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Introduction




Motivation

We have had success with deriving sum rules and interpreting them in the frequency
domain. One example is for the transmission coefficient of a low pass slab:

® Re{l —T(w)} _ oy
/0 w? dw = 4Ac

where Re{2A(1 — T)} = 0ex is the extinction cross section of the slab.

But not all sum rules are easy to interpret. For instance, we can derive the following for
the reflection coefficient of a PEC backed slab:

*Re{l+R(w)} . Ym\d d
/O—wz dow =7 (14 50 ) T = 7

But what is the physical relevance of Re{1 + R(w)}? If we do not find something in
the frequency domain, then maybe in time domain?
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Integral identities for Herglotz functions

Consider Herglotz functions with the symmetry h(z) = —h*(—z*) (real-valued in the
time domain), having asymptotic expansions (Ny > 0 and N, > 0)
No
h(z) = Y a1z +0(z2N071) as z50 Im
n=0 4
NOO
h(z) = Y biguz" " +o(z' ") as z3o0 . 0 Re
n=0

where % denotes limits in the Stoltz domain 0 < 6 < arg(z) < 7t — 6. They satisfy the
identities (1 — Neo < 1 < Np)

—bzn,1 n<0
1
B i 1—b_ =0
im lim 2/ wdx oyt — by 1 — a_q 1 n
e—0+ y—0+ 7T Je x=n a1 — b n=1
A1 n>1

Bernland, Luger, Gustafsson, Sum rules and constraints on passive systems, J. Phys. A: Math. Theor., 2011.

Warm thanks to Mats, Annemarie, Sven, Lars, Yevhen, Mitja for all the collaborations!
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http://dx.doi.org/10.1088/1751-8113/44/14/145205

Physical bounds

Given that Im h(x)/x*" = P(x) > 0, we can estimate the integrals as
oo X
/ P(x) dx > / "P(x)dx > (x2 —x1) min P(x)
0 X1 XE[x1,%7]
This implies
(x2—x1) min P(x) < g(m —by)

X€E[x1,%2]
With the interpretations
® x, — x1 = bandwidth (in frequency or wavelength)

e min P(x) = performance level (application specific)
xe[x1/x2]

we see that a physical interpretation of the sum rule is that

the product of bandwidth and performance level is bounded from above by low-
and high-frequency asymptotics, independent of specific behavior in between!

Further interpretation can be possible when i and the application are specified.
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Notation

In this presentation, notation is abused in at least the following ways:

® 1 is used to denote both a Herglotz function in frequency domain, and a time
domain impulse response.
® The presentation is based more on positive real functions than Herglotz functions:
— Time convention e/ is used instead of e ™1,
— In the stated sum rules, we typically write Re{H(w)} instead of Im{iH(w)}, where
H(w) is a transfer function.
® The word “slab” should be interpreted as a planar structure with internal
microstructure, although the examples at the end will be for homogeneous slabs
due to computational simplicity.
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Scattering problems




Scattering problems

A plane wave E'(r) = Ege %", Hi(r) = %fc x E'(r), impinges on a scattering object
enclosed by a surface S.

The interaction with the scatterer results in absorption and scattering. The extincted

power is Pext = Papbs + Psca, and the extinction cross section is oext = ‘EOPP/W
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Sum rules in scattering theory

Using the optical theorem, the extinction cross section can be written

1D: 0ext = Re{—2A(T —1)} T = transmission coefficient
4b E} - N

bo’:} f= ]k /ka (7t x oH®) + E° x A1) &7 Al diz
jk |Eol

4 E;-F ]k
— F =

jk |Eol? 47
Thus, the extinction cross section (proportional to power, square of field strength) can

be evaluated using forward scattering coefficients (proportional to field strength, being
transfer functions). This enables the derivation of a forward scattering sum rule:

2D Ooy = Re{—

3D: (fextzRe{— kx/[fcx(ﬁx;yoHS)JrEsxﬁ} ekrds
S

oo0—ext((’~)) _ Ty
/0 w? d 4Ac

where eyt = Oaps + Osca @nd 7 is the static polarizability of the scatterer.
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Scattering problem, periodic surfaces

