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(Generating Functions

Given a sequence (c,) = cg, €1, C2, C3,Cs, ... We can form its
generating function

00
C(Z) = chzn — C0‘|‘C12—|-C222 + -

n=0

Combinatorial definitions often automatically translate to

generating function specifications.



(Generating Functions

Given a sequence (c,) = cg, €1, C2, C3,Cs, ... We can form its
generating function

00
C(Z) = chzn — C0‘|‘C12+C222 + -

n=0

Combinatorial definitions often automatically translate to

generating function specifications.

"Firlk, Let the Relation of each Term to the two preceding omes
be expreffed in this manmer, Viz. Let C be = mBr — nArr;
avd let D likewife be == m Cr — n Brr, and fo on : Then will

the [um of that Infinite Series be equal to -é'—'_t—:;r:f:-r%—.

A. de Moivre, The Doctrine of Chances or a Method of Calculating the Probabilities of Events in Play, 1718



Generating Functions

Given a Seqguerce (c — Cp,C1,Co,C3,C4,... WE Call form ltS
7 0 ) y L3 )
generating function

00
C(Z) = chzn — Co+C12+0222 + -

n=0

Combinatorial definitions often automatically translate to
generating function specifications.

Class Example Encoding

Rational Regular Languages Numerator + Denominator

Algebraic Types of trees Min. Poly + Initial Terms

Linear Recurrences with

| lal Eq. + Initial Ti
Polynomial Coefficients Differential Eq. + Initial Terms

D-Finite



Ge

Give

gene

A D-Finite function is one which satisfies a linear differential
equation with polynomial coefficients.

Example: The transcendental generating function

Flz)=Y" (2:>2z“

n>0

satisfies

Coml
gener (2 — 1622)F"(2) + (1 — 322)F'(2) — 4F(2) = 0

Cl: Example Encoding

Rati »al Regular Languages Numerator + Denominator

Alge Jraic Types of trees Min. Poly + Initial Terms

Linear Recurrences with Differential Eq. + Initial Terms

D-Finite Polynomial Coefficients




Basics of Analytic Combinatorics

There are deep links between analytic properties of a
generating function and asymptotics of its coetlicients.

If F(z)= Z fnz" is analytic at the origin, then CIF implies

"0 1 [ F
fn — < - (z)

- 2mi Jo zmtl az

where ('is a sufficiently small circle around the origin
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D-Finite Functions

Example

The number of walks from the origin taking steps { NE,NW,SE,SW}
and staying in the first quadrant has GF satistying

L6z) =1

where

d3 d? d
£i— (300 223)323— E (040 LB 922)325 (3682 194 SZ)EZ (807 L4241
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D-Finite Functions

This is equivalent to the coeflicient sequence (g, ) satisfying a linear
recurrence relation with polynomial coefficients.

For the last example,

(2n + 3)(n + 3)%gnio = (8n% + 32n + 28)gpy1 + 16(2n + 5)(n + 1)%g,

There are methods to find an asymptotic basis of solutions of a
linear recurrence, but one must write the sequence of interest as a
linear combination of the basis elements (connection problem).

n n?

w=(ero(i) 4

A" (—4)\7
Here a basis has leading terms { : (—4) } , SO



D-Finite Functions

This is equivalent to the coeflicient sequence (g, ) satisfying a linear
recurrence relation with polynomial coefficients.

For the last example,

(2n + 3)(n + 3)%gnio = (8n% + 32n + 28)gpy1 + 16(2n + 5)(n + 1)%g,

There are methods to find an asymptotic basis of solutions of a
linear recurrence, but one must write the sequence of interest as a
linear combination of the basis elements (connection problem).

n n?
m

C = 0.6366 . .. 4 1
S e = (0o ;) ><

A" (—4)\7
Here a basis has leading terms { : (—4) } , SO



Lattice Path Example A

Consider walks on the steps {N, SE, SW}, restricted to the non-
negative quadrant. The number of walks satisfies an order 15 linear

recurrence with poly coetlicients.

