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Johnson’s 1927 experiments: |V (ω)|2 proportional to R(ω)

Source: Phys. Rev. 92, 97 (1928)
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Johnson’s 1927 experiments: |V (ω)|2/R(ω) prop. to T

Source: Phys. Rev. 92, 97 (1928)
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Nyquist’s 1928 explanation

V1 V2
Z (ω)

J(ω) = U(ω)/Z (ω)

• J(ω)= current
• U(ω)=V2−V1 = voltage
• Z (ω)=R(ω)+ iX (ω)

At temperature T , thermally induced fluctuations of charges inside
conductor give zero mean current and voltages:

〈|J(ω)|2〉= κT

π

R(ω)

|Z (ω)|2 and
〈|U(ω)|2〉= κT

π
R(ω)

Here
• 〈·〉 = statistical average
• ω= 2π= angular frequency
• κ= Boltzmann constant = 1.380649×10−23 J K−1

• ×= Planck’s constant = 6.62607015×10−34J s
• Assumption: κT À×ω
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A matrix Langevin equation

Consider
du
dt

=Au+ f (t), where
• u(t)≡ state ∈Cn at time t

• A ∈Cn×n, independent of time (for now)
• f (t)≡ random “force” with:

〈f (t)〉 = 0 and 〈f (t)f (t ′)∗〉 = 2Bδ(t− t ′).

• The correlation matrix satisfies: B =B∗ and B º 0
If system reaches equilibrium:

• 〈u〉 = 0 and
• 〈uu∗〉 =M , with M =M∗ and M Â 0 (the strict inequality is assumed)

Fluctuation Dissipation Theorem:
〈ff ∗〉, M and “dissipative” part of A are related.
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The Fluctuation Dissipation Theorem (FDT)

Split A into “symmetric” and “anti-symmetric” parts, i.e.

A=As+Aa with AsM =MA∗
s and AaM =−MA∗

a

Theorem (Fluctuation dissipation theorem)

Correlation of the fluctuations must be equal to “dissipative” or symmetric
part of A:

1
2
(AM +MA∗)=MA∗

s =AsM =−B .

(Callen and Welton 1951, Kubo 1966 and e.g. Zwanzig 2001)
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Systems with memory
• In systems with memory:

du
dt

=Aau+
∫ t

0
As(τ)u(t−τ)dτ+ f (t).

• Fluctuation Dissipation Theorem becomes

〈f (t)f (t ′)∗〉 =−As(t− t ′)M , t ≥ t ′.

• In frequency:

As [ω]M =
∫ ∞

0
dte−iωtAs(t)M

=−
∫ ∞

0
dte−iωt〈f (0)f (t)∗〉

= related to Herglotz-Nevanlinna function if system is real

• Can be applied to systems with losses (electric conduction, friction in
particles moving in a fluid, elasticity, Maxwell equations,. . .)
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Setup

A

A

Main idea
• Heat a small portion of a conductive plate
• Measure thermal noise correlations at different
locations of boundary

• Moving hotspot  internal functional of σ
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Possible application to Atomic Force Microscopy?

Source: Wikipedia Source: King et al, ARHT, 2013
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Fluctuational electrodynamics
In an isotropic, non-magnetic medium, thermal fluctuations can be
modeled in the Maxwell equations by a random external electric current je
with 〈je〉 = 0 (Rytov, Kravtsov, Tatarskii 1989)

∇×H =−ikεE + 4π
c
je

∇×E = ikµH

where
• electric permittivity is ε(x ,ω)= ε′(x ,ω)+ iε′′(x ,ω)

• conductivity is σ(x ,ω)=ωε′′(x ,ω)/(4π)
• magnetic permeability µ is assumed constant real
• wavenumber is k =ω/c
• speed of light is c

Fluctuation Dissipation Theorem  current fluctuations determined by
conductivity, the dissipative part of ε
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Random currents

• Thermally induced random currents are such that 〈je〉 = 0 and by FDT:

〈
je(x ,ω)j∗e (x

′,ω)
〉=−Θ(κ,T )

π
Re

(
iω

4π
ε(x ,ω)

)
δ(x −x ′)I ,

where
Θ(T ,ω)= ×ω

2
coth

×ω
2κT

is energy of a quantum oscillator.
• If κT Àω we have Θ(T ,ω)≈ κT (see e.g. Landau, Lifshitz 1960) and

〈
je(x ,ω)j∗e (x

′,ω)
〉= κT

π
σ(x ,ω)δ(x −x ′)I .
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Quasistatic approximation: scalar model

When ωµ|ε|L2 ¿ 1, L≡ characteristic length, we get ∇×E ≈ 0. Taking
E =−∇φ (Cheney, Isaacson, Newell 1999)

∇· [σ̃∇φ]=∇· je
where

σ̃(x ,ω)≡− iω

4π
ε(x ,ω)=σ(x ,ω)− iω

ε′(x ,ω)

4π
and 〈

je(x ,ω)j∗e (x ,ω)
〉= κT

π
σ(x ,ω)δ(x −x ′)I .
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Simplified model

e1

e2
·

·

en

nje

Ω
∇· [σ̃∇φ]=∇· je in Ω, (je random from FDT)

φ= 0 on ∂Ω. (grounding condition).