Band pass (connected metal)

Low pass (disconnected metal)

E®
E® U

xr
Y/ / W
z %E © [ Gy

{V X E +jkcyH = 0 {

V x H —jkceE =10

fit x E = 0on 00}, E, H periodic in xy
input/output Floquet ports at z = +co
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Scattering problem, periodic surfaces

Band pass (connected metal) Low pass (disconnected metal)

E®
E® U

x
Y/ / W
z %E(t) [ Gy

T =~ (et )+ O((R)?) T = 1= L e+ m) + O((ki))
r=—1- X (e ym) + 0(k0)) r= -2 (e )+ o)
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How to compute the polarizabilities

The electric polarizability . is computed from the static Maxwell’s equations:
VXE=0, V-D=0, D(r)=¢€(r) E(r)
The excitation is from a uniform field E,
E(r) — Ey, |r| = o

For periodic structures periodic boundary conditions may apply in one or two
dimensions. The polarizability tensor ¥, is defined from the dipole moment

pP = / - 601 (1’) dVv = €0’7e : EO
and the scalar <. is the diagonal element
_ Eo- % Eo
’Ye - ’EO’Z
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How to compute the polarizabilities

The electric polarizability . is computed from the static Maxwell’s equations:
VXE=0, V-D=0, D(r)=¢€(r) E(r)
The excitation is from a uniform field E,
E(r) > Ey, |r| — o0

For periodic structures periodic boundary conditions may apply in one or two
dimensions. The polarizability tensor ¥, is defined from the dipole moment

pP = / - 601 (1’) dVv = €0’7e : EO
and the scalar <. is the diagonal element
_Ey-%.-Eo
’)’e - |E0’2

This is very similar to classical homogenization theory, which has periodic boundary
conditions in all dimensions.
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How to estimate the polarizability

The electrostatic problem can be solved using two different potentials (with Dy = €yEj):
VXE=0 = E=E,— Vg
V-D=0 = D=Dy+V xF
This provides two different expressions for the energy:
J(9.E0) = [ [(Eo=Vo)-e(r): (Eo— Vo) —colEof] av
K(F,Dy) = / [(Do+V X F) - e(r) "+ (Do + V < F) — 5Dy ] dV

It can be shown that for all test functions ¢ and F (with correct boundary conditions
and unit background energy density €y|Eo|> = €, |Do|> = 1)

—K(F,Dg) < e < J(¢,Eo)

Equality is obtained for the unique minimizing potentials ¢ and Fy, which are the
solutions to the electrostatic equations.
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How to estimate the polarizability

The electrostatic problem can be solved using two different potentials (with Dy = €yEj):

VXE=0 = E=E,— Vg
V-D=0 = D=Dy+V XF

This provides two different expressions for the energy:
I(9.E0) = [ [(Es=V)-e(r)- (Eo— Vo) - colEol*| v
K(F,Dy) = / (Do +V x F)-e(r)™1- (Do + V x F) — & |Do[?| dV

It can be shown that for all test functions ¢ and F (with correct boundary conditions
and unit background energy density €y|Eo|> = €, |Do|> = 1)

—K(F,Dg) < 7e < J(9,Eo)

Equality is obtained for the unique minimizing potentials ¢ and Fy, which are the
solutions to the electrostatic equations. If we can guess ¢ and F based on limited
information, we can bound !
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Application to absorption

Low pass case Ground plane backing

Since ¢t = 5@ 4 gabs > gabs e Rozanov showed in 2000, using the
have same analytical properties, that
O.abs +
(Az—/\l)% < 7'[2% (}\2—)\1)1—'0 < 172]15(1
where 025 / A is the minimum allowed where Iy = minyc(a, 1, [Tas(4)] 18

the minimum allowed return loss in dB.

absorption cross section per unit cell TS e .
Logarithmic metric instead of linear.

area in the band.