There is an asymptotic basis consisting of

16
(2\@)"n2<132ﬂ+57n1 )
4
(_2\/5)” =2 (1 n 32v/2 — 5777, 1 )
4
with other elements o <<2\£)n>

Bostan, Chyzak, van Hoeij, Kauers, and Pech 2017



Lattice Path Example A

One can write

3" 33 2v2)" 32v2 + 57
Qn:O1—<1——-|—“-> + Cz( v2) <1— v2+ -|—>

Vn 16n n? 4n

—|—Cg(_2\/§)n (132\/557+m> N O((Qﬂ)n)

4n n3



Lattice Path Example A

One can write

3" 33 2+/2)" 32+/2 + 57
C]n:C1—<1——-|—“-> + Cz( v2) <1— v2+ -|—>

VN 16n n? 4n
—|—Cg(_2f)n (1 } 32\/27; 57 +> -0 ((2?)n>

Bostan, Chyzak, van Hoeij, Kauers, and Pech 2017

Let
(1 — 61> — 8t3),Fy (1/413/4 ‘ 64t4> +413(1 — 7t + 4t%), Fy (3/425/4 ‘ 64t4>

o(t) = 2 (1= 202(1 + )32

Then C; =0 if and only if
V2 ()

dt =1
o V1I-—3t




Lattice Path Example A

One can write

3" 33 2+/2)" 32+/2 + 57
C]n:O1—<1——-|—“-> + Cz( v2) (1— v2+ -|—>

VN 16n n? 4n
—|—C3(_2f)n (1 } 32\/27; 57 +> -0 ((2?)n>

Bostan, Chyzak, van Hoeij, Kauers, and Pech 2017

Let
© (1 — 61> — 8t3),Fy (1/413/4 ‘ 64t4> +413(1 — 7t + 4t%), Fy (3/425/4 ‘ 64t4>
o(t) = 2 (1= 202(1 + )32
Then C; =0 if and only if
Ve
01— 3t

M. and Wilson 2016/18
C1 = 0, values for other constants, and results for similar lattice path models



Generating Function Classes

D-FINITE

(*G-FUNCTION)

ALGEBRAIC

RATIONAL
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RATIONAL




Generating Function Classes

D-ALGEBRAIC

D-FINITE

(*G-FUNCTION)

RATIONAL
DIAGONAL

ALGEBRAIC

RATIONAL




Multivariate Rational Diagonals

Idea: Use a multivariate rational function F(z) = G(z)/H(z) to
encode sequences

F) = Y fawoisiioilf = Y 4

(i1,...,0q)ENd ieNd

Example (Main Diagonal)

The main diagonal sequence consists of the terms [y n. ... .n

==l--z+y+2zy +2° +y° +2° + 3z°y + 3zy® + y° + 62y’ + -




Multivariate Rational Diagonals

Idea: Use a multivariate rational function F(z) = G(z)/H(z) to
encode sequences

F) = Y fawoisiioilf = Y 4

(i1,...,0q)ENd ieNd

Example (Apéry)

1
1-z2(1+w)(l+z)l+y)(wzy+zy+2z+y+1)

Flw.z 10,2

Here (fn,nnn), o determines Apéry’s sequence, related to his

celebrated proof of the irrationality of ((3).




Multivariate Rational Diagonals

Idea: Use a multivariate rational function F(z) = G(z)/H(z) to
encode sequences

Exercise |
Be the first in your block to prove by a 2-line argument
that ¢(3) is irrational.”

@ Given the definitions of @ show thata,b,,_1 —a,_bx
=p. 3 and b,, = O(a™) with a = (1 +4/2)*. Conclude that
¢(3) is irrational because log o > 3.