Measurements are 〈JJ∗〉 where

J =
[∫

∂Ω
e1j ·ndS , . . . ,

∫
∂Ω

eN j ·ndS
]T

.

Here j = σ̃∇φ and e1, . . . ,eN are functions modelling “electrodes”.
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The covariance of the measurements
For i = 1, . . . ,N, consider the solutions to the auxiliary Dirichlet problems

∇· [σ̃∇ui ]= 0 in Ω,

ui = ei on ∂Ω.

Theorem

[
〈
JJ∗〉

]ij =
κ

π

∫
Ω
dxσ(x)T (x)∇ui (x) ·∇uj(x).

• Proof using linearity of average 〈·〉 and several integration by parts.
• Result holds with more realistic mixed Dirichlet and Neumann
conditions to model insulation between electrodes

• Similar to Kirchhoff’s law for far field heat transfer (Rytov, Kravtsov,
Tatarskii 1988)
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Getting an internal functional
With measurements:

e1

e2·
·

en

e1

e2·
·

en〈
JT0J

∗
T0

〉 〈
JT0+δTJ

∗
T0+δT

〉
We can get

[
〈
JT0+δTJ

∗
T0+δT

〉
−

〈
JT0J

∗
T0

〉
]ij =

κ

π

∫
Ω
dxδT (x)σ(x)∇ui (x) ·∇uj(x).

By a sufficiently large basis of δT (beam position or other illumination
patterns) we get the internal functional

Hij(x)=σ(x)∇ui (x) ·∇uj(x), for x ∈Ω.

Note: If σ̃ is real, Hii (x)= power dissipated at x .
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Stable reconstruction results and algorithms

The inverse problem of finding a real σ from σ∇ui (x) ·∇uj(x) appears in
Ultrasound Modulated EIT or Acousto-Electric Tomography and is
Lipschitz stable.

• Introduced: Ammari, Bonnetier, Capdebosq, Tanter and Fink 2008
• Lipschitz stability: Bal, Bonnetier, Monard, Triki 2011
• Linearization: Kuchment and Kunyanski, 2011
• General theory: Bal 2013
• Anisotropic σ: Bal, Guo, Monard, 2012-2014.

 our problem is slightly different as the ui depend on the Im σ̃ and we
can only perturb Re σ̃.
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Numerical experiments (preliminary)

true (real part)

FD direct simulation with e1 = (x1+x2)|∂Ω, e2 = (1+x1−x2)|∂Ω on
Ω= [0,1]2. Gaussian beam with std = 10−4. ε′ = 1, ω= 10KHz ×2π.
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Internal functional data

FD direct simulation with e1 = (x1+x2)|∂Ω, e2 = (1+x1−x2)|∂Ω on
Ω= [0,1]2. Gaussian beam with std = 10−4. ε′ = 1, ω= 10KHz ×2π.
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Numerical experiments (preliminary)

true |H |

FD direct simulation with e1 = (x1+x2)|∂Ω, e2 = (1+x1−x2)|∂Ω on
Ω= [0,1]2. Gaussian beam with std = 10−4. ε′ = 1, ω= 10KHz ×2π.
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Connection with Herglotz functions
Passivity =⇒ permittivity at a fixed location x must obey (see e.g.
Cassier, Milton 2017):
1. ε(x ,ω) is analytic for Im(ω)> 0 + continuous when Im(ω)= 0
2. ε(x ,ω)→ ε∞ > 0 when |ω|→∞ and Im(ω)≥ 0
3. ε(x ,−ω)= ε(x ,ω)
4. Imε(x ,ω)≥ 0 when ω real and ω≥ 0

The function h(z)= zε(x ,
p
z) is a Herglotz function (Milton, Eyre,

Mantese 1997; Cassier, Milton 2017), i.e.
• h is analytic on C+ = {z ∈C | Imz > 0} and
• Im(h(z))≥ 0 for z ∈C+

Ideas
• If we can find ε(x ,ω) at some sampling frequencies ω1, . . . ,ωn then we
can use rational function approximation of ε(x ,z).

• Can we use Kramers-Kronigs relations or Herglotz function properties
to “complete” data?
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Summary and perspectives

• Thermal noise spatial correlations at one wavelength can be used to
recover σ∇ui ·∇uj

• When is the effect sufficiently large to be measured?  Need more
realistic numerical experiments with parameters from application.

• When σ̃ is real, problem is equivalent to UMEIT  many different
reconstruction methods

• When σ̃ is complex, no reconstruction method (yet). Perhaps rational
function interpolation could help?

• We relied on equillibrium assumption, which may not hold because
temperature gradients are large.
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