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DIELECTRIC CAUSALITY

K-K relation

3D array of
PEC spheres
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lossless



DIAMAGNETIC CAUSALITY ??

K-K relation

“χm(∞) must be less than zero; otherwise one
could not have a negative susceptibility at
zero frequency.”                Van Vleck (1957)

(χm(∞) = 0) 3D array of
PEC spheres

d

????
lossless



DIAMAGNETIC CAUSALITY

What’s needed is a rigorous homogenization 
theory of spatial dispersion that separates 
electric and magnetic polarization effects; 
that is, an exact, (causal) epsilon and mu that
depends on the spatial variation of the fields 
as well as on the frequency.

????
The problem is that there is strong

spatial dispersion for kd >> 1.



SPATIALLY DISPERSIVE CAUSALITY 
RELATIONS (at each fixed β)

Inverse!



LOSSY AND LOSSLESS PASSIVITY 
CONDITIONS

Lossy

Lossless



IT’S MATHEMATICALLY RIGOROUS!

IT’S ELEGANT AND FAIRLY SIMPLE!

IT REQUIRES A LOT OF VARIABLES,
E.G.,                                           .

WE DON’T WANT TO ABANDON

FOR MANY APPLICATIONS.

HOMOGENIZATION THEORY 
FOR SPATIAL DISPERSON



ENERGY RELATIONS FOR 
MACROSCOPIC DIPOLAR CONTINUA

Dipolar continua characterized by extended
Herglotz susceptibilities ωΨe(ω) and  ωΨm(ω)

Glasgow et al.,  Gustafsson,  Welters et al., (Cassier&Milton)

P, M

Therefore, this is not the positive energy condition for
diamagnetism and ωΨm(ω) is not Herglotz.

??
Consider the case:

Then:



ENERGY RELATIONS FOR 
MACROSCOPIC DIPOLAR CONTINUA

Can we find positive semidefinite
expressions for the time-domain

macroscopic energy density in passive,
spatially nondispersive, dipolar continua derived
from the microscopic Maxwell equations without

requiring that the polarization of the continua satisfy
constitutive relations or that the continua are linear?

P, M

Classical Power and Energy Relations for Macroscopic Dipolar
Continua Derived from the Microscopic Maxwell Equations

Progress in Electromagnetics Research B, 1-37, 2016



MAXWELL MICROSCOPIC EQUATIONS 
FOR ELECTRIC CHARGE & CURRENT

Poynting’s Theorem for Microscopic Electric Charge and Current

S
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MAXWELL MACROSCOPIC EQUATIONS 
FOR DIPOLAR CONTINUA

Poynting’s Theorem for Macroscopic Dipolar Continua
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ENERGY RELATIONS FOR 
MACROSCOPIC DIPOLAR CONTINUA

In the free-space shell

which implies

≥ 0   for diamagnetic continua.
(Diamagnetism: conductors (e.g., wire loops) or molecules with no primary current)

∆V
∆S

Spatially nondispersive, passive
continua with bound charge

carriers (time-independent media)



∆V
∆SIn the free-space shell

which implies

≥ 0   for nondiamagnetic continua.

ENERGY RELATIONS FOR 
MACROSCOPIC DIPOLAR CONTINUA

(Nondiamagnetism: PEC wire loops or molecules with large
primary current (e.g., paramagnetism or ferro(i)magnetism)

Spatially nondispersive
continua with bound charge

carriers (time-independent media)



ENERGY RELATIONS FOR 
NONDIAMAGNETIC DIPOLAR CONTINUA

PEC wire loop with large
primary current

j

m, 
b 

e 

This is the same result one would get for magnetic-charge dipoles!



MAXWELL MICROSCOPIC EQUATIONS 
WITH MAGNETIC CHARGE & CURRENT

Poynting’s Theorem with Microscopic Magnetic Charge and Current

S
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MAXWELL MACROSCOPIC EQUATIONS 
FOR DIPOLAR CONTINUA

Poynting’s Theorem for Macroscopic Dipolar Continua

S
V



ENERGY RELATIONS FOR 
MACROSCOPIC DIPOLAR CONTINUA

In the free-space shell

which implies

for nondiamagnetic continua.
(Nondiamagnetism: PEC wire loops or molecules with large
primary current (e.g., paramagnetism or ferro(i)magnetism)

∆V
∆S

Spatially nondispersive
continua with bound charge

carriers (time-independent media)



RECAPITULATION OF ENERGY 
RELATIONS FOR DIPOLAR CONTINUA

Nondiamagnetic

Diamagnetic

“Hidden Power”  =  

The microscopic derivation has revealed that this “hidden power” originates from
the reservoir of energy in the pre-existing Amperian primary magnetic-dipole current.



APPLICATION OF ENERGY RELATIONS TO 
LOSSLESS BIANISOTROPIC CONTINUA

Nondiamagnetic

These are obtained
without using the

K-K relations.



APPLICATION OF ENERGY RELATIONS TO 
LOSSLESS BIANISOTROPIC CONTINUA

Diamagnetic

These are obtained
without using the

K-K relations.



SUMMARY
• Microscopic and macroscopic Poynting theorems have been com-

bined with electric- and magnetic-field boundary conditions to find
non-negative macroscopic energy relations for diamagnetic and
nondiamagnetic (paramagnetic or ferro(i)magnetic) dipolar continua.

• The key to deriving the nondiamagnetic energy relation is to prove
that changes in energy (nonpassive) in the alignment of pre-existing
Amperian magnetic dipoles can be modeled by energy changes in
the alignment of passive magnetic-charge magnetic dipoles.

• Remarkably, the microscopic derivation reveals that a “hidden
energy” for nondiamagnetic Amperian magnetic dipoles is drawn
from the reservoir of inductive energy in the pre-existing Amperian
magnetic dipole moments.

• The two energy relations predict consistent results for the permittiv-
ity and permeability of both diamagnetic and nondiamagnetic dipolar
continua satisfying bianisotropic constitutive relations.



As I understand it, a Herglotz function f(w) is analytic in the upper
half plane and has Im[f(w)] non-negative in the upper half plane.
It can then be proven from analytic function theory that wf(w) approaches 0 as |w|
approaches infinity in the upper half plane.  On the real axis, a Herglotz function
may not be continuous and may even be singular.  Also, Im[f(w)] may be negative
on the real axis.  Therefore, it is often assumed that the Herglotz function is
continuous in the upper half plane that includes the real axis.  Such continuous
Herglotz w(susceptibilities) can be proven to be a necessary and sufficient condition
for the non-negative EM energy expression 

provided one assumes the susceptibilities themselves, not w(susceptibilities),
approach positive real values as |w| approaches infinity in the upper half plane
that includes the real axis.  Diamagnetism does not satisfy this non-negative
energy expression.  If, as Cassier&Milton do, we work with the total Poynting energy
and we work with w(mu) and w(eps) with mu and eps approaching positive real
values as w approaches infinity, we then get constant eps and mu are equal to or
greater than 0.  However, these eps and mu obey the K-K relations and thus their
w=0 values equal their values at infinity.
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