A Proof that Euler Missed, Alfred van der Poorten



Multivariate Rational Diagonals

Idea: Use a multivariate rational function F(z) = G(z)/H(z) to
encode sequences

F) = Y fawoisiioilf = Y 4

(i1,...,0q)ENd ieNd

Example (Lattice Paths)

The number of walks on <—I—> which start at the origin and
stay in the first quadrant form the diagonal of

L rail )
e Ly g




Multivariate Rational Diagonals

Idea: Use a multivariate rational function F(z) = G(z)/H(z) to
encode sequences

F) = Y fawoisiioilf = Y 4

(i1,...,0q)ENd ieNd

Example (Lattice Paths)

The number of walks on % which start at the origin and
stay in the first quadrant form the diagonal of

(bl oy ) )
(2 +z+1)1—y) (1 —teylzy+z+z/y+y/c+1/y+1/xz+ 1/xy))




Lattice Path Example

The minimal order linear differential annihilator for

P (7t-1)@t+1)Gt+1) (467 —at—1) (204° 4t —1) (¥ +t+1)

(337920 t13 41373184 t12 — 4304640 t'1 — 6344576 10 — 444096 t° + 2010720 % + 901808 ¢ + 180552 t® + 55164 t° + 31010¢* + 11106 > + 1914 ¢% + 106t — 3) 8, °
22 21 20 19 18 17 16 15

+ ¢ (47308800000t + 227888332800 t21 — 542727905280 t2° — 1484019662848 t12 — 767620100096 t1® + 1085290090496 t17 + 1896743070208 t16 + 918495748096 t

—215512785664 t'4 — 427218085376 t1° — 200103936864 t'2 — 53308965120t — 16198105488 t'° — 7684582384 t° — 2788409498 t2 — 526917856 ¢~ — 11674372t

+14725960 t° + 2406665 t+ + 42072 > — 17460t — 836 t + 27) 8; 4+ 2 (189235200000 22 4+ 910845542400 21 — 2482106941440 t2° — 6004739067904 ¢ *°

—2190950518784 '8 + 4468038376448 t17 + 5923732034560 % + 2057998031360 t'° — 1109933285888 t'+ — 1316341967488 t'°> — 560905256000 2 — 165928469200 ¢ 1

—64781167760 t'° — 30898350868 t° — 10648213196 t° — 2104167976 " — 150023840 t5 + 22705940 t° + 5264545t + 267944 > — 9053 t2 — 510 ¢ + 24) 8,3

+ 6 (189235200000 t21 4+ 910137753600 t2° — 2797638696960 t17 — 6009599143936 t18 — 1214520197120 ¢17 + 4569763273728 16 + 4392743400448 ¢1°
+735231523328 t14 — 1250713939968 t13 — 987314157184 t1? — 367899527360 t11 — 119740279344 t1° — 58557054080 t° — 28856070484 t5 — 9660129468 ¢*
—1939533508 t° — 193545296 t° — 497736 t* + 1672921 > + 118532t + 2559 ¢ + 132) 0% + 24 (47308800000 20 + 227357491200 t'° — 7793767219208

— 1487700047872 17 — 35249020928 16 + 1159020984320 t'° + 740359199744 t'* — 80316882176 ¢'3 — 317740267264 t'? — 173358054912 ¢! — 53419838208 ¢'°
20200372344 t7 — 12618507248 > — 6380918656t — 2053685840 t° — 402111758 t° — 44894842 t* — 2517458 t> — 78126t% — 6615t — 384) Oy — 22464 — 451296 t

— 26356354176 t° — 7768879584 t° — 1370419584 t* — 140485008 t> — 8567520 t° — 64845759168 t° — 4952814981120 — 109934770176 t° — 53271954240 ¢
— 6994180227072 t6 4+ 1235817283584 t1° 4 5584717234176 t1* + 1907260735488 t12 — 1376741382144 t12 — 1399425761280 t'! + 227082240000 ¢°

