Asymptotics of traces of paths in graded graphs.

Fedor Petrov

(St. Petersburg State University and St. Petersburg Department of V. A. Steklov Institute)

Asymptotic Algebraic Combinatorics Banff, Canada

March 15, 2019

- $V = V_0 \sqcup V_1 \sqcup \ldots$
- $E = E_0 \sqcup E_1 \sqcup \ldots, E_i = E(V_i, V_{i+1})$
- For $v \in V$, dim(v) is the number of paths from V_0 to v.
- Path space $\mathcal{P}(G)$: the space of infinite paths started at V_0
- Probabilistic measure μ on $\mathcal{P}(G)$ is *central*, if for each vertex $v \in G$ the probabilities to come to v using all possible paths from V_0 to v are mutually equal (to $1/\dim(v)$).

- $V = V_0 \sqcup V_1 \sqcup \ldots$
- $\blacksquare E = E_0 \sqcup E_1 \sqcup \ldots, E_i = E(V_i, V_{i+1})$
- For $v \in V$, dim(v) is the number of paths from V_0 to v.
- Path space $\mathcal{P}(G)$: the space of infinite paths started at V_0
- Probabilistic measure μ on $\mathcal{P}(G)$ is *central*, if for each vertex $v \in G$ the probabilities to come to v using all possible paths from V_0 to v are mutually equal (to $1/\dim(v)$).

- $V = V_0 \sqcup V_1 \sqcup \ldots$
- $E = E_0 \sqcup E_1 \sqcup \ldots, E_i = E(V_i, V_{i+1})$
- For $v \in V$, dim(v) is the number of paths from V_0 to v.
- Path space $\mathcal{P}(G)$: the space of infinite paths started at V_0
- Probabilistic measure μ on $\mathcal{P}(G)$ is *central*, if for each vertex $v \in G$ the probabilities to come to v using all possible paths from V_0 to v are mutually equal (to $1/\dim(v)$).

- $V = V_0 \sqcup V_1 \sqcup \ldots$
- $E = E_0 \sqcup E_1 \sqcup \ldots, E_i = E(V_i, V_{i+1})$
- For $v \in V$, dim(v) is the number of paths from V_0 to v.
- Path space $\mathcal{P}(G)$: the space of infinite paths started at V_0
- Probabilistic measure μ on $\mathcal{P}(G)$ is *central*, if for each vertex $v \in G$ the probabilities to come to v using all possible paths from V_0 to v are mutually equal (to $1/\dim(v)$).

- $V = V_0 \sqcup V_1 \sqcup \ldots$
- $E = E_0 \sqcup E_1 \sqcup \ldots, E_i = E(V_i, V_{i+1})$
- For $v \in V$, dim(v) is the number of paths from V_0 to v.
- Path space $\mathcal{P}(G)$: the space of infinite paths started at V_0
- Probabilistic measure μ on $\mathcal{P}(G)$ is *central*, if for each vertex $v \in G$ the probabilities to come to v using all possible paths from V_0 to v are mutually equal (to $1/\dim(v)$).

- n > m, $v \in V_n$. Paths to v induce the measure ν_v^m on V_m .
- irregularity function $irreg(v) : V \mapsto (0,1]$
- the measures ν_{ν}^{m} have a limit when irreg (ν) tends to 0.
- Suppose that for each fixed m the measures ν_v^m have a limit when $\operatorname{irreg}(v) \to 0$. Denote by Pl_m the limit probability measure on V_m .

Assume: the central measure μ on $\mathcal{P}(G)$ satisfies the regularity condition:

$$\liminf_{n} \mathbb{E} \operatorname{irreg}(v_n) = 0$$

- n > m, $v \in V_n$. Paths to v induce the measure ν_v^m on V_m .
- irregularity function $irreg(v): V \mapsto (0,1]$
- the measures ν_v^m have a limit when irreg(v) tends to 0.
- Suppose that for each fixed m the measures ν_v^m have a limit when $\operatorname{irreg}(v) \to 0$. Denote by Pl_m the limit probability measure on V_m .

Assume: the central measure μ on $\mathcal{P}(G)$ satisfies the regularity condition:

$$\liminf_n \mathbb{E}\operatorname{irreg}(v_n) = 0$$

- n > m, $v \in V_n$. Paths to v induce the measure ν_v^m on V_m .
- irregularity function $irreg(v): V \mapsto (0,1]$
- the measures ν_v^m have a limit when irreg(v) tends to 0.
- Suppose that for each fixed m the measures ν_v^m have a limit when $\operatorname{irreg}(v) \to 0$. Denote by Pl_m the limit probability measure on V_m .