The result is that the product of bandwidth and absorption performance is bounded by
the polarizability per unit area.
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Other applications

Transmission blockage

Low pass structure:

1 2%e T Tm
— _ < -
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Sum rules in the time domain




Sum rules in the time domain

Let oext = Re{H?}, where H(w) is a transfer function corresponding to a real, causal
impulse response h(t) = [F~'H]|(t). Since Im{H(w)} is odd in w, we have

© Re{H(w 1 [® Re{H(w 1 [® H(w) ;.

t=0

14/27



Sum rules in the time domain

Let oext = Re{H?}, where H(w) is a transfer function corresponding to a real, causal
impulse response h(t) = [F~'H]|(t). Since Im{H(w)} is odd in w, we have

2 2
w w t=0

/O°° Re{H(w)} , ~_ % /j; Re{H(w)} , ~_ % /j; Hcic;)ejwt dew
[ZH(.F_lH(w)) ) (f—lafz)]t_o = [ w) (—;]t - t’|> d

t=0

N[ =
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Sum rules in the time domain

Let oext = Re{H?}, where H(w) is a transfer function corresponding to a real, causal
impulse response h(t) = [F~'H]|(t). Since Im{H(w)} is odd in w, we have

© Re{H(w 1 [® Re{H(w 1 [® H(w) ;.
[ [,

t=0

w? o

_ % [Zn(f_lH(w)) ] (f‘ll)]to _ 71/00 n(t') (—;]t— t’|> dr

t=0

Summarizing, we have

/0°° Re{H(w)} dw = —g /O°° )L

w?

Generalizing, it can be shown that sum rules with weight factors 1/w?" correspond to
moments 2"~ of the impulse response.
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Interpretation

The negative of the first moment of the impulse response,

b — —/mth(t)dt
0

can be seen as a delay (known as Elmore delay in electronic circuits).
® Delay is an important quantity in filters, communication channels, logic circuits etc.
* When (t) < 0, we have t, = [ t|h(t)| dt and the delay interpretation is clear.
° When h(t) has alternating signs, we have t, < [ t[i(t)| dt, and the delay
interpretation is less clear, but is sometimes used as a definition.
Thus, the time domain version of the forward scattering sum rules in 1D, 2D, 3D, is

t, = (expression proportional to 7y)
meaning

the delay in forward transmission through any linear, time-invariant, passive
scattering system is given by the static polarizability .

For propagation through rain or fog, - is related to the volume of water in the air. 15727



Impulse forward scattering

The impulse forward scattering in different dimensions is
1D : h(t) = =2A(T (t) = 4(t))

b ~ ~
2D : h(t):—fcx/ j{ [k x (< yoH3(r,t +k-v/c)) + E¥(r,t + k-r/c) x A] dldz
0 Je

3D: h(t):—icx/[icx(ﬁxqOHS(r,tH%-r/c))+E5(r,t+ic-r/c)xﬁ] ds
S
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Impulse forward scattering

The impulse forward scattering in different dimensions is
1D : h(t) = =2A(T (t) = 4(t))

b ~ ~
2D: h(t):—fcx/ f [k x (< yoH3(r,t +k-v/c)) + E¥(r,t + k-r/c) x A] dldz
0 Je
3D: h(t):—icx/[icx(ﬁxUOHS(r,tH%-r/c))+E5(r,t+ic-r/c)xﬁ] ds
S

Consider the 1D case for simplicity:

;;YC:/OOORe{l;g(w)}dw:Z/Ooot(’]'(t)—é(t))dt:Z/OOOtT(t)dt:;Tt_T
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Impulse forward scattering

The impulse forward scattering in different dimensions is
1D : h(t) = =2A(T (t) = 4(t))

b ~ ~
2D: h(t)z—fcx/ 7{ [k x (< yoH3(r,t +k-v/c)) + E¥(r,t + k-r/c) x A] dldz
0 JC
3D: h(t):—icx/[12><(ﬁ><UOHS(r,tJrl%-r/c))+E3(r,t+ic-r/c)xﬁ] ds
S

Consider the 1D case for simplicity'

Ty Re{l — / /°° T
—_— = —_— dt = T (t)dt = —t_
4Ac /0 wz 2 (1)) 2 )y T 27
For a non-dispersive slab with refractive index n and thickness d we have

