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V=Wwuviu...

E=EUEU..., E=EWV, Vi)

For v € V, dim(v) is the number of paths from V4 to v.
Path space P(G): the space of infinite paths started at Vj

Probabilistic measure 1 on P(G) is central, if for each vertex
v € G the probabilities to come to v using all possible paths
from Vp to v are mutually equal (to 1/dim(v)).
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Plancherel measure: Vershik's approach

m n>m, v <V, Pathsto v induce the measure v on V,,.
m irregularity function irreg(v) : V — (0,1]
m the measures v]" have a limit when irreg(v) tends to 0.

m Suppose that for each fixed m the measures v have a limit
when irreg(v) — 0. Denote by Pl the limit probability
measure on V,,.

Assume: the central measure p on P(G) satisfies the
regularity condition:

liminfEirreg(v,) =0

Then for every m =0,1,... the measure induced by pu at the
level V,,, coincides with Pl,,.
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®m i, A — Young diagrams.
m dim(A : i) the number of paths from p to A
mO0<nm<m—1<n—2< - < ng—(k—1); the lengths of
the rows of the diagram X\, m;'s for pu.
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moa,(x1,. .., xk) = det(x ) 1<i jeki
bu(Xla . ,Xk) = det(Xl*)lgl,Jgk
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Dimensions formulae: Schur graph
m Schur graph, A € V,. The lengths of the rows:
AL > A > > A >0

Ai — Aj !
dim(\) = E )\: - )\j . Hn)\i! shifted hook length formula
m two vertices A, u of the Schur graph, \; > p; for all J.

m /= {(p) the number of rows of pu, that is py > 0, g1 = 0.

m Okounkov polynomials in k > ¢ variables:

1 , X;j + X;
=—— S | | i | | o
m The number of paths from u to A equals

(=M im0 - o Ao ).

nl
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Comparing symmetric polynomials

m Let D be a positive integer and xj, x2, . . ., X, be non-negative
numbers such that each of them does not exceed D13 x;.

m e is the sum of products of k-tuples of these numbers
(elementary symmetric polynomial). Then

k
Kle, > DX. D (Zx,-) .

m T = (> x)<— kle, then

k(k — 1)
T< ——"=ek
2D — k(k — 1)

m k fixed, D large, F — given symmetric polynomial.
Asymptotics of F(xi,...) is defined by the coefficient of [e;]F
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Coefficients of symmetrizations

Bxg,.. X V=V(x,...,xp) = Hi<j(Xj_Xi)
m deg P(x1,...,xp) = (5) = deg V

p
Symz[l]P(1 l, 1> %
X1 X2 Xn
m deg P(xq,. .., ):k+('27) 0<k<n

[x1 Xk]SymB [1]P( ,...7X>(X1+~~+X,,)k«v
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Alon’s Combinatorial Nullstellensatz as Formula

deg F(x1,...,xn) < my+ my+ ---+ mp, where m; > 0.
= [q™ . xF.
Let A1, A, ..., A, be arbitrary subsets of the ground field F,

‘A,‘ =m; + 1 for all /.

C_ZH F(ag,...,an)

a;eA; L= 1H36A\a(a’_a)

Example. F = (xg+ - +x,)" -V, > mj = m+ (5). Choose
Ai={0,1,...,m;}, replace X" to (X — (g))m Only for a; = mj
you get F # 0, thus

m!

€= Hm,-!

V(mi,...,my). hook length formula for free
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|A| = n, || = m, p fixed, A large and regular. Then

dim(\) dim(u)
m! '

(n—m)!

dim(A @ p) ~ dim(A @ p) = Wb“(nl’ ooy NK).

dim(A @ ) —mbu(m, ) 1 _dim(p)
dim(\) " V(ni,...,nk) ml - xmls = m!

Young graph is “self-dual”: the measure induced on V), by paths
from Vjy and from regular part of V. coincide.
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Al = n, |u| = m, £(n) = ¢, p fixed, A large and regular. Then

dim() : ) ~ 2m- £ dimA) dim(p)

m!

dim(\ : p)
dim(\)

~ nfml/Ju()\l, Aoy, >\k)

Daxz .. Xmltu(xi, ... ) = 2™ “dim p.

Yu(xt, ..., xn) =Sym F(x1,...,xn)/V(x1,...,%a), where

F(xl,...,x,,):m_lg)!Hx,*“ H (xi + xj) H (xi — ),

i<t i<Li<j 0<i<j
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Thank you for your attention!