Assume: the central measure μ on $\mathcal{P}(G)$ satisfies the regularity condition:

$$\lim_{n} \inf_{n} \mathbb{E} \operatorname{irreg}(v_{n}) = 0$$

- n > m, $v \in V_n$. Paths to v induce the measure ν_v^m on V_m .
- irregularity function $irreg(v): V \mapsto (0,1]$
- the measures ν_v^m have a limit when irreg(v) tends to 0.
- Suppose that for each fixed m the measures ν_{ν}^{m} have a limit when $\operatorname{irreg}(\nu) \to 0$. Denote by PI_{m} the limit probability measure on V_{m} .

Assume: the central measure μ on $\mathcal{P}(G)$ satisfies the regularity condition:

$$\liminf_n \mathbb{E}\operatorname{irreg}(v_n) = 0$$

- n > m, $v \in V_n$. Paths to v induce the measure ν_v^m on V_m .
- irregularity function $irreg(v): V \mapsto (0,1]$
- the measures ν_v^m have a limit when irreg(v) tends to 0.
- Suppose that for each fixed m the measures ν_v^m have a limit when $\operatorname{irreg}(v) \to 0$. Denote by Pl_m the limit probability measure on V_m .

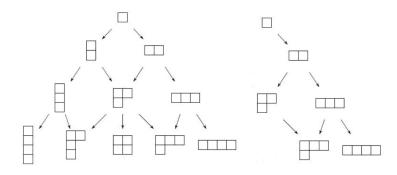
Assume: the central measure μ on $\mathcal{P}(G)$ satisfies the **regularity condition**:

$$\liminf_n \mathbb{E}\operatorname{irreg}(v_n) = 0$$

- n > m, $v \in V_n$. Paths to v induce the measure ν_v^m on V_m .
- irregularity function $irreg(v): V \mapsto (0,1]$
- the measures ν_v^m have a limit when irreg(v) tends to 0.
- Suppose that for each fixed m the measures ν_v^m have a limit when $\operatorname{irreg}(v) \to 0$. Denote by Pl_m the limit probability measure on V_m .

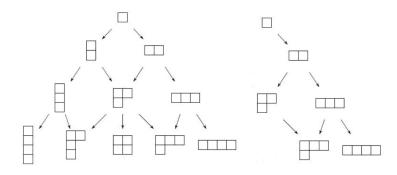
Assume: the central measure μ on $\mathcal{P}(G)$ satisfies the **regularity condition**:

$$\liminf_n \mathbb{E}\operatorname{irreg}(v_n) = 0$$



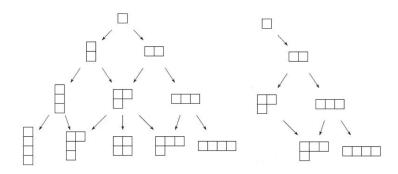
$$n = |\lambda|, \ell(\lambda)$$
=the number of rows

Young:
$$PI(\lambda) = \frac{\dim^2(\lambda)}{n!}$$
. Schur: $PI(\lambda) = 2^{n-\ell(\lambda)} \frac{\dim^2(\lambda)}{n!}$



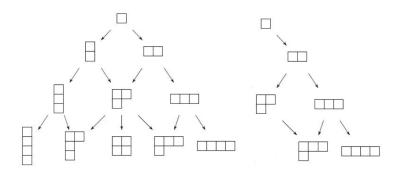
$$n = |\lambda|, \ell(\lambda)$$
=the number of rows

Young:
$$PI(\lambda) = \frac{\dim^2(\lambda)}{n!}$$
. Schur: $PI(\lambda) = 2^{n-\ell(\lambda)} \frac{\dim^2(\lambda)}{n!}$



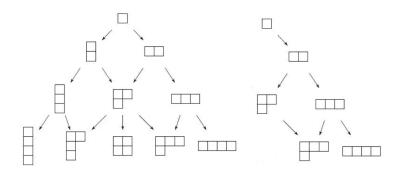
 $n = |\lambda|$, $\ell(\lambda)$ =the number of rows

Young:
$$PI(\lambda) = \frac{\dim^2(\lambda)}{n!}$$
. Schur: $PI(\lambda) = 2^{n-\ell(\lambda)} \frac{\dim^2(\lambda)}{n!}$



$$n = |\lambda|$$
, $\ell(\lambda)$ =the number of rows

Young:
$$PI(\lambda) = \frac{\dim^2(\lambda)}{n!}$$
. Schur: $PI(\lambda) = 2^{n-\ell(\lambda)} \frac{\dim^2(\lambda)}{n!}$



$$n = |\lambda|$$
, $\ell(\lambda)$ =the number of rows

Young:
$$PI(\lambda) = \frac{\dim^2(\lambda)}{n!}$$
. Schur: $PI(\lambda) = 2^{n-\ell(\lambda)} \frac{\dim^2(\lambda)}{n!}$