; v Ad(n?—1) d(n—l)(n—i—l)_tn—i—l_t Ly n—1

T T 2Ac T T 2Ac 2¢ T dTp T dTATy

where tq = (n — 1)d/c is the one-pass delay through the slab. The delay as measured

by t_ takes into account additional multiple reflections inside the slab.
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Power series of the forward scattering

To indicate the generalization to higher moments, consider the 3D forward scattering:

H(w) = — E ‘2 kx/[fcx(ﬁxnoHs)JrEsxﬁ} ekrds
S
With the power series (a being the radius of a sphere enclosing the scatterer)
S = ngs s . nys jk-r o n(k'r/a)n
E° =) (jka)"E;, H® =) _(jka)"H;, e =Y (jka) —
n=0 n=0 n=0 :
we have
2 e E} A R R (fc -r/a)™
__Zzlka mMIEo!z kx/s[kx(nxqui)—l—Eixn]TdS
) n * " a a (IAC X r/a)”_m
= 1/;) ]ka Z E |2 /S[kx (nx;yoH,sﬂ)—{—E,San]WdS

The expanS|on terms (moments of the scattered field distribution) correspond to the

derivatives H")|,_, or the moments fo t"h(t) dt.
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Examples




Transmission through a non-dispersive slab

T

5(t) T

B — ]«lr B ——

‘ | | | | 1 ' ¢

Multiple reflections inside the slab gives a sequence of exponentially decaying delta
pulses as impulse response:

T(t) =Y (1—p*)p*"6(t — 2ty — to + ty)

n=0
T _d _ =l _
to = er,urz tb - c o= 77r+1 Ny = e
Thesumruleis/wRe{l_T(w”dw:m with y = Ad(ey — 1+ pr — 1)
0 w? 4Ac’ ' v
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Veritying the sum rule

Given T (t) = Y0 (1 — p2)p?"8(t — n2ty — to + tp ), the first moment is

/Ooo FT (1) dt = Y (1 — p?)p™ (n2tg + to — 1)

n=0
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Veritying the sum rule

Given T (t) = Y0 (1 — p2)p?"8(t — n2ty — to + tp ), the first moment is

/Ooo FT (1) dt = Y (1 — p?)p™ (n2tg + to — 1)

n=0

= (] — pZ) (zto i an" + (t() — tb) i p2n>

n=0 n=0
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Veritying the sum rule

Given T (t) = Y0 (1 — p2)p?"8(t — n2ty — to + tp ), the first moment is

[ee]

/Ooo FT (1) dt = Y (1 — p?)p™ (n2tg + to — 1)

n=0

= (] — pZ) (zto i an" + (t() — tb) i p2n>

2
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Veritying the sum rule

Given T (t) = Y0 (1 — p2)p?"8(t — n2ty — to + tp ), the first moment is

/oo FT (1) dt = Y (1 — p?)p™ (n2tg + to — 1)

0 n=0

= (] — pZ) (zto i an" + (t() — tb) i p2n>

_ [ 1
- (1 - pz) <2t0 (1 — p2>2 + (tO - tb)l_pz)
2

P
=2tg——= + 1ty —t
01_p2+ 0ot
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Veritying the sum rule

Given T (t) = Y0 (1 — p2)p?"8(t — n2ty — to + tp ), the first moment is

/oo FT (1) dt = Y (1 — p?)p™ (n2tg + to — 1)

0 n=0

= (] — pZ) (zto i an" + (t() — tb) i p2n>

_ [ 1
- (1 - pz) <2t0 (1 — p2>2 + (tO - tb)l_pz)
2

0
=ty — = ... =
07 o2 0 Ip
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Veritying the sum rule

Given T (t) = Y0 (1 — p2)p?"8(t — n2ty — to + tp ), the first moment is

/0oo FT(t) dt = i(l — %) (2t +tg — ty)

n=0
:(]—pz) (ZtOan —|— t()—tb Z )
n=0 =
2
(12 [ _ 1
=(1 P)<2t0(1_p2>2+(t0 tb)l_pz)
2 _
oty b ty= e _dertpr—2
1—p? c 2
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Veritying the sum rule