+ 1090466611200 % — 4130053816320 t7

Bostan, Chyzak, van Hoeij, Kauers, and Pech 2017



Lattice Path Example

An “explicit” expression for %

3/2
1 (2t + 1) (5t + 1) 12 (—3512 — 2t + 1) .
e / (1 ’ / (—35t2 — 2t 4 1)5/2 (10 " / (5t + 1)(12t2 + 1)9/2(2t + 1)2 (12 =E L)

RO

(122 +1)2

(736t° + 2208t* + 1096t° — 44t° + 44t + 1)oF4 (7/4, 9/4; 2; 64

2 2

6 5 4 3 2 (t +t+1)t
—7t(1824t 1+ 2496 t° + 1288 t* + 4523 + 420°¢ —|—53t—|—10> 2F1 | 9/4,11/4; 3; 64 dt | dt

(122 4 1)2

Bostan, Chyzak, van Hoeij, Kauers, and Pech 2017



Multivariate Rational Diagonals

Many problems in

combinatorics (lattice path enumeration, tilings, strings)
probability theory (random walk models)

number theory (binomial sums like Apéry's sequence)

physics (the Ising model, rational period integrals)
representation theory (Kronecker coefficients)

computer science (automatic sequences, Kronecker coefficients)

and more appear naturally as questions about rational diagonals,

which are compact encodings

Goal: Automatic asymptotics of rational diagonal sequences.



Rational Finite Automata

Pushdown Automata

Algebraic

Turing Machine

Rational Diagonal

D-Finite

D-Algebraic Rationals

Algebraic Nums

Period Numbers

Complex Numbers




Diagonal Asymptotics

Assume ” .
F(z) = fl((z)) — Z fiz!

ieNd

is analytic at the origin, with open domain of convergence D .

The singularities of F'(z) are given by V := {z : H(z) = 0}.
Points in 8D NV are called minimal points.



Diagonal Asymptotics

Assume ” .
F(z) = fl((z)) — Z fiz!

ieNd

is analytic at the origin, with open domain of convergence D .

The singularities of F'(z) are given by V := {z : H(z) = 0}.
Points in 8D NV are called minimal points.

Equivalently, no other singularities

have smaller coordinate-wise modulus




Diagonal Asymptotics

Assume ” .
F(z) = fl((z)) — Z fiz!

ieNd

is analytic at the origin, with open domain of convergence D .

The singularities of F'(z) are given by V := {z : H(z) = 0}.
Points in 8D NV are called minimal points.

The Cauchy integral formula has a higher-dim generalization

1 F(z)
fn,...,n — (Qﬂi)d/c(zlumzd)n_l_ldz

The field of analytic combinatorics in several variables (ACSV)

uses singularity analysis to determine asymptotics



Critical Points

We understand asymptotics of Gaussian integrals very well

/c Al)e ") 2 g — A0y \/ngzcl)th : O(n—d/2—1)

—C

The Cauchy integral has the Fourier-Laplace form

/A(z)e_”¢(z)dz

with

¢(z) = log(z1) + - - - + log(za)



Critical Points

ACSV uses complex residues to rewrite the Cauchy integral as a
local integral restricted to part of V

Thus, one decomposes V into a union of smooth manifolds and
finds critical points of ¢(z) on each strata

Critical points are defined by vanishing of matrix minors.
Simplest case: )V is a manifold and critical points defined by

nH, =--=24H,,, H=0

Minimal points are those that the Cauchy integral can be
deformed close to, critical points are those where saddle-point
approximations can be made



Complexity Results for ACSV

Suppose that G(z) and H(z) have coefficients < 2" and degree ¢

Suppose also that the power series of F'(z) has non-negative coefficients

Theorem (M. and Salvy, 2016)

Under generic and verifiable assumptions one can find all

minimal critical points in O(hq*?"™) bit operations

For any M € N one can compute algebraic constants such that

M
. Q@2 - AT d))2 ch('n)n_j e O(n—M—l)

=0

d+1 i hq3d—|—3)

Cy is explicit and can be determined to 2™ " in O(/ﬁ:q bit ops



Complexity Results for ACSV

Can remove non-negativity assumption, with increased complexity:.