- \blacksquare μ, λ Young diagrams.
- lacktriangle dim $(\lambda : \mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant i, j \leqslant k};$ $b_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant l, j \leqslant k}.$
- Feit formula:

$$\dim(\lambda:\mu) = \frac{(|\lambda| - |\mu|)!}{\prod n_i!} b_{\mu}(n_1,\ldots,n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < i} (n_i - n_i)$$
 hook length formula

- μ, λ Young diagrams.
- lacktriangle dim $(\lambda : \mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant i, j \leqslant k};$ $b_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant l, j \leqslant k}.$
- Feit formula:

$$\dim(\lambda:\mu) = \frac{(|\lambda| - |\mu|)!}{\prod n_i!} b_{\mu}(n_1, \dots, n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < i} (n_i - n_i)$$
 hook length formula

- μ, λ Young diagrams.
- lacksquare dim $(\lambda:\mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_{1},...,x_{k}) = \det(x_{i}^{m_{j}})_{1 \leq i,j \leq k};$ $b_{\mu}(x_{1},...,x_{k}) = \det(x_{i}^{m_{j}})_{1 \leq l,j \leq k}.$
- Feit formula:

$$\dim(\lambda:\mu) = \frac{(|\lambda| - |\mu|)!}{\prod n_i!} b_{\mu}(n_1, \dots, n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < j} (n_j - n_i)$$
 hook length formula

- μ, λ Young diagrams.
- lacksquare dim $(\lambda:\mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_1,\ldots,x_k) = \det(x_i^{m_j})_{1 \leqslant i,j \leqslant k};$ $b_{\mu}(x_1,\ldots,x_k) = \det(x_i^{m_j})_{1 \leqslant i,j \leqslant k}.$
- Feit formula:

$$\dim(\lambda:\mu) = \frac{(|\lambda| - |\mu|)!}{\prod n_i!} b_{\mu}(n_1, \dots, n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < j} (n_j - n_i)$$
 hook length formula

- μ, λ Young diagrams.
- lacksquare dim $(\lambda:\mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_1,\ldots,x_k) = \det(x_i^{m_j})_{1 \leqslant i,j \leqslant k};$ $b_{\mu}(x_1,\ldots,x_k) = \det(x_i^{m_j})_{1 \leqslant i,j \leqslant k}.$
- Feit formula:

$$\dim(\lambda:\mu) = \frac{(|\lambda| - |\mu|)!}{\prod n_i!} b_{\mu}(n_1, \dots, n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < j} (n_j - n_i)$$
 hook length formula

- \blacksquare μ, λ Young diagrams.
- lacksquare dim $(\lambda:\mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_1,\ldots,x_k) = \det(x_i^{m_j})_{1\leqslant i,j\leqslant k};$ $b_{\mu}(x_1,\ldots,x_k) = \det(x_i^{m_j})_{1\leqslant i,j\leqslant k}.$
- Feit formula:

$$\dim(\lambda:\mu) = \frac{(|\lambda| - |\mu|)!}{\prod n_i!} b_{\mu}(n_1, \dots, n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < j} (n_j - n_i)$$
 hook length formula

- \blacksquare μ, λ Young diagrams.
- lacksquare dim $(\lambda:\mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant i, j \leqslant k};$ $b_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant l, j \leqslant k}.$
- Feit formula:

$$\dim(\lambda:\mu)=rac{(|\lambda|-|\mu|)!}{\prod n_i!}b_{\mu}(n_1,\ldots,n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < i} (n_i - n_i)$$
 hook length formula

- \blacksquare μ, λ Young diagrams.
- lacksquare dim $(\lambda:\mu)$ the number of paths from μ to λ
- $0 \le n_1 \le n_2 1 \le n_3 2 \le \cdots \le n_k (k-1)$; the lengths of the rows of the diagram λ , m_i 's for μ .
- $x^{\underline{n}} = x(x-1)...(x-n+1)$ for arbitrary x and natural n.
- $a_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant i, j \leqslant k};$ $b_{\mu}(x_1, \dots, x_k) = \det(x_i^{m_j})_{1 \leqslant l, j \leqslant k}.$
- Feit formula:

$$\dim(\lambda:\mu)=rac{(|\lambda|-|\mu|)!}{\prod n_i!}b_{\mu}(n_1,\ldots,n_k).$$

$$\dim(\lambda) = \frac{|\lambda|!}{\prod n_i!} \prod_{i < i} (n_i - n_i)$$
 hook length formula

■ Schur graph, $\lambda \in V_n$. The lengths of the rows:

$$\lambda_1 > \lambda_2 > \cdots > \lambda_k \geqslant 0.$$

$$\dim(\lambda) = \prod_{i < i} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \cdot \frac{n!}{\prod \lambda_i!}$$
 shifted hook length formula

