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Two-stage Dynamic Robust Optimization

Problem: min max min f(x, w,y)
X weW y

x chosen +— W revealed +— Yy chosen (in response to w)
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Two-stage Dynamic Robust Optimization

Problem: min max min f(x, w,y)
X weW y

x chosen +— W revealed +— Yy chosen (in response to w)

@ The model can be solved via Dynamic Programming (DP):
» Given x,w — findy*(x,w) — find x*

@ For most problems, the DP approach is not practical

)
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Simple Policies/Decision Rules

Problem: min max min f(x, w,y)
X weW y

Restrict y to a simple function of w (instead of the optimal
response)

Static Decision Rule: fix y to be independent of w

Linear Decision Rule (aka affine policies): set y = Qw + ¢

@ Other decision rules include quadratic, piece-wise linear, finite
adaptivity, etc
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Simple Policies/Decision Rules

Problem: min max min f(x, w,y)
X weW y

Restrict y to a simple function of w (instead of the optimal
response)

Static Decision Rule: fix y to be independent of w

Linear Decision Rule (aka affine policies): set y = Qw + ¢

@ Other decision rules include quadratic, piece-wise linear, finite
adaptivity, etc

Motivation of This Research

When are simple decision rules (near) optimal?
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Model for This Talk

Our model: min max min f(x,w,y)
X weW y



Model for This Talk

Our model (omitting x):

max
we

min f(w,y) :=J*

Wy
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Model for This Talk

Our model (omitting x): max rrLin flw,y) =7
we

@ Let the dimension of w be m and the dimension of Yy be n
@ A policy q(w) that maps from R™ to R™ is worst-case optimal if

max f(w, q(w)) <J*.

6
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Model for This Talk
Our model (omitting x): max rrLin flw,y) =7

@ Let the dimension of w be m and the dimension of Yy be n
@ A policy q(w) that maps from R™ to R™ is worst-case optimal if
max f(w, q(w)) < J*.

wew

Questions
Is the particular class of policies Q worst-case optimal? That is,

. e
IO IEYS fw, q(w)) =J"7

If not, what is the performance of the best policy in Q relative to J*7
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Key Assumptions in This Talk

Assumption 1

@ Both W and Q are convex sets, and ext(W) = {w?, ..., wKk}.

@ The function f(w, q(w)) is quasi-convex on W for each fixed q € Q;
that is, for each A € [0, 1], w,w’ € W, we have

f(Aw + (1 = Aw', gAw + (1 — Aw’)) < max{f(w, q(w)), f(w’, g(w"))}.

© The function f(w, q(w)) is convex on Q for each fixed w € W; that
is, for each A € [0,1], q,q" € Q we have

f(w, Aq(w) + (1 = A)g'(w)) < M(w, g(w)) + (1 = V)f(w, g'(w)).




Examples Satisfying Assumption 1

(Two-stage) adjustable robust linear optimization:

min c'x + max min f(x, w,y), where X, W are linear polytopes
xeX weWw y

d'y if Ax + By > Cw,

here f(x,w,y) =
v ( v) {—i—oo otherwise.

Assumption 1 is satisfied when Q is the set of linear decision rules.
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Examples Satisfying Assumption 1

(Two-stage) adjustable robust optimization with linear-fractional objective:

min c'x + max min f(x, w,y), where X, W are linear polytopes

xeX weWw y
dTy+fTw+oc :
e — if Ax + By = Cw,
where f(x,w,y) = g'w+p . Y
400 otherwise.

Assumption 1 is satisfied when Q is the set of linear decision rules.
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Examples Satisfying Assumption 1

(Two-stage) adjustable robust optimization with linear-fractional objective:

min c'x + max min f(x, w,y), where X, W are linear polytopes

xeX weWw y
dTy+fTw+oc :
=== if Ax + By = Cw,
where f(x,w,y) = glwtp . b
+00 otherwise.

Assumption 1 is satisfied when Q is the set of linear decision rules.

Multi-stage robust inventory management:

inmi , hi (I, ot mi , hr(It41,%)) - ..
m,gnnﬂlln(cl(yl X)+drp§5<1( 1(I2, %) + +’S'Tn(CT(UT x)+d;neaj§T (It 41 )) ))

st Ity1 =L +ye —de,Vte {1,2,...,T}.
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Concave Envelopes

Definition (Concave Envelope)

e Given g: W — R, the concave envelope of g, conc(g) : W — R, is
the smallest concave function h satisfying h(w) = g(w), Vwe W.
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Concave Envelopes

Definition (Concave Envelope)

e Given g: W — R, the concave envelope of g, conc(g) : W — R, is
the smallest concave function h satisfying h(w) > g(w), Vw e W.

Example 1

Concave envelope of a 1D function
10/23



Concave Envelopes

Definition (Concave Envelope)

e Given g: W — R, the concave envelope of g, conc(g) : W — R, is
the smallest concave function h satisfying h(w) = g(w), Vwe W.

