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Two-stage Dynamic Robust Optimization

Problem: min
x

max
wPW

min
y

fpx,w,yq

x chosen ÞÑ w revealed ÞÑ y chosen (in response to w)

The model can be solved via Dynamic Programming (DP):
§ Given x,w Ñ find y‹px,wq Ñ find x‹

For most problems, the DP approach is not practical
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Simple Policies/Decision Rules

Problem: min
x

max
wPW

min
y

fpx,w,yq

Restrict y to a simple function of w (instead of the optimal
response)

Static Decision Rule: fix y to be independent of w

Linear Decision Rule (aka affine policies): set y “ Qw` q

Other decision rules include quadratic, piece-wise linear, finite
adaptivity, etc

Motivation of This Research

When are simple decision rules (near) optimal?
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Talk Outline

1 Model and Basic Setup

2 Characterizing the Performances of Decision Rules

3 Optimality Conditions in Robust Models
Application to Discrete Convex Functions

4 Conclusions
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Model for This Talk

Our model: min
x

max
wPW

min
y

fpx,w,yq

Let the dimension of w be m and the dimension of y be n

A policy qpwq that maps from Rm to Rn is worst-case optimal if

max
wPW

f
`

w,qpwq
˘

ď J‹.

Questions

Is the particular class of policies Q worst-case optimal? That is,

min
qPQ

max
wPW

fpw,qpwqq “ J‹?

If not, what is the performance of the best policy in Q relative to J‹?
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Key Assumptions in This Talk

Assumption 1

1 Both W and Q are convex sets, and extpWq “ tw1, . . . ,wKu.

2 The function f
`

w,qpwq
˘

is quasi-convex on W for each fixed q P Q;
that is, for each λ P r0, 1s, w,w 1 PW, we have

f
`

λw` p1´ λqw 1,qpλw` p1´ λqw 1q
˘

ď maxtfpw,qpwqq, fpw 1,qpw 1qqu.

3 The function f
`

w,qpwq
˘

is convex on Q for each fixed w PW; that
is, for each λ P r0, 1s, q,q 1 P Q we have

f
`

w, λqpwq ` p1´ λqq 1pwq
˘

ď λfpw,qpwqq ` p1´ λqfpw,q 1pwqq.
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Examples Satisfying Assumption 1

(Two-stage) adjustable robust linear optimization:

min
xPX

cTx` max
wPW

min
y
fpx,w,yq, where X, W are linear polytopes

where fpx,w,yq “

#

dTy if Ax` By ě Cw,

`8 otherwise.

Assumption 1 is satisfied when Q is the set of linear decision rules.

Multi-stage robust inventory management:

min
x

min
y1

´

c1py1,xq ` max
d1PD1

´

h1pI2,xq ` . . .`min
yT

´

cT pyT ,xq ` max
dT PDT

hT pIT`1,xq
¯

. . .
¯¯

s.t. It`1 “ It ` yt ´ dt,@t P t1, 2, . . . , Tu.
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Concave Envelopes

Definition (Concave Envelope)

Given g : WÑ R, the concave envelope of g, concpgq : WÑ R, is
the smallest concave function h satisfying hpwq ě gpwq, @w PW.

Given a function g, define gextpWq : WÑ R as the function such that

gextpWqpwq “

#

gpwq if w P extpWq,

´8 otherwise.
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Characterzing the Performance of Q

Proposition 1

For each policy q P Q, define fqp¨q to be the function such that
fqpwq “ f

`

w,qpwq
˘

. Under Assumption 1, we have

min
qPQ

max
wPW

f
`

w,qpwq
˘

“ max
wPW

min
qPQ

concpf
extpWq
q qpwq. (1)

Proof. min
qPQ

max
wPW

f
`

w,qpwq
˘

“ min
qPQ

max
wPextpWq

f
`

w,qpwq
˘

, (quasiconvexity)

“ min
qPQ

max
wPW

f
extpWq
q pwq, (definition of f

extpWq
q )

“ min
qPQ

max
wPW

concpf
extpWq
q qpwq, (property of conc. env.)

