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Application: modeling of quantum transport in nanoscale semiconductors

Resonant Tunneling Diode (RTD):

Figure: Schematics of the potential energy in a RTD (Ben Abdallah & Pinaud, 2006).



�−
ħ2

2𝑚𝑚
𝜑𝜑𝑝𝑝′′ 𝑥𝑥 − 𝑞𝑞 𝑉𝑉 𝑥𝑥 𝜑𝜑𝑝𝑝 𝑥𝑥 = 𝐸𝐸 𝜑𝜑𝑝𝑝 𝑥𝑥 on 𝑎𝑎, 𝑏𝑏 ,

ħ 𝜑𝜑𝑝𝑝′ 𝑎𝑎 + 𝑖𝑖𝑖𝑖 𝜑𝜑𝑝𝑝 𝑎𝑎 = 2𝑖𝑖𝑖𝑖, ħ 𝜑𝜑𝑝𝑝′ 𝑏𝑏 = 𝑖𝑖𝑝𝑝𝑏𝑏 𝜑𝜑𝑝𝑝 𝑏𝑏 .

Total electrostatic potential 𝑉𝑉 = 𝑉𝑉𝑒𝑒 + 𝑉𝑉𝑠𝑠

 Electronic density:

𝑛𝑛 𝑥𝑥 = ∫−∞
∞ 𝑔𝑔 𝑝𝑝 𝜑𝜑𝑝𝑝 𝑥𝑥 2 𝑑𝑑𝑑𝑑.

 Poisson Eq. for 𝑽𝑽𝒔𝒔:

�𝑉𝑉𝑠𝑠
′′ 𝑥𝑥 =

𝑞𝑞
𝜖𝜖
𝑛𝑛 𝑥𝑥 − 𝑛𝑛𝐷𝐷 𝑥𝑥 ,

𝑉𝑉𝑠𝑠 𝑎𝑎 = 𝑉𝑉𝑠𝑠 𝑏𝑏 = 0.

 Schrödinger Eq. for 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 𝝋𝝋𝒑𝒑(𝒙𝒙):

Schrödinger-Poisson problem for RTD:



The algorithm for solving the Schrödinger -Poisson problem:

Initialize 
potential 
𝑽𝑽(𝒙𝒙)

Calculate wave 
function 𝝋𝝋𝐩𝐩(𝐱𝐱)

Calculate 
density 𝒏𝒏(𝒙𝒙)

Calculate 
potential  𝑽𝑽(𝒙𝒙)

Check:
error<tol. ?

yes

no

next 
iteration

end

start



o Large number of Schrödinger equations to be solved

o Highly oscillating solution for large energy 𝐸𝐸 is large.

Numerical difficulties:



Model problem:

where 0 < 𝜀𝜀 < 1, and 𝑓𝑓(𝑥𝑥) is independent of ε.  

Assume 𝑓𝑓 > 0. The solution is a wave function with wave number  𝒌𝒌 𝒙𝒙 = 𝒇𝒇(𝒙𝒙)
𝜺𝜺

.

�−
ħ2

2𝑚𝑚
𝜑𝜑𝑝𝑝′′ 𝑥𝑥 − 𝑞𝑞 𝑉𝑉 𝑥𝑥 𝜑𝜑𝑝𝑝 𝑥𝑥 = 𝐸𝐸 𝜑𝜑𝑝𝑝, 𝑥𝑥 , 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏

ħ 𝜑𝜑𝑝𝑝′ 𝑎𝑎 + 𝑖𝑖𝑖𝑖 𝜑𝜑𝑝𝑝 𝑎𝑎 = 2𝑖𝑖𝑖𝑖, ħ 𝜑𝜑𝑝𝑝′ 𝑏𝑏 = 𝑖𝑖𝑝𝑝𝑏𝑏 𝜑𝜑𝑝𝑝 𝑏𝑏 .

Schrödinger Eq. :

Let 𝜀𝜀 = ℏ
2𝑚𝑚𝑚𝑚

, 𝑓𝑓 𝑥𝑥 = 1 + 𝑞𝑞𝑞𝑞(𝑥𝑥)
𝐸𝐸

.

�
− 𝜀𝜀2𝑢𝑢′′ − 𝑓𝑓 𝑥𝑥 𝑢𝑢 = 0, 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏

𝑢𝑢′ 𝑎𝑎 + 𝑖𝑖𝑘𝑘𝑎𝑎𝑢𝑢 𝑎𝑎 = 2𝑖𝑖𝑘𝑘𝑎𝑎, 𝑢𝑢′ 𝑏𝑏 − 𝑖𝑖𝑘𝑘𝑏𝑏𝑢𝑢 𝑏𝑏 = 0,.