Given T (t) = Y0 (1 — p2)p?"8(t — n2ty — to + tp ), the first moment is

Léwt71t)dt::fi(l——papm%n2m—+to—tb)

n=0
:(1—p2)(2t02np + to—tb Z )
n=0 =
2
_ 2 Y 1
=(1-p%) <2t0(1—p2)2 + (to — tb)l—;ﬂ)
2
4 N Lo _detm -2
=2y p+m ty = = 5
Hence, we have
der—i—yr 1 _ T
/O FT (1) dt = e o Ad(er 14— 1) = 5

and the sum rule is verified.
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Reflection from a grounded non-dispersive slab

v R

R | M

D — | I T t

With e, > u, > 1 we have p < 0 and alternating signs in reflections.

[e0]

R(t) = ps(t) — Y (1= p*)p"16(t — n2to)

n=1

“Re{l +R(w)} , _ d _/°° o,
/o 2 dw—rcyrc = 0 tR(t)dt—Zer

This can be explicitly verified in the same way as the previous sum rule.
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Reflection from a Salisbury absorber

resistive
sheet
UM i
R(t)
' d
The reflection p = ﬁ G = ods+\/Ho/ €o, from a resistive sheet has the same sign

from both directions, leading to non-alternating signs of reflections.

R(t Z 14 0)*(—p)"1o(t — n2tp)

= d
—/O R () dt =25

Note the delay only depends on thickness! True for any non-magnetic absorber.
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Fabry-Perot resonator

resistive sheets VR, T
5(t) .
— i i
m :,. .:, l | 1 1 "
vd o | ! '

[ee]

T(t) = Y. (1+0)2025(t — n2to)
n=0

[ee]

R(t) = pd(t) + ) (14 p)*p™16(t — n2ty)

n=1
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Fabry-Perot resonator

resistive sheets VR, T
o(t) % "
S BT
4@ L_,E | I 1 1 t
v d o | !
o0 [o'e) 1
t) = 1 202§ (+ — n2t, t S
T(t) n;)( +0)%p™"d(t — n2to) T () 1+1/G)
0 00 _t 142/G
R(t) = pd(t 1+ 0)20%16(t — n2ty) FR(t 07
() P(>+n;1( +p0)%0 — n2tg) ; 2 11/0)
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Fabry-Perot resonator

resistive sheets R, T
o(t) % '
D T
4@ L_,E | I 1 i 1 t
pd | !
_ - 2 2n _ * __EQ 1
T(t)—n;o(l%—p) P25 (t — n2ty) /O T d = 3 76y
_ = 2 150y A _t 1+2/G
R(t) = pé(t) +n§(1+p) 0?16 (t — n2tg) /O R4 =3 571700

The Fabry-Perot resonator is neither low pass, nor backed by a ground plane. Hence
the previous sum rules do not apply.
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Impulse moments using bandlimited signals

Explicit impulse responses are very rare. In numerical or experimental approaches, the
exciting signal is bandlimited. Consider the input signal x(t) and output signal y(¢):

y(t) = /O Tt — £)x(t) dF’
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Impulse moments using bandlimited signals

Explicit impulse responses are very rare. In numerical or experimental approaches, the
exciting signal is bandlimited. Consider the input signal x(t) and output signal y(¢):

y(t) = /O Tt — £)x(t) dF’

The negative first moment of the bandlimited signal is

ty = — /Ooo ty(t)dt = — /t:Ot tl:oh(t —t")x(¢') dt’ dt
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Impulse moments using bandlimited signals

Explicit impulse responses are very rare. In numerical or experimental approaches, the
exciting signal is bandlimited. Consider the input signal x(t) and output signal y(¢):

y(t) = /O Tt — £)x(t) dF’

The negative first moment of the bandlimited signal is

ty = — /Ooo ty(t)dt = — /t:Ot t’:Oh(t —t")x(¢') dt’ dt

[eS) ) o P »
= — / _I I:_ /-7 —]wt /
[0 [t —— [ [ ]

=0 w=0
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Impulse moments using bandlimited signals

Explicit impulse responses are very rare. In numerical or experimental approaches, the
exciting signal is bandlimited. Consider the input signal x(t) and output signal y(¢):

y(t) = /O Tt — £)x(t) dF’