- two vertices λ, μ of the Schur graph, $\lambda_i \geqslant \mu_i$ for all i.
- $\ell = \ell(\mu)$ the number of rows of μ , that is $\mu_{\ell} > 0$, $\mu_{\ell+1} = 0$.
- Okounkov polynomials in $k \ge \ell$ variables:

$$\psi_{\mu}(x_1,\ldots,x_k) = \frac{1}{(k-\ell)!} \operatorname{Sym} \left(\prod_{i \leq \ell} x_i^{\underline{\mu_i}} \prod_{i \leq \ell, i < j} \frac{x_i + x_j}{x_i - x_j} \right)$$

$$\frac{(n-m)!}{n!} \cdot \dim(\lambda) \cdot \psi_{\nu}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

■ Schur graph, $\lambda \in V_n$. The lengths of the rows: $\lambda_1 > \lambda_2 > \cdots > \lambda_k \ge 0$.

$$\dim(\lambda) = \prod_{i < i} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \cdot \frac{n!}{\prod \lambda_i!} \quad \text{shifted hook length formula}$$

- two vertices λ, μ of the Schur graph, $\lambda_i \geqslant \mu_i$ for all i.
- \bullet $\ell = \ell(\mu)$ the number of rows of μ , that is $\mu_{\ell} > 0$, $\mu_{\ell+1} = 0$.
- Okounkov polynomials in $k \ge \ell$ variables:

$$\psi_{\mu}(x_1,\ldots,x_k) = \frac{1}{(k-\ell)!} \operatorname{Sym} \left(\prod_{i \leq \ell} x_i^{\underline{\mu_i}} \prod_{i \leq \ell, i < j} \frac{x_i + x_j}{x_i - x_j} \right)$$

$$\frac{(n-m)!}{1} \cdot \dim(\lambda) \cdot \psi_{\nu}(\lambda_1, \lambda_2, \dots,).$$

■ Schur graph, $\lambda \in V_n$. The lengths of the rows: $\lambda_1 > \lambda_2 > \cdots > \lambda_k \ge 0$.

$$\dim(\lambda) = \prod_{i < i} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \cdot \frac{n!}{\prod \lambda_i!} \quad \text{shifted hook length formula}$$

- two vertices λ, μ of the Schur graph, $\lambda_i \geqslant \mu_i$ for all i.
- \bullet $\ell = \ell(\mu)$ the number of rows of μ , that is $\mu_{\ell} > 0$, $\mu_{\ell+1} = 0$.
- Okounkov polynomials in $k \ge \ell$ variables:

$$\psi_{\mu}(x_1,\ldots,x_k) = \frac{1}{(k-\ell)!} \operatorname{Sym} \left(\prod_{i \leq \ell} x_i \stackrel{\mu_i}{\prod} \prod_{i \leq \ell, i < j} \frac{x_i + x_j}{x_i - x_j} \right)$$

$$\frac{(n-m)!}{1}$$
 · dim (λ) · $\psi_{\nu}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

■ Schur graph, $\lambda \in V_n$. The lengths of the rows: $\lambda_1 > \lambda_2 > \cdots > \lambda_k \geqslant 0$.

$$\dim(\lambda) = \prod_{i < j} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \cdot \frac{n!}{\prod \lambda_i!}$$
 shifted hook length formula

- two vertices λ, μ of the Schur graph, $\lambda_i \geqslant \mu_i$ for all i.
- $\ell = \ell(\mu)$ the number of rows of μ , that is $\mu_{\ell} > 0$, $\mu_{\ell+1} = 0$.
- Okounkov polynomials in $k \ge \ell$ variables:

$$\psi_{\mu}(x_1,\ldots,x_k) = \frac{1}{(k-\ell)!} \operatorname{Sym} \left(\prod_{i \leq \ell} x_i^{\underline{\mu}_i} \prod_{i \leq \ell, i < j} \frac{x_i + x_j}{x_i - x_j} \right)$$

$$\frac{(n-m)!}{n!} \cdot \dim(\lambda) \cdot \psi_{\nu}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

■ Schur graph, $\lambda \in V_n$. The lengths of the rows: $\lambda_1 > \lambda_2 > \cdots > \lambda_k \geqslant 0$.

$$\dim(\lambda) = \prod_{i < i} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \cdot \frac{n!}{\prod \lambda_i!}$$
 shifted hook length formula

- two vertices λ, μ of the Schur graph, $\lambda_i \geqslant \mu_i$ for all i.
- $\ell = \ell(\mu)$ the number of rows of μ , that is $\mu_{\ell} > 0$, $\mu_{\ell+1} = 0$.
- Okounkov polynomials in $k \ge \ell$ variables:

$$\psi_{\mu}(x_1,\ldots,x_k) = \frac{1}{(k-\ell)!} \operatorname{Sym} \left(\prod_{i \leq \ell} x_i \frac{\mu_i}{\sum_{i \leq \ell, i < j} \frac{x_i + x_j}{x_i - x_j}} \right)$$

$$\frac{(n-m)!}{n!} \cdot \dim(\lambda) \cdot \psi_{\nu}(\lambda_1, \lambda_2, \dots, \lambda_n).$$

