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Problem statement

• K arms/projects and a retirement option.

• Arms are independent. Expected reward θi is constant but

unknown; known variance σSi, i = 1, · · · , K.

• If arm i is selected in period i, receive reward Yi ∼ f(· | θi). If

the retirement option is chosen, a one-off endowment M is

paid and the process ends.

• Find a scheduling policy that maximizes expected discounted

reward over an infinite horizon

Gittins (1979), Whittle (1980)
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Dynamic Programming

Let ρi(θi) denote the prior on the unknown mean θi for arm i and

µi(ρ
i) denote the posterior mean.

DP equations for the bandit problem:

V (ρ, M) = max
{
M, max

i=1,··· ,K
µi(ρ

i) + αEρi
[
V (ρi1, ρ

−i)
∣∣∣ ρ0 = ρ

]}

Challenging to solve because of the infinite dimensional state

space (K-dimensional joint distribution).
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Gittins index and Optimal Policy

Consider a one-armed problem with retirement for each arm:

V i(ρi, m) = max
{
m, µi(ρ

i) + αEρiV
i(ρi1, m)

}

GI for arm i is the smallest retirement endowment m such that

the decision maker is indifferent between stopping and continuing

Gi(ρi) = inf
{
m : m = µ(ρi) + αEρiV (ρi1, m)

}

Optimal policy: If Gi(ρi) ≤M for every arm, then retire; else play

the arm with the largest Gittins index.

K-armed problem → K independent 1-armed bandit problems
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Comments

• The Gittins index measures the value of each arm

– Optimal policy ≡ play the most valuable arm

– What determines the value of a project?

– Exploration vs Exploitation

• Gittins index is difficult to compute

– Solve a fixed point equation that involves the value func-
tion of a DP with an infinite dimensional state space.

• Thompson sampling

– “undiscounted”;

– ignores quality of signal/speed of learning & time horizon
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Overview

• Decomposition of the Gittins index into expected value and

an “exploration boost”

– time horizon and quality of the signal

• Approximating the Gittins index

– Approximation of posterior dynamics

– Approximate DP ⇒ Gittins index

– Accounts for speed of learning and time horizon
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Gittins Index

The smallest retirement endowment M such that the decision

maker is indifferent between stopping and continuing

G(ρ) = inf
{
M : M = µ(ρ) + αEρV (ρ1, M)

}

This fixed point equation is involves the value function of the

one-armed problem

V (ρ, M) = max
{
M, µ(ρ) + αEρV (ρ1, M)

}

Stochastic control problem where the posterior is the state.
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Updating the state equations (prior)

Start with the prior ρt(θ).

Given time t observation Y , update the prior via Bayes rule:

ρt+1(θ) =
ρt(θ)f(Y | θ)∫
ρt(θ)f(Y | θ)dθ

The information content of this signal ∼ standard deviation σS
⇒ determines the speed of learning/amount prior evolves.
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Information limits σS = 0, ∞

“No learning” limit (σS =∞)

• signal has “infinite noise”

• Exploration gives no information about the mean reward θ.

“Perfect learning” limit (σS = 0)

• signal has “zero noise”

• Exploration is very informative and we learn the mean reward
after playing once.

Exploration is easy in these limits and should provide lower and
upper bounds on the Gittins index.
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“No learning” limit (σS =∞)

• “infinite noise” ⇒ posterior does not evolve.

• DP equations

VNL(ρ,M) = max
{
M, µ(ρ) + αVNL(ρ, M)

}

• Gittins index

GNL(ρ) =
µ(ρ)

1− α

Value of an arm when there is no learning is its expected reward.

There is no exploration boost since exploration has no value.
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“Perfect learning” limit (σS = 0)

• Zero noise in the signal ⇒ learn θ after one observation.

• DP equations

VPL(ρ) = max
{
M, µ(ρ) + αEρmax

[
M,

θ

1− α

]}

• Gittins index:

GPL(ρ) =
µ(ρ)

1− α
+ αEρmax

[
0,

θ

1− α
−GPL(ρ)

]

Value of the arm is the expected reward plus a “boost”.

Size of the boost depends on the discount factor and the variance

of the prior on the mean θ.
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The Gittins index lies between these limits

GNL ≤ G ≤ GPL

Difference between these limits captures the impact of learning

rate and time horizon on the “value” of an arm

GPL(ρ)−GNL(ρ) = αEρ
{

max
[
0,

θ

1− α
−GPL(ρ)

]}

The difference can be large.
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G(ρ) =
µ(ρ)

1− α
+

Boost︷ ︸︸ ︷
αEρmax

[
0,

θ

1− α
−GPL(ρ)

]
−
[
GPL(ρ)−G(ρ)

]

The boost is determined by

• the maximum upside potential from PL (2nd term), and

• signal quality (3rd term).

The boost disappears when signals are noninformative (σS →∞)

or the horizon is short and there is insufficient time to learn

sufficiently well and to profit from learning (α→ 0)

The first two terms are easy to compute and are independent of

signal quality. The 3rd term depends on posterior dynamics and

must be computed using DP.
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Example: Suppose that

• prior mean = 0; prior sd = 2.5

• signal/reward sd = 15

Expected reward (under the prior) is 0.

Suppose a retirement endowment equivalent to an annuity of

m = 2 per year is on the table.

The prior probability of the expected reward exceeding 4 is about

0.05, so θ = 4 is an optimistic scenario.
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Optimistic case (θ = 4)

16



Intermediate case (θ = 0)
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Worst-case scenario (θ = −4)
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Given sufficient time, we can learn how θ compares to the retire-

ment annuity.

e.g. we can learn within about 1000 periods when m = 2 .