Theorem (M. and Salvy, 2018)

Under verifiable assumptions, there exists a probabilistic algorithm
which finds minimal critical points in O(hq9d+423d) bit ops.

Example (Apéry)

1

F rr T e R e U e e e S e e Pl B
(w, 2,9, 2) l—-2(1+w)(l+z)(1+y)(wzy+2zy+z+y+1)

, U, PRINT := DiagonalAsymptotics (numer (F) ,denom(F),[a,b,c,z],u,k, useFGb):
U.

( .5 — 366 "\[— > u— 366
1 34u+1458 —06 u — 4192

4 B2 312

, [Rootof ( Z* — 366 Z — 17711, -43.27416997969




Analytic Combinatorics in Several Variables

arXiv.org > math > arXiv:1709.05051

Cambridge Studies in Advanced Mathematics

Mathematics > Combinatorics

Analytic

Combinatorics Analytic Combinatorics in Several Variables:
in Several Effective Asymptotics and Lattice Path

Variables

Enumeration

Stephen Melczer

Comments: PhD thesis, University of Waterloo and ENS Lyon - 259 pages
Subjects: Combinatorics (math.CO); Symbolic Computation (cs.SC)
Cite as: arXiv:1709.05051 [math.CO]

Theory developing rapidly
(textbook based on thesis coming soon)

CAMBRIDGE

CAMBRIDGE



Diagonals in General Directions

In general, the r-diagonal of F' forms the coefficient sequence of

(AI‘F)(t) — Z fnrl,...,nrdz?rl T Z;Wd — Z fannr

n>0 n>0

A priori, the coefficient f, is only nonzero if nr € N¢
In particular, this sequence is only non-trivial when r & Qéo



Diagonals in General Directions

In general, the r-diagonal of F' forms the coefficient sequence of

(AI‘F)(t) — Z fnrl,...,nrdz?rl T Z;Wd — Z fannr

n>0 n>0

A priori, the coefficient f, is only nonzero if nr € N¢
In particular, this sequence is only non-trivial when r & Qéo
Again we can write




(Generic Asymptotics

For “generic” directions r asymptotics have a uniform expression
varying smoothly with r staying in fixed cones of R%o

Thus, one can define asymptotics for any (generic) direction r € R%O

frr — lim (hm fns)

S—I \n—oo
d
scQ

as a limit!



FExample

Consider




FExample

Consider

1 i+ 7\
F(x’y)zl—w—y:.z< i >xyj

Then

oo T (2] (42)" (o)

Interpreting as the limit gives asymptotics for

(an—l—bn> _(an+bn)!  T'(an+bn+1)
an " (an))(bn)! T T(an+1) T (bn + 1)



Example #-2

Let

Then [y

bn

1
(1 -2 —y)(1-2x)

F(Qﬁ,y) —

|F(x,y) satisfies

al

) (i o ()

9. (2a—l—b)n 4 O(pn)



Asymptotics in Generic Directions

After introducing negligible error terms, some residue computations
reduce dominant asymptotics to finding asymptotics of a Fourier-
Laplace integral

/ g (07 40) g (r < d)

where m € N” and H is a symmetric positive definite matrix

Terms in such an asymptotic expansion are known explicitly.



Asymptotics in Non-Generic Directions

In “non-generic” directions, one is not allowed to do all the necessary
residue computations needed to reduce to a Fourier-Laplace integral,
while still having acceptable error bounds

One ultimately obtains a modified expression of the form

/ P CRE (r < d)
R7™+1i(e,...,€)

ooooo

where m € Z".