Model problem



E.g. LDG using piecewise polynomials of degree 1 and 2 for solving the Schrödinger eqn.

Standard finite element methods using polynomials require very fine mesh to 
capture oscillatory solutions.



Previous work:

o Ben Abdallah, Pinaud, Mouis, Negulescu, Arnold, Polizzi (2004-2008, 2011)

Multiscale continuous finite element basis:

�𝜑𝜑 𝑥𝑥 = 𝐴𝐴𝑗𝑗
𝑘𝑘(𝑥𝑥)

𝑒𝑒𝑖𝑖 𝑆𝑆 𝑥𝑥 + 𝐵𝐵𝑗𝑗
𝑘𝑘(𝑥𝑥)

𝑒𝑒−𝑖𝑖 𝑆𝑆 𝑥𝑥 , 𝑥𝑥 ∈ 𝐼𝐼𝑗𝑗 .

o Wang, Shu (2008)

WKB- local DG method:

𝐸𝐸2 = 𝑣𝑣ℎ: 𝑣𝑣ℎ|𝐼𝐼𝑗𝑗 ∈ span 1, 𝑒𝑒𝑖𝑖𝑘𝑘𝑗𝑗 𝑥𝑥−𝑥𝑥𝑗𝑗 , 𝑒𝑒−𝑖𝑖𝑘𝑘𝑗𝑗 𝑥𝑥−𝑥𝑥𝑗𝑗 , 𝑗𝑗 = 1,⋯ ,𝑁𝑁 ,

where 𝑘𝑘𝑗𝑗 = 𝑘𝑘 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗 is the middle point of 𝐼𝐼𝑗𝑗 .

WKB asymptotics: If 𝐸𝐸 + 𝑞𝑞𝑞𝑞 > 0, when ħ→ 0,

𝜑𝜑 𝑥𝑥 ∼ 𝐴𝐴
𝑘𝑘(𝑥𝑥)

𝑒𝑒𝑖𝑖𝑖𝑖 𝑥𝑥 + 𝐵𝐵
𝑘𝑘 𝑥𝑥

𝑒𝑒−𝑖𝑖𝑖𝑖 𝑥𝑥 ,   where 𝑆𝑆 𝑥𝑥 = ∫𝑥𝑥0
𝑥𝑥 𝑘𝑘(𝑠𝑠)𝑑𝑑𝑑𝑑.



�
∫𝐼𝐼𝑗𝑗 𝑞𝑞ℎ 𝑣𝑣 𝑑𝑑𝑑𝑑 + ∫𝐼𝐼𝑗𝑗 𝜀𝜀 𝑢𝑢ℎ𝑣𝑣

′𝑑𝑑𝑑𝑑 − 𝜀𝜀 �𝑢𝑢ℎ𝑣𝑣|𝑥𝑥𝑗𝑗
𝑥𝑥𝑗𝑗+1 = 0,

∫𝐼𝐼𝑗𝑗𝜀𝜀 𝑞𝑞ℎ𝑤𝑤
′𝑑𝑑𝑑𝑑 − 𝜀𝜀 �𝑞𝑞ℎ𝑤𝑤|𝑥𝑥𝑗𝑗

𝑥𝑥𝑗𝑗+1 − ∫𝐼𝐼𝑗𝑗𝑓𝑓(𝑥𝑥)𝑢𝑢ℎ𝑤𝑤 𝑑𝑑𝑑𝑑 = 0.

DG formulation: 

− 𝜀𝜀2𝑢𝑢′′ − 𝑓𝑓 𝑥𝑥 𝑢𝑢 = 0

Mixed form: 𝑞𝑞 − 𝜀𝜀𝑢𝑢′ = 0,

−𝜀𝜀𝑞𝑞′ − 𝑓𝑓 𝑥𝑥 𝑢𝑢 = 0.