0.0

Example 2

Concave envelope of a 2D function o0



Concave Envelopes

Definition (Concave Envelope)

e Given g: W — R, the concave envelope of g, conc(g) : W — R, is
the smallest concave function h satisfying h(w) = g(w), Vwe W.

0.0

Example 2

Concave envelope of a 2D function o0



Concave Envelopes

Definition (Concave Envelope)

e Given g: W — R, the concave envelope of g, conc(g) : W — R, is
the smallest concave function h satisfying h(w) = g(w), Vwe W.

o Given a function g, define g®*™) : W — R as the function such that

w ifw e ext(W),
gext(W) (W) _ {g( ) ' ( )
—0 otherwise.

0.0

Example 2

When g is convex, conc(g) coincides with conc(gt™)) o0



Concave Envelopes

Definition (Concave Envelope)

e Given g: W — R, the concave envelope of g, conc(g) : W — R, is
the smallest concave function h satisfying h(w) = g(w), Vwe W.

o Given a function g, define g®*™) : W — R as the function such that

w ifw e ext(W),
gext(W) (W) _ {g( ) ' ( )
—0 otherwise.

0.0

Example 2

When g is quasi-convex, conc(g®t™)) preserves the maximum

10/23



Characterzing the Performance of Q

Proposition 1

For each policy q € Q, define fq(-) to be the function such that
fq(w) = f(w, q(w)). Under Assumption 1, we have

c . g ext(W)
r(;nelg max f(w, q(w)) = max 2’28 conc(fyq )(w). (1)

v
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Characterzing the Performance of Q

Proposition 1

For each policy q € Q, define fq(-) to be the function such that
fq(w) = f(w, q(w)). Under Assumption 1, we have

i f - i £V (). 1
Tag T dlw) = papigeencli= 0. )

Proof. min max f(w, q(w))
=min max f(w,qw)), (quasiconvexity)

qeQ weext(W)
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c . g ext(W)
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Proof. i
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qeQ weWw
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Characterzing the Performance of Q
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For each policy q € Q, define fq(-) to be the function such that
fq(w) = f(w, q(w)). Under Assumption 1, we have

i f - i £V (). 1
Tag T dlw) = papigeencli= 0. )
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Characterzing the Performance of Q

Proposition 1

For each policy q € Q, define fq(-) to be the function such that
fq(w) = f(w, q(w)). Under Assumption 1, we have

i f - i £V (). 1
Tag T dlw) = papigeencli= 0. )
Proof. i
roo g1€|rg1 max f(w, q(w))
= [1ne|5 WGTX?E(W) f(w, q(w)), (quasiconvexity)
. fext(W) definiti ffext(W)
gnelg max fq (w), (definition of fq )

= min max conc(fZXt(W))(w), (property of conc. env.)
qeQ weWw

= max min conc(fZXt(W))(w).

(Sion's minimax)
weW qeQ
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Concave Envelope Optimality Condition

Concave Envelope Optimality Condition

There is a worst-case optimal policy in Q if there exists a finite collection
of convex sets {Si}iecr such that Uic1Si = W and policies {q; € Q}icr so
that for each i e I:

conc(ffff(w))(w) < J*,VweS;.

w

Graphical lllustration 13/23




Concave Envelope Optimality Condition

Concave Envelope Optimality Condition

There is a worst-case optimal policy in Q if there exists a finite collection
of convex sets {Si}iecr such that Uic1Si = W and policies {q; € Q}icr so
that for each i e I:

conc(fgxf(w))(w) < J*,VweS;.

f(w, qi(w))

Graphical Illustration 13/23




Applying the Optimality Condition
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Applying the Optimality Condition

Under Assumption 1, when can we precisely characterize the concave
envelope from ext(W)?

@ When the objective values at ext(W) exhibits discrete convexity
structures

@ When the objective is linear (often occurs in dynamic robust LPs)
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Supermodular Function and Lovasz extension

Definition
Function g : Z™ — R is supermodular if

g(max(x’,x")) + g(min(x’,x")) = g(x’) + g(x"), Vx',x" € Z™.
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Supermodular Function and Lovasz extension

Definition
Function g : Z™ — R is supermodular if

g(max(x’,x")) + g(min(x’,x")) = g(x’) + g(x"), Vx',x" € Z™.

Kuhn triangulation: If ext(W) is a sub-lattice of {0,1}™, then W can be
partitioned into simplicies for the following form:
Ar = {W[0 <Wyq) < ... < Wgm) < 1}, mpermutation of [n]
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Supermodular Function and Lovasz extension

Definition
Function g : Z™ — R is supermodular if

g(max(x’,x")) + g(min(x’,x")) = g(x’) + g(x"), Vx',x" € Z™.

Kuhn triangulation for W = [0, 1]?

A0, 1) B(1, 1)

Relevant simplicies:

conv({(O, 0),(0,1),(1, 1)}>
P 0.0 conv({(O, 0),(1,0), (1, 1)})
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Supermodular Function and Lovasz extension

Definition
Function g : Z™ — R is supermodular if

g(max(x’,x")) + g(min(x’,x")) = g(x’) + g(x"), Vx',x" € Z™.