Whether we retire or continue at T = 0 depends on the potential

upside (e.g. θ > 2 with probability 0.2), the time to profit once

we have learned θ, and potential losses while learning

⇒ affects Gittins index (indifference level)
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Impact of the discount factor

Discount factor implies a (soft) time horizon.

• time horizon ∼ Geometric(1− α)

⇒ expected time horizon T = 1/(1− α).

Example:

α = 0.98 ⇐⇒ T = 1/(1− α) = 50 years

α = 0.95 ⇐⇒ T = 1/(1− α) = 20 years

α = 0.9 ⇐⇒ T = 1/(1− α) = 10 years

We require α = 0.9997 for T = 3000.
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• The Gittins index (exploration boost) is determined by the

(effective) time horizon and the learning rate.

• Gittins index is difficult to compute because it depends on

the value function of a DP with an infinite dimensional state

space

Tractable approach to approximately compute the Gittins index.

Approx. of posterior dynamics that accounts for learning rate.
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Approximating the Gittins index

The Gittins index is the solution of a fixed point equation

G(ρ) = inf
{
M : M = µ(ρ) + αEρV (ρ1, M)

}
where

V (ρ, M) = max
{
M, µ(ρ) + αEρV (ρ1, M)

}

= sup
κ≥0

Eρ

κ−1∑
t=0

αtµ(ρt) + ακM
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Bayesian Central Limit Theorem: Given that the mean is θ∗

1. The posterior mean µ(ρt) converges to θ∗

2. The posterior variance is O(n−1)

3. The posterior is asymptotically normal

⇒ fluid approximation of the conditional posterior dynamics which

reduces complexity while still capturing asymptotic consistency

and the learning rate.
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Posterior

ρn(θ) ∼ N
(
τPµ(ρ0) + nτSŶn

nτS + τP
, nτS + τP

)
where

Ŷn =
Y1 + · · ·+ Ŷn

n

θ-conditional fluid approx. of expected reward under posterior

ρ̂n(θ) ∼ N
(
τPµ(ρ0) + nτSθ

nτS + τP
, nτS + τP

)

Eρ0

(
µ(ρt+1)

∣∣∣θ) =
τPµ(ρ0) + nτSθ

nτS + τP
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θ-conditional fluid approximation of the cost-to-go
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θ-conditional fluid approximation of the cost-to-go

Approximate the cost-to-go

Eρ0V (ρ1, M) = Eρ0

Eρ0

[ κ∗−1∑
t=0

αtµ(ρt+1) + ακ
∗
M

∣∣∣∣ θ]


with a θ-conditional fluid approximation

Eρ0V
F (θ, M) = Eρ0

Eρ0

[ κ∗−1∑
t=0

αtEρ0

[
µ(ρt+1)

∣∣∣ θ]+ ακ
∗
M

∣∣∣∣ θ]


Conditional on θ, the (deterministic) trajectory Eρ0

[
µ(ρt+1)

∣∣∣ θ]
approximates µ(ρt+1).
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It can be shown that∣∣∣∣Eρ0V (ρ1, M)− Eρ0V
F (θ, M)

∣∣∣∣ ≤ Eτ [∆(τ)]

1− α
where κ∗ is the optimal stopping time associated with V (ρ0, M),

∆(t) = Eρ0

[∣∣∣∣µ(ρt)− Eρ0

[
µ(ρt)

∣∣∣θ]∣∣∣∣] , t ≥ 1,

and τ is a geometric random variable with success probability

1− α that is independent of observations.

Eτ [∆(τ)] is the expected error in the fluid approximation at the

time horizon of the problem.
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Gittins index

G(ρ) = inf
{
M : M = µ(ρ) + αEρV (ρ1, M)

}
Approximate Gittins index

GF (ρ) = inf
{
M : M = µ(ρ) + αEρV F (θ, M)

}

Bound on approximation error:

|G(ρ)−GF (ρ)| ≤ α
Eτ [∆(τ)]

1− α

Unfortunately, EρV F (θ, M) is still not easy to compute since it

depends on the optimal stopping time of the original problem.
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θ-conditional fluid approximation of the cost-to-go
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Enlarging the filtration:

V F (θ, M) = Eρ0

{ κ∗−1∑
t=0

αtEρ0

(
µ(ρt+1)

∣∣∣∣θ)+ ακ
∗
M

∣∣∣∣ θ}

≤ sup
κ≥0

{ κ−1∑
t=0

αtEρ0

(
µ(ρt+1)

∣∣∣∣θ)+ ακM

}
︸ ︷︷ ︸

J(θ,M)

e.g. when adopting the normal approximation

Eρ0

(
µ(ρt+1)

∣∣∣θ) =
τPµ(ρ0) + tτSθ

tτS + τP

35



Approximate Gittins Index

G̃(ρ) = inf
{
M : µ(ρ) + αEρ [J(θ, M)] = M

}

J(θ, M) can be computed explicitly

e.g. In the case when θ > M(1−α) for the normal approximation

J(θ, M) =
1

1− α
max

{
M(1− α), Eτ

[
µ(ρ)

τP
τP + τSτ

+ θ
τ

τP + τSτ

] }

Approximate CTG by sampling θ and approx. the expectation

Sidestep recursion over an infinite-dimensional state space.
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Asymptotic optimality

When the signal sd σS converges to 0 or ∞, the approximate

Gittins index G̃(ρ) approaches the true Gittins index G(ρ).

The limiting cases also correspond to the Gittins index in the

“no learning” and “perfect learning” limits.
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Diffusion approximation approach of Brezzi & Lai (2002).
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Mixture model

Ryzhov, Powell, Frazier (2012)
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Summary

• Gittins index is the value of an arm in a Bayesian bandit

– Prior, rate of learning, and discount factor (time horizon)

• Tight bounds on the Gittins index that are determined by

quality of information

• Approximating posterior dynamics
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