Our second-order multiscale DG method

Model Eq.: 

Finite element space: 

𝐸𝐸1 = 𝑣𝑣ℎ: 𝑣𝑣ℎ �𝐼𝐼𝑗𝑗
∈ span 𝑒𝑒𝑖𝑖𝑘𝑘𝑗𝑗 𝑥𝑥−𝑥𝑥𝑗𝑗 , 𝑒𝑒−𝑖𝑖𝑘𝑘𝑗𝑗 𝑥𝑥−𝑥𝑥𝑗𝑗 , 𝑗𝑗 = 1,⋯ ,𝑁𝑁



Numerical traces:    

Interior nodes: �𝑢𝑢ℎ = 𝑢𝑢ℎ− − 𝑖𝑖𝑖𝑖(𝑞𝑞ℎ− − 𝑞𝑞ℎ+),  
�𝑞𝑞ℎ = 𝑞𝑞ℎ+ + 𝑖𝑖𝑖𝑖(𝑢𝑢ℎ− − 𝑢𝑢ℎ+).

Boundary nodes: 

which satisfy that 



Theorem: (Dong, Shu, Wang 2016)

Assume that  𝛼𝛼 > 0,𝛽𝛽 > 0, and 0 < 𝛾𝛾 < 1. For any mesh size 

ℎ > 0, we have 

𝑢𝑢 − 𝑢𝑢ℎ ≤ 𝐶𝐶 𝑓𝑓 1,∞(
ℎ2

𝜀𝜀
+
ℎ3

𝜀𝜀2
) 𝑢𝑢

where 𝐶𝐶 is a constant independent of 𝜀𝜀 and ℎ.

Error Estimate



Lemma: (Dong, Shu, Wang 2016)

If a function 𝜑𝜑 is the solution to the equation

−𝜀𝜀2𝜑𝜑′′ − 𝑓𝑓 𝑥𝑥 𝜑𝜑 = 𝜃𝜃,

where  𝜃𝜃 ∈ 𝐿𝐿2 Ωh , Π is the 𝐿𝐿2-projection onto 𝐸𝐸1, and 𝜓𝜓 = 𝜀𝜀𝜀𝜀𝜀, then on 

each 𝐼𝐼𝑗𝑗 ∈ Ωℎ , for any ℎ > 0, we have

𝜑𝜑 − Π𝜑𝜑 𝐼𝐼𝑗𝑗 + 𝜓𝜓 − Π𝜓𝜓 𝐼𝐼𝑗𝑗 ≤ 𝐶𝐶
ℎ
𝜀𝜀

( 𝜃𝜃 𝐼𝐼𝑗𝑗 + ℎ 𝑓𝑓 𝑊𝑊1,∞(𝐼𝐼𝑗𝑗) 𝜙𝜙 𝐼𝐼𝑗𝑗)

and

𝜑𝜑 − Π𝜑𝜑 𝜕𝜕𝐼𝐼𝑗𝑗 + 𝜓𝜓 − Π𝜓𝜓 𝜕𝜕𝐼𝐼𝑗𝑗 ≤ 𝐶𝐶
ℎ1/2

𝜀𝜀
( 𝜃𝜃 𝐼𝐼𝑗𝑗 + ℎ 𝑓𝑓 𝑊𝑊1,∞ 𝐼𝐼𝑗𝑗 𝜙𝜙 𝐼𝐼𝑗𝑗),

where 𝐶𝐶 is a constant independent of 𝜀𝜀 and ℎ.



High-order multiscale DG
DG formulation: the same
Numerical traces: the same 

Two high-order multiscale approximation spaces:

• 𝐸𝐸𝑝𝑝+2|𝐼𝐼𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒±𝑖𝑖𝑘𝑘𝑗𝑗 𝑥𝑥−𝑥𝑥𝑗𝑗 ,𝟏𝟏 ,𝒙𝒙,⋯ ,𝒙𝒙𝒑𝒑 for  any 𝑝𝑝 ≥ 0.

• 𝑇𝑇2𝑝𝑝+1|𝐼𝐼𝑗𝑗 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒±𝑖𝑖𝑘𝑘𝑗𝑗 𝑥𝑥−𝑥𝑥𝑗𝑗 , 𝒆𝒆±𝟐𝟐𝒊𝒊𝒌𝒌𝒋𝒋 𝒙𝒙−𝒙𝒙𝒋𝒋 ,⋯ , 𝒆𝒆± 𝒑𝒑+𝟏𝟏 𝒊𝒊𝒌𝒌𝒋𝒋 𝒙𝒙−𝒙𝒙𝒋𝒋 for any 𝑝𝑝 ≥ 0.

