πin
1

�
n � n

�
n on Γ

(18)
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IRF for K0 Extension of analyticity

Extension procedure: induction step

For any k � 1:
1 Given u in

k 2 H(Q2), there exists a unique uout
k (y) 2 H(Q1) that

satisfies (
divy

�
2�1e(uout

k )� poutk I
�

= 0 in Q1

uout
k = u in

k on Γ
(19)

2 Given uout
k 2 H(Q1), there exists a unique u in

k+1(y) 2 H(Q2) that
satisfies8><

>:
divy

�
2�1e(u in

k+1)� pink I
�

= 0 in Q2�
πout
k � πin

k+1

�
n =

��
πout
k � πin

k+1

�
n � n

�
n on Γ

(20)
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IRF for K0 Extension of analyticity

Convergence Results

On the complex disk jw j � R
2C2

0
with R < 1, the partial sums for u in

k

and uout
k

S in
n =

nX
k=0

u in
k w

k ; Sout
n =

nX
k=0

uout
k wk

converge to unique analytic functions u in
1(y ; e;w) 2 H(Q2) and

uout
1 (y ; e;w) 2 H(Q1), as n!1.

u in
1 + uout

1 � u(y ; e;w) in the cell problem.

As w ! 0
1 u in

1
(y ; e i ;w) ! 0 uniformly in Q2

2 uout
1

(y ; e i ;w) ! u i
D(y) uniformly in Q1.

3 The self-permeability K converges uniformly to the permeability tensor
KD in the classical derivation of Darcy’s law at a rate of

p
jz j
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IRF for K0 Extension of analyticity

Numerical Results for convergence Bi-Ou-Zhang-2019

Table: Computed permeability K11.

level KD K
z = 104 z = 1 z = 10�4

1 0.0105 0.0105 0.0122 0.0140
2 0.0119 0.0119 0.0144 0.0181
3 0.0125 0.0125 0.0154 0.0209
4 0.0128 0.0128 0.0159 0.0228
5 0.0129 0.0129 0.0161 0.0240
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IRF for K0 Extension of analyticity

Representations formula

Define the self-adjoint operator for any u 2 H(Q):

Γ�u = �∆�1
#

�
divy (�2e(u))

�

Kij(s) =
s � 1
2�1jQj

Z 1

0

Z
Q

�
M̃(d�)∆�1

# e i

�
j

s � 1� �
dy

with measures

�̃
(�)
ij =

1
2�1jQj

Z
Q

�
(Γ�)� ∆�1

# e i

�
j
dy (21)

s = z
z�1
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IRF for K0 Extension of analyticity

Matching moments

Both series representation of Ki ;j should equal to each other, this yields

�
(��1)
ii = ��̃

(�)
ii ; for �; � � 1

hence the dependence of micro-structure through Γ� become explicit, for
example, � = � = 1

�0
ii =

�
�

1
jQj

Z
Q
2�1e(u i (y ; 1)) : e(u i (y ; 1))dy

��Z 1

0
Mii (d�)

�

�̃1
ii =

1
jQj

Z
Q
2�1�2e(u i (y ; 1)) : e(u i (y ; 1))dy

hence Z 1

0
Mii (d�) =

R
Q 2�1�2e(u i (y ; 1)) : e(u i (y ; 1))dyR
Q 2�1e(u i (y ; 1)) : e(u i (y ; 1))dy
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