“ max
wPW

min
qPQ

concpf
extpWq
q qpwq. (Sion’s minimax)
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Concave Envelope Optimality Condition

Concave Envelope Optimality Condition

There is a worst-case optimal policy in Q if there exists a finite collection
of convex sets tSiuiPI such that YiPISi “W and policies tqi P QuiPI so
that for each i P I:

concpfextpWq
qi

qpwq ď J˚,@w P Si.

S1

S2
S3

S4

f
(
w,y1(w)

)

W

Graphical Illustration 13 / 23
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Applying the Optimality Condition

Under Assumption 1, when can we precisely characterize the concave
envelope from extpWq?

When the objective values at extpWq exhibits discrete convexity
structures

When the objective is linear (often occurs in dynamic robust LPs)
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Supermodular Function and Lovász extension

Definition

Function g : Zn Ñ R is supermodular if

gpmaxpx 1, x2qq ` gpminpx 1, x2qq ě gpx 1q ` gpx2q, @ x 1, x2 P Zn.

If g is supermodular, concpgq (over W) is a piece-wise linear interpolation
on the extreme points of the Kuhn triangulation [Lovász, 1983].
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Optimality with Supermodularity

Corollary (Worst-case Optimality with Supermodular Objective)

There exists a wost-case optimal policy q P Q if

1 Assumption 1 is satisfied.

2 The set extpWq is an integer sublattice of t0, 1un.

3 For each simplex Si in the Kuhn triangulation, there exists qi P Q
where fpw,qipwqq ď J

˚ for each w P extpSiq and fpw,qipwqq is
supermodular on W.

Generalizes Theorem 1 of Iancu et al. [2013]:

More general function (quasi-convex instead of convex in w)

Relax the condition on the objective function under the Bellman
optimal response

More general class of policies (no longer restricted to linear decision
rules)
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Optimality with L6-concavity

Corollary (Worst-case Optimality with L6-concave Objective)

There exists a wost-case optimal policy q P Q if

1 Assumption 1 is satisfied.

2 extpWq Ă Zn forms an L6-convex set, and t∆πi,ziuiPI subdivides W.

3 For each i, there exists qi P Q where fpw,qipwqq ď J
˚ for each

w P extp∆πi,ziq and fpw,qipwqq is L6-concave on extpWq.

More general uncertainty set compared to the previous corollary (at
the cost of more restrictive objective function)
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Another Optimality Condition

Theorem 1

Under Assumption 1, the following are equivalent:

1 There exists a wost-case optimal policy q P Q.

2 There exists a finite collection of convex sets tSiuiPI such that
YiPISi “W and policies tqi P QuiPI so that for each i P I:

concpfextpWq
qi

qpwq ď J˚,@w P Si.

3 There exists ŵ PW, a finite collection of convex sets tSiuiPI, policies
tqi P QuiPI, and vectors tgiuiPI such that:

ŵ P Si,@i P I, and W´ ŵ Ă conepYiPISiq,

fpŵ,qipŵqq ď J
˚,@i P I,

f
`

w,qipwq
˘

ď pw´ ŵqgi ` fpŵ,qipŵqq, @i P I,w P extpWq,

sTgi ď 0, @ s P Si.
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Connetion to Integerality Gap of an Integer Program

Recall that extpWq “ tw1, . . . ,wKu, consider the optimization problem:

max
t,λ

t

s.t. t ď

K
ÿ

j“1

λjfpw
j,qpwjqq, @q P Q,

K
ÿ

j“1

λj “ 1, λj P t0, 1u, @1 ď j ď K.

(IP)

Corollary

Suppose that Assumption 1 holds and Q contains all static decision rules. Then

min
qPQ

max
wPW

f
`

w,qpwq
˘

´ J˚ ď Integrality Gap of (IP).
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Conclusions

A general theory for studying the performance of simple decision rules
in dynamic robust optimization

Characterization of policy performances through concave envelopes

§ The approach using minimax in dynamic robust optimization problems
deserve more attention in the literature

Optimality of (affine) policies using concave envelopes and discrete
convexity

Optimality and sub-optimality guarantees of static policies for
two-stage robust linear programs

THANK YOU!
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