These “negative Gaussian moments” seem to be much less studied
(one dimension is easy, otherwise ad hoc using e.g. int. by parts)



Another Example

Let
1

(1 -2 —y)(1-2x)

F(Qﬁ,y) —

Then [z*"y""|F(x,vy) satisfies

N o (o)




Asymptotic Regime Change

an . .bn

The exponential growth of [x*"y " |F(x,y) varies smoothly with
(a,b), so scale by the exponential growth.

For our example, around r = (1,1) the remaining terms go from
decaying as n 1% to being the constant 2.

() (o




Asymptotic Regime Change

an . .bn

The exponential growth of [x"y""|F(x,y) varies smoothly with
(a,b), so scale by the exponential growth.

For our example, around r = (1,1) the remaining terms go from

—1/2

decaying as n to being the constant 2.

How does this transition occur?
It makes sense to look at the transition on the square-root scale

2" TV F(z,y) for ¢t = O(n°) with 0 < ¢ < 1/2



Asymptotic Regime Change

an . .bn

The exponential growth of [x"y""|F(x,y) varies smoothly with
(a,b), so scale by the exponential growth.

For our example, around r = (1,1) the remaining terms go from

—1/2

decaying as n to being the constant 2.

How does this transition occur?
It makes sense to look at the transition on the square-root scale

2" TV F(z,y) for ¢t = O(n°) with 0 < ¢ < 1/2

First step: Get data for our example!



Experimental Data

How do we usually generate f,r for large n?

Theorem (Christol, Lipshitz): The sequence f,, satisfies a
linear recurrence relation with polynomial coefficients.

There are good algorithms (Lairez / Bostan, Lairez, Salvy) for
determining such a recurrence and practical implementations
(Best: Lairez’s MAGMA package, Also Good: Koutschan’s

Mathematica package)



Experimental Data

How do we usually generate f,r for large n?

Theorem (Christol, Lipshitz): The sequence f,, satisfies a
linear recurrence relation with polynomial coefficients.

There are good algorithms (Lairez / Bostan, Lairez, Salvy) for

determining such a recurrence and practical implementations
(Best: Lairez’s MAGMA package, Also Good: Koutschan’s
Mathematica package)

Problem #1: Singly exponential complexity which increases
with the numer/denom of r’s coordinates

Problem #2: We need truly multidimensional data



Computing Coeflicients

With Kevin Hyun and Eric Schost:

Efficient algorithm for generating terms of multivariate rational
function (right now only in bivariate case)

Idea: Each section o;(x) = 7;) fnix™ 18 a rational function H(s.07

Can find P; using fast interpolation procedures

Since denominator is a power of a fixed polynomial, can

find terms in good complexity using work of Hyun, M.,
Schost, and St-Pierre

Very efficient implementation in C++ using Shoup’s NTL library



vold bivariate_lin_seq::find_row_geometric(zz_pX &num, zz_pX &den, const long &D)x
long degree = (D+1) x dl1;
ZZ_pX X;
SetCoeff(x,1,1);

ZZ_p X_0,;
random(x_0) ;
zz_pX_Multipoint_Geometric eval(x_0, x_@, degree);

Vec<zz_p> pointsX, pointsY;

pointsX.SetLength(degree);

pointsY.SetLength(degree);

eval.evaluate(pointsX, x); // grabs all the points| used for evaluation

Vec<zz_pX> polX_num, polX_den;
create_poly(polX_num, num_coeffs);
create_poly(polX_den, den_coeffs);

for (long i = 0; i < degree; i++){
zz_pX eval_num, eval_den;
eval_x(eval_num, pointsX[il, polX_num);
eval_x(eval_den, pointsX[i], polX_den);