The negative first moment of the bandlimited signal is

= [t tdt:—/oot " n(t— #)x(f) d dt
y /0 y(t) b = E)x()
= _/ x(t’)/ th(t —t')dtdt’ = —/ x(t) [jaH(w)e_l'“’fl} ar
=0 t=0 =0 aw w0

S /t :)x(t’) [H'(0) + ¥'H(0)] dt' = — /t O:Ox(t’) [ /0  n(t) dt+t/H(O)] dr
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Impulse moments using bandlimited signals

Explicit impulse responses are very rare. In numerical or experimental approaches, the
exciting signal is bandlimited. Consider the input signal x(t) and output signal y(¢):

y(t) = /0 Tt — £)x(t) dF’

The negative first moment of the bandlimited signal is

(o]

f = _/0°° by (t) df = _/:Ot (= () de e

_ (¢S] / oo . , _ oo , .9 _]-wt/ /
/ﬂ:ox(t )/t th(t —t") dtdt /H:Ox(t) []awH(w)e } dt

=0 w=0
= [7 s o+ m) af = - [ 5[ [T ar+ o) ar
= 1,X(0) + t,H(0)
where X(0) = [~ x(t) dt is the zeroth moment of x(¢).
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Impulse moments using bandlimited signals

Apply two different input signals x; (¢) and x,(f):

by = 4X1(0) + £, H(0)
by, = b,X2(0) + £, H(0)

and solve for impulse response moments H(0) and #; in terms of bandlimited data:

t 1X (0) _tzx (0)
)= tlei(O) — tixi(o)

b, = tyl txz B t]/ztxl
tJCZXl (O) - tx1X2(0)

This has been verified by explicit calculations for the Salisbury screen, and
implemented numerically as follows. This may prove to be a useful tool also for
experimental work, but requires input signals with a DC component.
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Veritying the sum rule for a dispersive slab

Maxwell’s equations for a 1D-problem were 0.20. — m(t)/10
solved numerically in the time domain —— m(t)/10
using finite differences. 0.151 — (=)
— t(=3(t)
x(t) = 0.101
T e 0,E + ud;H = 0 0.05
¥ | e {SZHJreatEJraE:O -
d 0 5 10 15 20
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Veritying the sum rule for a dispersive slab

Maxwell’s equations for a 1D-problem were — x(1)/10
: ) . ) 0.201
solved numerically in the time domain —— 3(t)/10
using finite differences. 0.151 — t(=n(?))
— t(=5(t))
x<t> € 0.10+
Hr 0,E + uotH =0 0.051
yt) e o.H+eE+oE=0
d 5 10 15 20
t
€r 1 2 1 1 1 2
d Ur 1 1 2 1 1 1
tr = 2u,— o 0 0 0 0.01 0 0.01
€ d/c 1 1 1 1 2 1
tmax
= Jo"tR(t) dt ‘ 25/27



Veritying the sum rule for a dispersive slab

Maxwell’s equations for a 1D-problem were
solved numerically in the time domain
using finite differences.

x(t) €r
y(t) o 3,H + €d;E + 0E = 0
d

0.20

0.151

0.101

0.057

0.00

21(t)/10
25(t)/10
t(=y(t))
t(—ya(t))

5 0 15 20
t
€ 1 2 1 1 ! 2
d z 1 1 2 1 1 1
tr = 2p, " Y 0 0 0 001 0 001
. i/e 1 1 1 1 2 1
— [;™¥R(t)dt | 1.999 2.000 4.000 1.999 3.999 2.000 g,
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Conclusions

® The frequency domain sum rules were rewritten in terms of the time domain
impulse response.

® The sum rules become restrictions on the moments of impulse response.

® The first moment is (at least sometimes) associated with the average delay
through the system. This quantity is of interest in many applications, like filters,
communication channels, and electrical networks.

® The static polarizability may be directly linked to physically interesting quantities,
like the volume of water in the air.

® A few time domain sum rules were verified by explicit calculations and numerical
simulations.

® A means of extracting moments of the impulse response using bandlimited data
was demonstrated.
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