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Problem statement

• K arms/projects and a retirement option.

• Arms are independent. Expected reward θi is constant but

unknown; known variance σSi, i = 1, · · · , K.

• If arm i is selected in period i, receive reward Yi ∼ f(· | θi). If

the retirement option is chosen, a one-off endowment M is

paid and the process ends.

• Find a scheduling policy that maximizes expected discounted

reward over an infinite horizon

Gittins (1979), Whittle (1980)
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Dynamic Programming

Let ρi(θi) denote the prior on the unknown mean θi for arm i and

µi(ρ
i) denote the posterior mean.

DP equations for the bandit problem:

V (ρ, M) = max
{
M, max

i=1,··· ,K
µi(ρ

i) + αEρi
[
V (ρi1, ρ

−i)
∣∣∣ ρ0 = ρ

]}

Challenging to solve because of the infinite dimensional state

space (K-dimensional joint distribution).
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Gittins index and Optimal Policy

Consider a one-armed problem with retirement for each arm:

V i(ρi, m) = max
{
m, µi(ρ

i) + αEρiV
i(ρi1, m)

}

GI for arm i is the smallest retirement endowment m such that

the decision maker is indifferent between stopping and continuing

Gi(ρi) = inf
{
m : m = µ(ρi) + αEρiV (ρi1, m)

}

Optimal policy: If Gi(ρi) ≤M for every arm, then retire; else play

the arm with the largest Gittins index.

K-armed problem → K independent 1-armed bandit problems
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Comments

• The Gittins index measures the value of each arm

– Optimal policy ≡ play the most valuable arm

– What determines the value of a project?

– Exploration vs Exploitation

• Gittins index is difficult to compute

– Solve a fixed point equation that involves the value func-
tion of a DP with an infinite dimensional state space.

• Thompson sampling

– “undiscounted”;

– ignores quality of signal/speed of learning & time horizon
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Overview

• Decomposition of the Gittins index into expected value and

an “exploration boost”

– time horizon and quality of the signal

• Approximating the Gittins index

– Approximation of posterior dynamics

– Approximate DP ⇒ Gittins index

– Accounts for speed of learning and time horizon
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Gittins Index

The smallest retirement endowment M such that the decision

maker is indifferent between stopping and continuing

G(ρ) = inf
{
M : M = µ(ρ) + αEρV (ρ1, M)

}

This fixed point equation is involves the value function of the

one-armed problem

V (ρ, M) = max
{
M, µ(ρ) + αEρV (ρ1, M)

}

Stochastic control problem where the posterior is the state.
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Updating the state equations (prior)

Start with the prior ρt(θ).

Given time t observation Y , update the prior via Bayes rule:

ρt+1(θ) =
ρt(θ)f(Y | θ)∫
ρt(θ)f(Y | θ)dθ

The information content of this signal ∼ standard deviation σS
⇒ determines the speed of learning/amount prior evolves.
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Information limits σS = 0, ∞

“No learning” limit (σS =∞)

• signal has “infinite noise”

• Exploration gives no information about the mean reward θ.

“Perfect learning” limit (σS = 0)

• signal has “zero noise”

• Exploration is very informative and we learn the mean reward
after playing once.

Exploration is easy in these limits and should provide lower and
upper bounds on the Gittins index.
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“No learning” limit (σS =∞)

• “infinite noise” ⇒ posterior does not evolve.

• DP equations

VNL(ρ,M) = max
{
M, µ(ρ) + αVNL(ρ, M)

}

• Gittins index

GNL(ρ) =
µ(ρ)

1− α

Value of an arm when there is no learning is its expected reward.

There is no exploration boost since exploration has no value.
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“Perfect learning” limit (σS = 0)

• Zero noise in the signal ⇒ learn θ after one observation.

• DP equations

VPL(ρ) = max
{
M, µ(ρ) + αEρmax

[
M,

θ

1− α

]}

• Gittins index:

GPL(ρ) =
µ(ρ)

1− α
+ αEρmax

[
0,

θ

1− α
−GPL(ρ)

]

Value of the arm is the expected reward plus a “boost”.

Size of the boost depends on the discount factor and the variance

of the prior on the mean θ.
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The Gittins index lies between these limits

GNL ≤ G ≤ GPL

Difference between these limits captures the impact of learning

rate and time horizon on the “value” of an arm

GPL(ρ)−GNL(ρ) = αEρ
{

max
[
0,

θ

1− α
−GPL(ρ)

]}

The difference can be large.
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G(ρ) =
µ(ρ)

1− α
+

Boost︷ ︸︸ ︷
αEρmax

[
0,

θ

1− α
−GPL(ρ)

]
−
[
GPL(ρ)−G(ρ)

]

The boost is determined by

• the maximum upside potential from PL (2nd term), and

• signal quality (3rd term).

The boost disappears when signals are noninformative (σS →∞)

or the horizon is short and there is insufficient time to learn

sufficiently well and to profit from learning (α→ 0)

The first two terms are easy to compute and are independent of

signal quality. The 3rd term depends on posterior dynamics and

must be computed using DP.
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Example: Suppose that

• prior mean = 0; prior sd = 2.5

• signal/reward sd = 15

Expected reward (under the prior) is 0.

Suppose a retirement endowment equivalent to an annuity of

m = 2 per year is on the table.

The prior probability of the expected reward exceeding 4 is about

0.05, so θ = 4 is an optimistic scenario.
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Optimistic case (θ = 4)
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Intermediate case (θ = 0)
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Worst-case scenario (θ = −4)
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Given sufficient time, we can learn how θ compares to the retire-

ment annuity.

e.g. we can learn within about 1000 periods when m = 2 .