Kuhn triangulation for W = [0, 1]?

A0, 1)

Relevant simplicies:

conv({(O, 0),(0,1),(1, 1)}>
w0 ) conv({(O, 0),(1,0), (1, 1)})

If g is supermodular, conc(g) (over W) is a piece-wise linear interpolation
on the extreme points of the Kuhn triangulation [Lovész, 1983].
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Supermodular Function and Lovasz extension

Definition
Function g : Z™ — R is supermodular if

g(max(x’,x")) + g(min(x’,x")) = g(x’) + g(x"), Vx',x" € Z™.

Kuhn triangulation for W = [0, 1]?
Relevant simplicies:
conv({(0,0),(0,1), (1,1)})
conv({(o,O), (1,0), (1, 1)})

If g is supermodular, conc(g) (over W) is a piece-wise linear interpolation
on the extreme points of the Kuhn triangulation [Lovasz, 1983].
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Optimality with Supermodularity

Corollary (Worst-case Optimality with Supermodular Objective)
There exists a wost-case optimal policy q € Q if

@ Assumption 1 is satisfied.

@ The set ext(W) is an integer sublattice of {0, 1}™.

© For each simplex S; in the Kuhn triangulation, there exists i € Q
where f(W, qi(W)) < J* for each w € ext(S;) and f(w, qi(w)) is
supermodular on 'W.
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Optimality with Supermodularity

Corollary (Worst-case Optimality with Supermodular Objective)
There exists a wost-case optimal policy q € Q if

@ Assumption 1 is satisfied.

@ The set ext(W) is an integer sublattice of {0, 1}™.

© For each simplex S; in the Kuhn triangulation, there exists i € Q
where f(W, qi(W)) < J* for each w € ext(S;) and f(w, qi(w)) is
supermodular on 'W.

Generalizes Theorem 1 of lancu et al. [2013]:
@ More general function (quasi-convex instead of convex in w)

@ Relax the condition on the objective function under the Bellman
optimal response

@ More general class of policies (no longer restricted to linear decision
rules)
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Optimality with L*-concavity

Corollary (Worst-case Optimality with L%-concave Objective)
There exists a wost-case optimal policy q € Q if

@ Assumption 1 is satisfied.
@ ext(W) < Z™ forms an Li-convex set, and {A i ;i }ie1 subdivides W.

© For each i, there exists qi € Q where f(w, qi(w)) < J* for each
w e ext(Aq 2i) and f(w, gi(w)) is L*-concave on ext(W).
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Optimality with L*-concavity

Corollary (Worst-case Optimality with L%-concave Objective)
There exists a wost-case optimal policy q € Q if
@ Assumption 1 is satisfied.
@ ext(W) < Z™ forms an Li-convex set, and {A i ;i }ie1 subdivides W.

© For each i, there exists qi € Q where f(w, qi(w)) < J* for each
w e ext(Aqi 2i) and f(w, qi(w)) is Li-concave on ext(W).

@ More general uncertainty set compared to the previous corollary (at
the cost of more restrictive objective function)
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Another Optimality Condition

Theorem 1
Under Assumption 1, the following are equivalent:
© There exists a wost-case optimal policy q € Q.

@ There exists a finite collection of convex sets {S;}ic1 such that
UierSi = W and policies {qi € Q}ic1 so that for each i€ 1:

conc(fzxit(w))(w) <J*,VweS;.

@ There exists W € W, a finite collection of convex sets {Si}ic1, policies
{qi € Q}ie1, and vectors {g; }ic1 such that:

we S, Viel, and W— W c cone(uierSi),
fW, qi(W)) < J*,Vie],
f(w, gi(w)) < (W —W)g; + (W, gi(W)), Vie L w € ext(W),

sTg; <0, VseS;.
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Connetion to Integerality Gap of an Integer Program
Recall that ext(W) = {w!, ..., WX}, consider the optimization problem:
max t
tA

K
Z w')), VqeQ,

Z)\jzl,Aje{O,l},Vl<j<K.
j=1

Corollary

Suppose that Assumption 1 holds and Q contains all static decision rules. Then

min max f(w, q(w)) — J* < Integrality Gap of (IP).
qeQ weWw
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Conclusions
@ A general theory for studying the performance of simple decision rules
in dynamic robust optimization

@ Characterization of policy performances through concave envelopes

» The approach using minimax in dynamic robust optimization problems
deserve more attention in the literature

e Optimality of (affine) policies using concave envelopes and discrete
convexity

@ Optimality and sub-optimality guarantees of static policies for
two-stage robust linear programs
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Conclusions

A general theory for studying the performance of simple decision rules
in dynamic robust optimization

@ Characterization of policy performances through concave envelopes

» The approach using minimax in dynamic robust optimization problems
deserve more attention in the literature

Optimality of (affine) policies using concave envelopes and discrete
convexity

Optimality and sub-optimality guarantees of static policies for
two-stage robust linear programs

THANK YOU!
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