■ Schur graph, $\lambda \in V_n$. The lengths of the rows: $\lambda_1 > \lambda_2 > \cdots > \lambda_k \geqslant 0$.

$$\dim(\lambda) = \prod_{i < j} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \cdot \frac{n!}{\prod \lambda_i!}$$
 shifted hook length formula

- two vertices λ, μ of the Schur graph, $\lambda_i \geqslant \mu_i$ for all i.
- $\ell = \ell(\mu)$ the number of rows of μ , that is $\mu_{\ell} > 0$, $\mu_{\ell+1} = 0$.
- Okounkov polynomials in $k \ge \ell$ variables:

$$\psi_{\mu}(x_1,\ldots,x_k) = rac{1}{(k-\ell)!}\operatorname{\mathsf{Sym}}\left(\prod_{i\leq \ell} x_irac{\mu_i}{i\leq \ell,i< j}rac{x_i+x_j}{x_i-x_j}
ight)$$

$$\frac{(n-m)!}{n!} \cdot \dim(\lambda) \cdot \psi_{\nu}(\lambda_1, \lambda_2, \dots,).$$

■ Schur graph, $\lambda \in V_n$. The lengths of the rows: $\lambda_1 > \lambda_2 > \cdots > \lambda_k \geqslant 0$.

$$\dim(\lambda) = \prod_{i < j} \frac{\lambda_i - \lambda_j}{\lambda_i + \lambda_j} \cdot \frac{n!}{\prod \lambda_i!}$$
 shifted hook length formula

- two vertices λ, μ of the Schur graph, $\lambda_i \geqslant \mu_i$ for all i.
- $\ell = \ell(\mu)$ the number of rows of μ , that is $\mu_{\ell} > 0$, $\mu_{\ell+1} = 0$.
- Okounkov polynomials in $k \ge \ell$ variables:

$$\psi_{\mu}(x_1,\ldots,x_k) = rac{1}{(k-\ell)!}\operatorname{\mathsf{Sym}}\left(\prod_{i\leq \ell} x_i^{\mu_i}\prod_{i\leq \ell,i< j} rac{x_i+x_j}{x_i-x_j}
ight)$$

$$\frac{(n-m)!}{n!} \cdot \dim(\lambda) \cdot \psi_{\nu}(\lambda_1, \lambda_2, \dots,).$$

- Let D be a positive integer and $x_1, x_2, ..., x_n$ be non-negative numbers such that each of them does not exceed $D^{-1} \sum x_i$.
- \bullet e_k is the sum of products of k-tuples of these numbers (elementary symmetric polynomial). Then

$$k!e_k \geqslant D^{\underline{k}} \cdot D^{-k} \cdot \left(\sum x_i\right)^k.$$

 $T = (\sum x_i)^k - k!e_k$, then

$$T \leqslant \frac{k(k-1)}{2D - k(k-1)} e_k.$$

- Let D be a positive integer and $x_1, x_2, ..., x_n$ be non-negative numbers such that each of them does not exceed $D^{-1} \sum x_i$.
- e_k is the sum of products of k-tuples of these numbers (elementary symmetric polynomial). Then

$$k!e_k \geqslant D^{\underline{k}} \cdot D^{-k} \cdot \left(\sum x_i\right)^k.$$

 $T = (\sum x_i)^k - k!e_k$, then

$$T \leqslant \frac{k(k-1)}{2D - k(k-1)}e_k.$$

- Let D be a positive integer and $x_1, x_2, ..., x_n$ be non-negative numbers such that each of them does not exceed $D^{-1} \sum x_i$.
- e_k is the sum of products of k-tuples of these numbers (elementary symmetric polynomial). Then

$$k!e_k \geqslant D^{\underline{k}} \cdot D^{-k} \cdot \left(\sum x_i\right)^k.$$

 $T = (\sum x_i)^k - k!e_k$, then

$$T \leqslant \frac{k(k-1)}{2D - k(k-1)} e_k$$

- Let D be a positive integer and $x_1, x_2, ..., x_n$ be non-negative numbers such that each of them does not exceed $D^{-1} \sum x_i$.
- e_k is the sum of products of k-tuples of these numbers (elementary symmetric polynomial). Then

$$k!e_k \geqslant D^{\underline{k}} \cdot D^{-k} \cdot \left(\sum x_i\right)^k.$$

 $T = (\sum x_i)^k - k!e_k$, then

$$T\leqslant \frac{k(k-1)}{2D-k(k-1)}e_k.$$

Comparing symmetric polynomials

- Let D be a positive integer and $x_1, x_2, ..., x_n$ be non-negative numbers such that each of them does not exceed $D^{-1} \sum x_i$.
- e_k is the sum of products of k-tuples of these numbers (elementary symmetric polynomial). Then

$$k!e_k \geqslant D^{\underline{k}} \cdot D^{-k} \cdot \left(\sum x_i\right)^k.$$

