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Problem statement

e K arms/projects and a retirement option.

e Arms are independent. Expected reward 6, is constant but
unknown; known variance og,, 1t = 1,---, K.

e If arm i is selected in period 4, receive reward Y; ~ f(-|6;). If
the retirement option is chosen, a one-off endowment M is
paid and the process ends.

e Find a scheduling policy that maximizes expected discounted
reward over an infinite horizon

Gittins (1979), Whittle (1980)



Dynamic Programming

Let p*(6;) denote the prior on the unknown mean 6; for arm i and
u;(p*) denote the posterior mean.

DP equations for the bandit problem:

.:m‘a.].me(pi) + ok ; [V(p'éb o) ‘Po _ p}}

? J Y

V(p, M) = max{M,

Challenging to solve because of the infinite dimensional state
space (K-dimensional joint distribution).



Gittins index and Optimal Policy

Consider a one-armed problem with retirement for each arm:

Vi(o!, m) = max {m, 1i(p") + aE,Vi(ph, m) |

GI for arm 7 is the smallest retirement endowment m such that
the decision maker is indifferent between stopping and continuing

Gi(p") = inf {m s m = u(p") + aB iV (o5, m) |

Optimal policy: If G*(p*) < M for every arm, then retire; else play
the arm with the largest Gittins index.

K-armed problem — K independent 1-armed bandit problems
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Comments

e T he Gittins index measures the value of each arm

— Optimal policy = play the most valuable arm
— What determines the value of a project?

— Exploration vs Exploitation

e Gittins index is difficult to compute

— Solve a fixed point equation that involves the value func-
tion of a DP with an infinite dimensional state space.

e [ hompson sampling
— "undiscounted” ;

— ignores quality of signal/speed of learning & time horizon
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Overview

e Decomposition of the Gittins index into expected value and
an ‘“exploration boost”

— time horizon and quality of the signal

e Approximating the Gittins index
— Approximation of posterior dynamics
— Approximate DP = Gittins index

— Accounts for speed of learning and time horizon



Gittins Index

The smallest retirement endowment M such that the decision
maker is indifferent between stopping and continuing

G(p) = inf {M : M = u(p) + 0B,V (p1, M) |

This fixed point equation is involves the value function of the
one-armed problem

V(p, M) = maX{M, n(p) + aEpV (p1, M)}

Stochastic control problem where the posterior is the state.



Updating the state equations (prior)
Start with the prior p:(8).

Given time t observation Y, update the prior via Bayes rule:

pe(0) (Y ]6)
Jpe(0) (Y | 6)do

pi41(0) =

The information content of this signal ~ standard deviation og
= determines the speed of learning/amount prior evolves.



Information limits og = 0, oo

“No learning” limit (cg = o)
e signal has “infinite noise”

e EXxploration gives no information about the mean reward 6.

“Perfect learning” limit (cg = 0)
e Signal has “zero noise”

e EXxploration is very informative and we learn the mean reward
after playing once.

Exploration is easy in these |limits and should provide lower and
upper bounds on the Gittins index.



“No learning” limit (cg = o)

e ‘infinite noise” = posterior does not evolve.

e DP equations

Vir(p, M) = max {M, u(p) 4+ aVir(p, M)}

e Gittins index

n(p)

GNL(P) — m

Value of an arm when there is no learning is its expected reward.
There is no exploration boost since exploration has no value.
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“Perfect learning” limit (cg = 0)

e Zero noise in the signal = learn 6 after one observation.

e DP equations

Vpr(p) = max{M, u(p) + o, max [M, . 6 ]}

—

e Gittins index:
_ ulp) 0
Gpr(p) = T tafymax 0, —— Gpr(p)
— 1l —«

Value of the arm is the expected reward plus a “boost”.

Size of the boost depends on the discount factor and the variance
of the prior on the mean 6.
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The Gittins index lies between these limits

Gy <G < Gpyp,

Difference between these limits captures the impact of learning
rate and time horizon on the *“value” of an arm

Gpr(p) — Gnr(p) = aEp {max [07 % — GPL(P)]}

T he difference can be large.
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Bo/gst

6(p) = 2y ag,maxfo, 0~ Gpu()] - [Gri(e) - G0

The boost is determined by
e the maximum upside potential from PL (2nd term), and
e signal quality (3rd term).

The boost disappears when signals are noninformative (ocg — o0)
or the horizon is short and there is insufficient time to learn
sufficiently well and to profit from learning (a — 0)

The first two terms are easy to compute and are independent of
signal quality. The 3rd term depends on posterior dynamics and
must be computed using DP.
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Example: Suppose that

e prior mean = 0O; prior sd = 2.5

e signal/reward sd = 15

Expected reward (under the prior) is 0.

Suppose a retirement endowment equivalent to an annuity of
m = 2 per year is on the table.

The prior probability of the expected reward exceeding 4 is about
0.05, so f§ = 4 is an optimistic scenario.
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Expected reward

Optimistic case (6 = 4)

One sample path of the posterior when 6 = 4
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Expected reward #

Intermediate case (6§ = 0)

Sample path of posterior when 6 = 0
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Time



Worst-case scenario (§ = —4)

One sample path of posterior when § = —4

Expected reward 7

! I !
0 500 1000 1500 2000 2500 3000
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Given sufficient time, we can learn how 68 compares to the retire-
ment annuity.

e.g. we can learn within about 1000 periods when m = 2 .
Whether we retire or continue at 7' = 0 depends on the potential
upside (e.g. 6 > 2 with probability 0.2), the time to profit once

we have learned 6, and potential losses while learning
= affects Gittins index (indifference level)
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Impact of the discount factor

Discount factor implies a (soft) time horizon.

e time horizon ~ Geometric(l — «)
= expected time horizon T =1/(1 — «).