Remark:
• 𝐸𝐸𝑝𝑝+2|𝐼𝐼𝑗𝑗 = 𝐸𝐸1|𝐼𝐼𝑗𝑗⨁𝑃𝑃

𝑝𝑝, where 𝑃𝑃𝑝𝑝 is the space of polynomials up to degree 𝑝𝑝 on 𝐼𝐼𝑗𝑗 .
On each element 𝐼𝐼𝑗𝑗 ,𝐸𝐸𝑝𝑝+2 has the same number basis functions as 𝑃𝑃𝑝𝑝+2.

• When 𝑝𝑝 = 0, 𝑇𝑇2𝑝𝑝+1 = 𝑇𝑇1 = 𝐸𝐸1.
On each element 𝐼𝐼𝑗𝑗 , 𝑇𝑇2𝑝𝑝+1 has the same number of basis functions as 𝑃𝑃2𝑝𝑝+1.



Theorem: (Dong, Wang, submitted)

Suppose 𝑢𝑢ℎ and �𝑢𝑢ℎ are the solutions of the multiscale DG methods using 

𝐸𝐸𝑝𝑝+2 and 𝑇𝑇2𝑝𝑝+1, respectively.  Assume that 𝛼𝛼,𝛽𝛽 > 0 and 0 < 𝛾𝛾 < 1. 

When ℎ is small enough, for any 𝑝𝑝 ≥ 0, we have

𝑢𝑢 − 𝑢𝑢ℎ ≤ 𝐶𝐶ℎmin{𝑠𝑠+1,𝑝𝑝+3} 𝑢𝑢 𝑠𝑠+1 + 𝑞𝑞 𝑠𝑠+1 ,

𝑢𝑢 − �𝑢𝑢ℎ ≤ 𝐶𝐶ℎmin{𝑠𝑠+1,2𝑝𝑝+2} 𝑢𝑢 𝑠𝑠+1 + 𝑞𝑞 𝑠𝑠+1 ,

where 𝐶𝐶 is independent of ℎ.

Error Estimate
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Numerical Experiment 1:  (Constant 𝑓𝑓)
We take 𝛼𝛼 = 𝛽𝛽 = 1, 𝛾𝛾 = 0.5, and 𝑓𝑓(𝑥𝑥) = 10.

Table 1.  𝐿𝐿2-errors of multiscale DG methods when 𝜀𝜀 = 0.01.

Remark: For other values of 𝜀𝜀, the results are similar.



Numerical Experiment 2: (Accuracy test)

 Take 𝑓𝑓 𝑥𝑥 = 2 + sin 𝑥𝑥 .
 The reference solution is computed by 𝑀𝑀𝑀𝑀-𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃3 with 𝑁𝑁 = 500,000.

For 𝜀𝜀 = 0.01:



Comparison of our multiscale DG with the standard DG using polynomial basis
for 𝜀𝜀 = 0.01:



Comparison of our multiscale DG with the standard DG using polynomial basis 
for 𝜀𝜀 = 0.01:



Numerical Experiment 3: (Application to the RTD model):

• Double barriers of height −0.3v are located at [60, 65] and [70, 75].

• A bias of 0.08 V is applied.

• 𝐸𝐸 = 1.11 𝑒𝑒𝑒𝑒.

• Reference solution is computed using MD-LDG 𝑃𝑃3 using 13,500 cells.

• 54 uniform cells are used for multiscale DG with 𝐸𝐸1,𝐸𝐸2,𝐸𝐸3,𝑇𝑇3,𝑇𝑇5.



Table: 𝐿𝐿2-error by multiscale DG for Schrödinger eq. in RTD model

Fig. Wavefunction modulus by the multiscale DG with 𝐸𝐸1 space using 54 
uniform cells. Solid line: exact solution; dashed line: numerical solution. 
The graphs for using 𝐸𝐸2,𝐸𝐸3,𝑇𝑇3,𝑇𝑇5 are similar.



Conclusions and Future Work:

 When 𝑓𝑓 is constant, the multiscale DG methods can all resolve the 

exact solution. 

 We prove that the multiscale DG method using the 𝐸𝐸1 space has 

optimal convergence rate for any ℎ. 

 The high-order multiscale DG methods using 𝐸𝐸𝑝𝑝+2 𝑜𝑜𝑜𝑜 𝑇𝑇2𝑝𝑝+1 spaces 

have second-order convergence on coarse meshes and optimal high-

order convergence on fine meshes.

 The ongoing work is to generalize the multiscale DG methods to two-

dimensional Schrödinger equations.



Thank you!



where 𝛼𝛼 = 𝛽𝛽 = 𝛾𝛾 = 0
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