 $T = (\sum x_i)^k - k!e_k$, then

$$T \leqslant \frac{k(k-1)}{2D-k(k-1)}e_k.$$

■ k fixed, D large, F — given symmetric polynomial. Asymptotics of $F(x_1,...)$ is defined by the coefficient of $[e_1]F$

Comparing symmetric polynomials

- Let D be a positive integer and $x_1, x_2, ..., x_n$ be non-negative numbers such that each of them does not exceed $D^{-1} \sum x_i$.
- e_k is the sum of products of k-tuples of these numbers (elementary symmetric polynomial). Then

$$k!e_k \geqslant D^{\underline{k}} \cdot D^{-k} \cdot \left(\sum x_i\right)^k.$$

 $T = (\sum x_i)^k - k!e_k$, then

$$T\leqslant \frac{k(k-1)}{2D-k(k-1)}e_k.$$

• k fixed, D large, F — given symmetric polynomial. Asymptotics of $F(x_1,...)$ is defined by the coefficient of $[e_1]F$

•
$$x_1, ..., x_n$$
; $V = V(x_1, ..., x_n) = \prod_{i < i} (x_i - x_i)$

$$deg P(x_1, \dots, x_n) = \binom{n}{2} = deg V$$

Sym
$$\frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) \cdot V$$

$$deg P(x_1,\ldots,x_n) = k + \binom{n}{2}, \ 0 \leqslant k \leqslant n$$

$$[x_1 \dots x_k] \operatorname{Sym} \frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) (x_1 + \dots + x_n)^k \cdot V$$

•
$$x_1, ..., x_n$$
; $V = V(x_1, ..., x_n) = \prod_{i < i} (x_i - x_i)$

$$\bullet \deg P(x_1,\ldots,x_n) = \binom{n}{2} = \deg V$$

$$\operatorname{Sym} \frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) \cdot V$$

$$deg P(x_1,\ldots,x_n) = k + \binom{n}{2}, \ 0 \leqslant k \leqslant n$$

$$[x_1 \dots x_k] \operatorname{Sym} \frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) (x_1 + \dots + x_n)^k \cdot V$$

•
$$x_1, ..., x_n$$
; $V = V(x_1, ..., x_n) = \prod_{i < j} (x_j - x_i)$

$$\bullet \deg P(x_1,\ldots,x_n) = \binom{n}{2} = \deg V$$

$$\operatorname{Sym} \frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) \cdot V$$

$$deg P(x_1,\ldots,x_n) = k + \binom{n}{2}, \ 0 \leqslant k \leqslant n$$

$$[x_1 \dots x_k]$$
 Sym $\frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) (x_1 + \dots + x_n)^k \cdot V$

- $x_1, ..., x_n$; $V = V(x_1, ..., x_n) = \prod_{i < j} (x_j x_i)$
- $\bullet \deg P(x_1,\ldots,x_n) = \binom{n}{2} = \deg V$

$$\operatorname{\mathsf{Sym}} \frac{P}{V} = [1] \, P\left(\frac{1}{\mathsf{x}_1}, \frac{1}{\mathsf{x}_2}, \dots, \frac{1}{\mathsf{x}_n}\right) \cdot V$$

■ deg $P(x_1,...,x_n) = k + \binom{n}{2}$, $0 \le k \le n$

$$[x_1 \dots x_k]$$
 Sym $\frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) (x_1 + \dots + x_n)^k \cdot V$

•
$$x_1, ..., x_n$$
; $V = V(x_1, ..., x_n) = \prod_{i < j} (x_j - x_i)$

$$deg P(x_1,\ldots,x_n) = \binom{n}{2} = \deg V$$

$$\operatorname{\mathsf{Sym}} \frac{P}{V} = [1] \, P\left(\frac{1}{\mathsf{x}_1}, \frac{1}{\mathsf{x}_2}, \dots, \frac{1}{\mathsf{x}_n}\right) \cdot V$$

 $\bullet \deg P(x_1,\ldots,x_n)=k+\binom{n}{2},\ 0\leqslant k\leqslant n$

$$[x_1 \dots x_k]$$
 Sym $\frac{P}{V} = [1] P\left(\frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}\right) (x_1 + \dots + x_n)^k \cdot V$

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leq m_1 + m_2 + \cdots + m_n$, where $m_i \geq 0$ $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod_{m \in I}} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,\ldots,x_n)\leqslant m_1+m_2+\cdots+m_n$, where $m_i\geqslant 0$.

$$C = [x_1^{m_1} \dots x_n^{m_n}] F.$$

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod_{m \in I}} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1, ..., x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1} ... x_n^{m_n}] F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1, ..., x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1} ... x_n^{m_n}] F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1 , A_2 , ..., A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \ldots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \dots, m_n)$$
. hook length formula for free

Alon's Combinatorial Nullstellensatz as Formula

 $\deg F(x_1,...,x_n) \leqslant m_1 + m_2 + \cdots + m_n$, where $m_i \geqslant 0$. $C = [x_1^{m_1}...x_n^{m_n}]F$.