Whether we retire or continue at T = 0 depends on the potential

upside (e.g. θ > 2 with probability 0.2), the time to profit once

we have learned θ, and potential losses while learning

⇒ affects Gittins index (indifference level)
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Impact of the discount factor

Discount factor implies a (soft) time horizon.

• time horizon ∼ Geometric(1− α)

⇒ expected time horizon T = 1/(1− α).

Example:

α = 0.98 ⇐⇒ T = 1/(1− α) = 50 years

α = 0.95 ⇐⇒ T = 1/(1− α) = 20 years

α = 0.9 ⇐⇒ T = 1/(1− α) = 10 years

We require α = 0.9997 for T = 3000.
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• The Gittins index (exploration boost) is determined by the

(effective) time horizon and the learning rate.

• Gittins index is difficult to compute because it depends on

the value function of a DP with an infinite dimensional state

space

Tractable approach to approximately compute the Gittins index.

Approx. of posterior dynamics that accounts for learning rate.

24



Approximating the Gittins index

The Gittins index is the solution of a fixed point equation

G(ρ) = inf
{
M : M = µ(ρ) + αEρV (ρ1, M)

}
where

V (ρ, M) = max
{
M, µ(ρ) + αEρV (ρ1, M)

}

= sup
κ≥0

Eρ

κ−1∑
t=0

αtµ(ρt) + ακM


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Bayesian Central Limit Theorem: Given that the mean is θ∗

1. The posterior mean µ(ρt) converges to θ∗

2. The posterior variance is O(n−1)

3. The posterior is asymptotically normal

⇒ fluid approximation of the conditional posterior dynamics which

reduces complexity while still capturing asymptotic consistency

and the learning rate.

28



Posterior

ρn(θ) ∼ N
(
τPµ(ρ0) + nτSŶn

nτS + τP
, nτS + τP

)
where

Ŷn =
Y1 + · · ·+ Ŷn

n

θ-conditional fluid approx. of expected reward under posterior

ρ̂n(θ) ∼ N
(
τPµ(ρ0) + nτSθ

nτS + τP
, nτS + τP

)

Eρ0

(
µ(ρt+1)

∣∣∣θ) =
τPµ(ρ0) + nτSθ

nτS + τP
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θ-conditional fluid approximation of the cost-to-go
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θ-conditional fluid approximation of the cost-to-go

Approximate the cost-to-go

Eρ0V (ρ1, M) = Eρ0

Eρ0

[ κ∗−1∑
t=0

αtµ(ρt+1) + ακ
∗
M

∣∣∣∣ θ]


with a θ-conditional fluid approximation

Eρ0V
F (θ, M) = Eρ0

Eρ0

[ κ∗−1∑
t=0

αtEρ0

[
µ(ρt+1)

∣∣∣ θ]+ ακ
∗
M

∣∣∣∣ θ]


Conditional on θ, the (deterministic) trajectory Eρ0

[
µ(ρt+1)

∣∣∣ θ]
approximates µ(ρt+1).

31



It can be shown that∣∣∣∣Eρ0V (ρ1, M)− Eρ0V
F (θ, M)

∣∣∣∣ ≤ Eτ [∆(τ)]

1− α
where κ∗ is the optimal stopping time associated with V (ρ0, M),

∆(t) = Eρ0

[∣∣∣∣µ(ρt)− Eρ0

[
µ(ρt)

∣∣∣θ]∣∣∣∣] , t ≥ 1,

and τ is a geometric random variable with success probability

1− α that is independent of observations.

Eτ [∆(τ)] is the expected error in the fluid approximation at the

time horizon of the problem.
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Gittins index

G(ρ) = inf
{
M : M = µ(ρ) + αEρV (ρ1, M)

}
Approximate Gittins index

GF (ρ) = inf
{
M : M = µ(ρ) + αEρV F (θ, M)

}

Bound on approximation error:

|G(ρ)−GF (ρ)| ≤ α
Eτ [∆(τ)]

1− α

Unfortunately, EρV F (θ, M) is still not easy to compute since it

depends on the optimal stopping time of the original problem.
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θ-conditional fluid approximation of the cost-to-go
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Enlarging the filtration:

V F (θ, M) = Eρ0

{ κ∗−1∑
t=0

αtEρ0

(
µ(ρt+1)

∣∣∣∣θ)+ ακ
∗
M

∣∣∣∣ θ}

≤ sup
κ≥0

{ κ−1∑
t=0

αtEρ0

(
µ(ρt+1)

∣∣∣∣θ)+ ακM

}
︸ ︷︷ ︸

J(θ,M)

e.g. when adopting the normal approximation

Eρ0

(
µ(ρt+1)

∣∣∣θ) =
τPµ(ρ0) + tτSθ

tτS + τP
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Approximate Gittins Index

G̃(ρ) = inf
{
M : µ(ρ) + αEρ [J(θ, M)] = M

}

J(θ, M) can be computed explicitly

e.g. In the case when θ > M(1−α) for the normal approximation

J(θ, M) =
1

1− α
max

{
M(1− α), Eτ

[
µ(ρ)

τP
τP + τSτ

+ θ
τ

τP + τSτ

] }

Approximate CTG by sampling θ and approx. the expectation

Sidestep recursion over an infinite-dimensional state space.
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Asymptotic optimality

When the signal sd σS converges to 0 or ∞, the approximate

Gittins index G̃(ρ) approaches the true Gittins index G(ρ).

The limiting cases also correspond to the Gittins index in the

“no learning” and “perfect learning” limits.
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Diffusion approximation approach of Brezzi & Lai (2002).
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Mixture model

Ryzhov, Powell, Frazier (2012)
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Summary

• Gittins index is the value of an arm in a Bayesian bandit

– Prior, rate of learning, and discount factor (time horizon)

• Tight bounds on the Gittins index that are determined by

quality of information

• Approximating posterior dynamics
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