Example:

a=098 <= T=1/(1 - «a) =50 years

a=0.95<«—= T=1/(1 - «a) =20 years

a=09<«= T=1/(1—-«a) =10 years

We require o« = 0.9997 for T' = 3000.
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Expected reward 6

Sample path of posterior when § = —4




Expected reward #

Sample path of posterior when 6 =0

Time

200

250
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Expected reward

-6

Sample path of posterior when 6 = 4

Time

150 200 250
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e The Gittins index (exploration boost) is determined by the
(effective) time horizon and the learning rate.

e Gittins index is difficult to compute because it depends on
the value function of a DP with an infinite dimensional state
space

Tractable approach to approximately compute the Gittins index.

Approx. of posterior dynamics that accounts for learning rate.
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Approximating the Gittins index

The Gittins index is the solution of a fixed point equation

G(p) = inf { M : M = u(p) + aE,V (p1, M) |

where

Vip, M) = max{M, u(p) + aEpV (p1, M) |

supE,
k>0

k—1
S (o) + Oz“M]
t=0
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Expected reward #

Sample path of posterior when 6 =0
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Expected reward under different posterior paths (8 = 4)

Fampected reward

0 500 1000

1500
Number of time periods
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Bayesian Central Limit Theorem: Given that the mean is 0*

1. The posterior mean u(p;) converges to 6*

2. The posterior variance is O(n—1)

3. The posterior is asymptotically normal

= fluid approximation of the conditional posterior dynamics which
reduces complexity while still capturing asymptotic consistency
and the learning rate.
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Posterior

Tpu(po) + nrs¥n
on(6) N( S — , NTg + TP)

where

_ Yi+---+ Y,
Yn: 1‘|‘ ‘|‘n

n

6-conditional fluid approx. of expected reward under posterior

. Tpi(po) + ntgl
on(6) N( nre+1p ntg + TP)

Tpi(po) + n7gld
nTg + Tp

Epg (N(Pt—l-l)‘@) =
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Expected Reward

f0-conditional fluid approximation of the cost-to-go

Sample paths of posterior mean given § =4
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0-conditional fluid approximation of the cost-to-go

Approximate the cost-to-go

k*¥—1
EpoV(p1, M) = Ep, {Epo[ Z Oét,u(/)t-l—l) +a" M ‘ 9]}
t=0
with a 6-conditional fluid approximation
P k*¥—1 .
EpoV™ (0, M) = Ep, IB3/)0[ > a'Epo (o) 6] +a M ‘ 9]
t=0

Conditional on 6, the (deterministic) trajectory ]Epo[u(pt_l_l))e}
approximates u(p;41)-
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It can be shown that
ET[A(T)]

1l -«

\Emwpl, M) —E, .V (0, M)\ <

where k* is the optimal stopping time associated with V(pg, M),

],t21,

A = Epy |[1o0) = Epo (o0 6]

and 7 is a geometric random variable with success probability
1 — o that is independent of observations.

E-[A(7)] is the expected error in the fluid approximation at the
time horizon of the problem.
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Gittins index
G(p) = inf{M M = u(p) + aEpV (p1, M)}
Approximate Gittins index

Gl(p) = inf{M:M:u(p)—l—aIEpVF(Q, M)}

Bound on approximation error:
Er[A(T)]

IG(p) —GF(p) < a

Unfortunately, IEpVF(Q, M) is still not easy to compute since it
depends on the optimal stopping time of the original problem.
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Expected Reward

f0-conditional fluid approximation of the cost-to-go

Sample paths of posterior mean given = 4
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Enlarging the filtration:

Vi, M) = IE3/)0{ K*Z_:l OétEpo (M(Pt-l—l)'@) + o M ‘ 6}

< Sup{ Z a'Ep, (,u(pt_|_1)|9> -+ aKM}

7

J(0, M)

e.g. when adopting the normal approximation

Tpu(po) + t150
ttg + mp

Eoq (N(Pt—l—l)‘ )
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Approximate Gittins Index

Gp) =nf{M : u(p) +a, [J(6, M)] = M |

J(6, M) can be computed explicitly

e.g. In the case when 6 > M (1 —«) for the normal approximation

}

T

1 B P
100, M) = 2 max (ML= o), Br [u(o)TE 0T

Approximate CTG by sampling 6 and approx. the expectation

Sidestep recursion over an infinite-dimensional state space.
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Asymptotic optimality

When the signal sd og converges to O or oo, the approximate
Gittins index G(p) approaches the true Gittins index G(p).

The limiting cases also correspond to the Gittins index in the
“no learning” and “perfect learning” limits.
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Mixture model

Index v's Signal Standard Deviation
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Ryzhov, Powell, Frazier (2012)
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Summary

e Gittins index is the value of an arm in a Bayesian bandit

— Prior, rate of learning, and discount factor (time horizon)

e Tight bounds on the Gittins index that are determined by
quality of information

e Approximating posterior dynamics
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