Let A_1, A_2, \ldots, A_n be arbitrary subsets of the ground field F, $|A_i| = m_i + 1$ for all i.

$$C = \sum_{\alpha_i \in A_i} \frac{F(\alpha_1, \dots, \alpha_n)}{\prod_{i=1}^n \prod_{a \in A_i \setminus \alpha_i} (\alpha_i - a)}.$$

$$C = \frac{m!}{\prod m_i!} V(m_1, \dots, m_n)$$
. hook length formula for free

$$|\lambda| = n, |\mu| = m, \mu$$
 fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim \frac{\dim(\lambda)\dim(\mu)}{m!}. \quad \dim(\lambda:\mu) = \frac{(n-m)!}{\prod n_!!}b_{\mu}(n_1,\ldots,n_k).$$

$$rac{\mathsf{dim}(\lambda:\mu)}{\mathsf{dim}(\lambda)} \sim n^{-m} rac{b_{\mu}(n_1,\ldots,n_k)}{V(n_1,\ldots,n_k)} \sim rac{1}{m!} [x_1\ldots x_m] s_{\mu} = rac{\mathsf{dim}(\mu)}{m!}$$

Young graph is "self-dual": the measure induced on V_m by paths from V_0 and from regular part of V_{∞} coincide.

$$|\lambda|=n, |\mu|=m, \ \mu$$
 fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim \frac{\dim(\lambda)\dim(\mu)}{m!}. \quad \dim(\lambda:\mu) = \frac{(n-m)!}{\prod n_i!}b_{\mu}(n_1,\ldots,n_k).$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \frac{b_{\mu}(n_1,\ldots,n_k)}{V(n_1,\ldots,n_k)} \sim \frac{1}{m!} [x_1\ldots x_m] s_{\mu} = \frac{\dim(\mu)}{m!}$$

Young graph is "self-dual": the measure induced on V_m by paths from V_0 and from regular part of V_{∞} coincide.

$$|\lambda|=n, |\mu|=m, \ \mu \ {
m fixed}, \ \lambda \ {
m large \ and \ regular}.$$
 Then
$$\dim(\lambda:\mu)\sim \frac{\dim(\lambda)\dim(\mu)}{m!}. \quad \dim(\lambda:\mu)=\frac{(n-m)!}{\prod n!}b_{\mu}(n_1,\ldots,n_k).$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \frac{b_{\mu}(n_1,\ldots,n_k)}{V(n_1,\ldots,n_k)} \sim \frac{1}{m!} [x_1\ldots x_m] s_{\mu} = \frac{\dim(\mu)}{m!}$$

Young graph is "self-dual": the measure induced on V_m by paths from V_0 and from regular part of V_{∞} coincide.

$$|\lambda| = n, |\mu| = m, \ \mu \ \text{fixed}, \ \lambda \ \text{large and regular}.$$
 Then
$$\dim(\lambda : \mu) \sim \frac{\dim(\lambda)\dim(\mu)}{m!}. \quad \dim(\lambda : \mu) = \frac{(n-m)!}{\prod n!} b_{\mu}(n_1, \dots, n_k).$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \frac{b_{\mu}(n_1,\ldots,n_k)}{V(n_1,\ldots,n_k)} \sim \frac{1}{m!} [x_1\ldots x_m] s_{\mu} = \frac{\dim(\mu)}{m!}$$

Young graph is "self-dual": the measure induced on V_m by paths from V_0 and from regular part of V_∞ coincide.

$$|\lambda|=n, |\mu|=m, \ \mu$$
 fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim \frac{\dim(\lambda)\dim(\mu)}{m!}. \quad \dim(\lambda:\mu) = \frac{(n-m)!}{\prod n_i!}b_{\mu}(n_1,\ldots,n_k).$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \frac{b_{\mu}(n_1,\ldots,n_k)}{V(n_1,\ldots,n_k)} \sim \frac{1}{m!} [x_1\ldots x_m] s_{\mu} = \frac{\dim(\mu)}{m!}$$

Young graph is "self-dual": the measure induced on V_m by paths from V_0 and from regular part of V_∞ coincide.

$$|\lambda|=n, |\mu|=m, \; \ell(\mu)=\ell, \; \mu$$
 fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim 2^{m-\ell(\mu)} \frac{\dim(\lambda)\dim(\mu)}{m!}$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \psi_{\mu}(\lambda_1,\lambda_2,\ldots,\lambda_k)$$

$$[x_1x_2\ldots x_m]\psi_\mu(x_1,\ldots)=2^{m-\ell}\dim x$$

$$\psi_{\mu}(x_1,\ldots,x_n)=\operatorname{Sym} F(x_1,\ldots,x_n)/V(x_1,\ldots,x_n),$$
 where