Vec<zz_p> init = get_init(d2, eval_num, eval_den);
auto rp = get_elem(D,reverse(eval_den), init);
auto p_pow = power(ConstTerm(eval_den), D+1);

pointsY[i] = (rpxp_pow);
}
eval.interpolate(num, pointsY);
power(den, polX_den[0@], D+1);
b

void bivariate_lin_seq::get_entry_sq_ZZ
(Vec<ZZ> &entries_num,
Vec<ZZ> &entries_den,



Asymptotic Transition For Our Example

42507 =50 12:50°+50, 50°1 (- ) for ¢ = —10...10

2 o o & o o o o o
O
1.5 1 o
1 <
o 0.5
o l
PaN PaN O\ PaN PaN D O
¥ A4 A 4 A 4 Y T T
10 -5 0 5

|
10



A (GGaussian error curve!

1 xIr

:ﬁ—m

erf(x) e~V dy

1.5

4_2'502_t50-[:1:502+t50y502]F(33,y) for + — —10. .

10

|
10



Final term calculated (5501 bits)

9247112633865973228836926990252927536356128705864994391723960554842197828011919474188031
1840050067111278111780191338963196100213646176384616576895324325774311651633061291743511
1528172307641969079370616908774932526257748200792620808754002776970859314141249780545077
8103255913168249620154652817830950635794229671872993810041692625728133745324643626841293
0259564647442319740147252362804562844434857835125458940592134491474970770607230655221867
5366230681922963259368342680997668526477479402147170142640019971630836873779496410564406
5906486259309487970100334323892438718399499179010927377682177528243724037074218571133372
5542774057540268752388779449398881580396831894698931952530172625133010565323295147885324
9981002946718644699833713280981651736705195798719880743558954453380941098600643926040411
4496539256860182158422734589455124276305689168482910661467600355604435267838066675355087
9311733057968744439375914536704720736701280856507092158687171417876146691374315589264408
9749686947951486155583039909969190414112626413695581796272088309197088870117259664085189
7628170182782844835742032533698459985431963124199119073986596954833469830341670440503081
4142884824014900626562588911196406528928198509499728155987916438342256979170118456640402
7939362451483545842365315802379461162277246402661979338172430393316433538350972283167985
5945250295071620153743584846519241968287635621625773570912765784809250497309984552598716
2260107070515687329791339969156814011616512253084076327937423777720247529424544504161301
8998699781303328086317552377901540356213863616459034770127913986510273876354130346015132
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Transition in this Example

Integral manipulations show

dz

L 1 e—4nz2+2i\/ﬁtz
272V VR F (2, y) ~ I(E) = _-/R |

(N’ Z



Transition in this Example

Integral manipulations show

dz

s e/ . — 1 e—4n22+2i\/ﬁtz
N ]F(x,y)“’f(t)z—-/
R—1e€

(N’ Z

—t% /4

N

(01/0t)(t) = M/ p—dnz*+2iyntz g _ €
R—ze




General (Linear) 2D Transition

Theorem (Baryshnikov, M., Pemantle): This error function
appears more generally. For instance, suppose

G(z,y)
b1(z, y)la(x, y)

F(mvy) —

For “non-generic”’ directions where asymptotics are determined by
a singularity o there exist explicit constants A, B € R and v € R?

such that

O_nr—l—t nv {an—l—t nv} F(Z) ~ A . erf (Bt) 4+ A

Similar results in more variables when
denominator product of linear functions



Example #3

|
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1
I3 —
@) (1 -2z —y)(1 -z —2y)
rr = 9
V =
—4;0 0 ¥ —I5 | | | | 0 | | | | 5I

t
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CONCLUSTON



Conclusion

e ACSV developing rapidly, including increasingly powerful algorithms

e Diagonals are data structures for univariate sequences, but ACSV
also allows for treatment of truly multivariate questions

e Now that “generic” behaviour is starting to be figured out, time to
branch out to more pathological cases (using Morse theory, algebraic
geometry, ...)

e Perhaps most interesting, we can examine how behaviour transitions
between different uniform regimes

e Still many ways to generalize, and lots more to come!
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