 $|\lambda| = n, |\mu| = m, \ell(\mu) = \ell, \mu$ fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim 2^{m-\ell(\mu)} \frac{\dim(\lambda)\dim(\mu)}{m!}$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \psi_{\mu}(\lambda_1,\lambda_2,\ldots,\lambda_k)$$

$$[x_1x_2\ldots x_m]\psi_{\iota\iota}(x_1,\ldots)=2^{m-\ell}\dim\mu.$$

$$\psi_u(x_1,...,x_n) = \text{Sym } F(x_1,...,x_n)/V(x_1,...,x_n),$$
 where

$$F(x_1,\ldots,x_n) = \frac{1}{(n-\ell)!} \prod_{i \leqslant \ell} x_i \frac{\mu_i}{\sum_{i \leqslant \ell,i < j} (x_i + x_j)} \prod_{\substack{\ell < i < j \\ \ell > i \geqslant \ell}} (x_i - x_j),$$

$$|\lambda| = n, |\mu| = m, \ell(\mu) = \ell, \mu$$
 fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim 2^{m-\ell(\mu)} \frac{\dim(\lambda)\dim(\mu)}{m!}$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \psi_{\mu}(\lambda_1,\lambda_2,\ldots,\lambda_k)$$

$$[x_1x_2...x_m]\psi_{\mu}(x_1,...)=2^{m-\ell}\dim \mu.$$

$$\psi_u(x_1,\ldots,x_n) = \operatorname{Sym} F(x_1,\ldots,x_n)/V(x_1,\ldots,x_n),$$
 where

$$F(x_1,\ldots,x_n) = \frac{1}{(n-\ell)!} \prod_{i \leqslant \ell} x_i \stackrel{\mu_i}{=} \prod_{i \leqslant \ell,i < j} (x_i + x_j) \prod_{\ell < i < j} (x_i - x_j),$$

$$|\lambda|=n, |\mu|=m, \ \ell(\mu)=\ell, \ \mu$$
 fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim 2^{m-\ell(\mu)} \frac{\dim(\lambda)\dim(\mu)}{m!}$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \psi_{\mu}(\lambda_1,\lambda_2,\ldots,\lambda_k)$$

$$[x_1x_2...x_m]\psi_{\mu}(x_1,...)=2^{m-\ell}\dim \mu.$$

$$\psi_{\mu}(x_1,\ldots,x_n) = \operatorname{Sym} F(x_1,\ldots,x_n)/V(x_1,\ldots,x_n),$$
 where

$$F(x_1,\ldots,x_n) = \frac{1}{(n-\ell)!} \prod_{i \leqslant \ell} x_i \stackrel{\mu_i}{=} \prod_{i \leqslant \ell,i < j} (x_i + x_j) \prod_{\ell < i < j} (x_i - x_j),$$

$$|\lambda|=n, |\mu|=m, \ \ell(\mu)=\ell, \ \mu$$
 fixed, λ large and regular. Then

$$\dim(\lambda:\mu) \sim 2^{m-\ell(\mu)} \frac{\dim(\lambda)\dim(\mu)}{m!}$$

$$\frac{\dim(\lambda:\mu)}{\dim(\lambda)} \sim n^{-m} \psi_{\mu}(\lambda_1,\lambda_2,\ldots,\lambda_k)$$

$$[x_1x_2...x_m]\psi_{\mu}(x_1,...)=2^{m-\ell}\dim \mu.$$

$$\psi_{\mu}(x_1,\ldots,x_n) = \operatorname{Sym} F(x_1,\ldots,x_n)/V(x_1,\ldots,x_n),$$
 where

$$F(x_1,\ldots,x_n) = \frac{1}{(n-\ell)!} \prod_{i \leqslant \ell} x_i \frac{\mu_i}{\prod_{i \leqslant \ell,i < j} (x_i + x_j)} \prod_{\substack{\ell < i < j \\ k \neq j > k \neq k \neq k}} (x_i - x_j),$$

Main questions

- 1) We have algebraically motivated \dim^2 -Plancherel measure for r-differential modular lattices. How is it related to analytic approach?
- 2) To prove the convergence by analysis/probability tools in general setting, without all these formulae.

Thank you for your attention!

Main questions

- 1) We have algebraically motivated \dim^2 -Plancherel measure for r-differential modular lattices. How is it related to analytic approach?
- 2) To prove the convergence by analysis/probability tools in general setting, without all these formulae.

Thank you for your attention!

Main questions

- 1) We have algebraically motivated \dim^2 -Plancherel measure for r-differential modular lattices. How is it related to analytic approach?
- 2) To prove the convergence by analysis/probability tools in general setting, without all these formulae.

Thank you for your attention!