High-order multiscale discontinuous Galerkin methods for the one-dimensional stationary Schrödinger equation

Bo Dong

Department of Mathematics University of Massachusetts Dartmouth

Joint work with Wei Wang (Florida International Univ.) and Chi-Wang Shu (Brown Univ.) Partially supported by NSF and DOE

BIRS Workshop: Women In Numerical Methods for PDEs and their Applications, May 14, 2019

outline

Model problem

Multiscale discontinuous Galerkin (DG) methods

- a second-order multiscale DG
- two classes of higher order multiscale DG
- Numerical results
- Concluding Remarks

Application: modeling of quantum transport in nanoscale semiconductors

Resonant Tunneling Diode (RTD):

Figure: Schematics of the potential energy in a RTD (Ben Abdallah & Pinaud, 2006).

Schrödinger-Poisson problem for RTD:

• Schrödinger Eq. for wavefunction $\varphi_p(x)$:

$$\begin{cases} -\frac{\hbar^2}{2m} \,\varphi_p''(x) - q \,V(x) \,\varphi_p(x) = E \,\varphi_p(x) \quad \text{on } [a,b], \\ \hbar \,\varphi_p'(a) + ip \,\varphi_p(a) = 2ip, \quad \hbar \,\varphi_p'(b) = ip_b \,\varphi_p(b). \end{cases}$$

Total electrostatic potential $V = V_e + V_s$

• Electronic density:

$$n(x) = \int_{-\infty}^{\infty} g(p) \left| \frac{\varphi_p(x)}{\varphi_p(x)} \right|^2 dp.$$

• Poisson Eq. for V_s :

$$\begin{cases} V_{s}^{\prime\prime}(x) = \frac{q}{\epsilon} \left(n(x) - n_{D}(x) \right), \\ V_{s}(a) = V_{s}(b) = 0. \end{cases}$$

The algorithm for solving the Schrödinger -Poisson problem:

Numerical difficulties:

- Large number of Schrödinger equations to be solved
- Highly oscillating solution for large energy E is large.

Model problem

Schrödinger Eq. :

$$\begin{cases} -\frac{\hbar^2}{2m} \,\varphi_p''(x) - q \,V(x) \,\varphi_p(x) = E \,\varphi_p, (x), & a < x < b \\ \hbar \,\varphi_p'(a) + ip \,\varphi_p(a) = 2ip, & \hbar \,\varphi_p'(b) = ip_b \,\varphi_p(b). \end{cases}$$

Let
$$\varepsilon = \frac{\hbar}{\sqrt{2mE}}$$
, $f(x) = 1 + \frac{qV(x)}{E}$.

Model problem:

$$\begin{cases} -\varepsilon^2 u'' - f(x)u = 0, & a < x < b \\ u'(a) + ik_a u(a) = 2ik_a, & u'(b) - ik_b u(b) = 0, \end{cases}$$

where $0 < \varepsilon < 1$, and f(x) is independent of ε .

Assume f > 0. The solution is a wave function with wave number $k(x) = \frac{\sqrt{f(x)}}{c}$.

Standard finite element methods using polynomials require very fine mesh to capture oscillatory solutions.

Ν	<i>P</i> ¹				P ²					
	$\varepsilon = 10^{-2}$		$\varepsilon = 10^{-3}$	$\varepsilon = 10^{-3}$		$\varepsilon = 10^{-2}$		$\varepsilon = 10^{-3}$		
	Error	Order	Error	Order	Error	Order	Error	Order		
10	9.53E-01	_	9.51E-01	_	9.47E-01	_	9.51E-01	_		
20	9.60E-01	-0.01	9.51E-01	0.00	9.55E-01	-0.01	9.51E-01	0.00		
40	9.51E-01	0.01	9.51E-01	0.00	4.46E-01	1.10	9.51E-01	0.00		
80	1.17E-00	-0.29	9.51E-01	0.00	3.92E-02	3.51	9.52E-01	0.00		
160	7.88E-02	3.89	9.52E-01	0.00	4.42E-03	3.15	9.53E-01	0.00		
320	1.42E-02	2.47	9.57E-01	-0.01	5.51E-04	3.00	2.05E-00	-1.11		
640	3.49E-03	2.02	2.08E-00	-1.12	6.88E-05	3.00	7.72E-01	1.41		

E.g. LDG using piecewise <u>polynomials</u> of degree 1 and 2 for solving the Schrödinger eqn.

Previous work:

• Ben Abdallah, Pinaud, Mouis, Negulescu, Arnold, Polizzi (2004-2008, 2011)

<u>WKB asymptotics</u>: If E + qV > 0, when $\hbar \rightarrow 0$,

$$\varphi(x) \sim \frac{A}{\sqrt{k(x)}} e^{iS(x)} + \frac{B}{\sqrt{k(x)}} e^{-iS(x)}$$
, where $S(x) = \int_{x_0}^x k(s) ds$.

Multiscale continuous finite element basis:

$$\tilde{\varphi}(x) = \frac{A_j}{\sqrt{k(x)}} e^{i S(x)} + \frac{B_j}{\sqrt{k(x)}} e^{-i S(x)}, x \in I_j.$$

• Wang, Shu (2008)

WKB- local DG method:

$$E^{2} = \left\{ v_{h} : v_{h} |_{I_{j}} \in \operatorname{span}\left\{ 1, e^{ik_{j}(x-x_{j})}, e^{-ik_{j}(x-x_{j})} \right\}, \ j = 1, \cdots, N \right\},$$

where $k_j = k(x_j)$, x_j is the middle point of I_j .

Our second-order multiscale DG method

Finite element space:

$$E^{1} = \left\{ v_{h} : v_{h} \Big|_{I_{j}} \in \operatorname{span} \left\{ e^{ik_{j}(x-x_{j})}, e^{-ik_{j}(x-x_{j})} \right\}, \qquad j = 1, \cdots, N \right\}$$

Model Eq.:
$$-\varepsilon^2 u'' - f(x)u = 0$$

Mixed form:
$$q - \varepsilon u' = 0$$
,
 $-\varepsilon q' - f(x)u = 0$.

DG formulation:

$$\begin{cases} \int_{I_j} q_h v \, dx + \int_{I_j} \varepsilon \, u_h v' dx - \varepsilon \, \hat{u}_h v \big|_{x_j}^{x_{j+1}} = 0, \\ \int_{I_j} \varepsilon \, q_h w' dx - \varepsilon \, \hat{q}_h w \big|_{x_j}^{x_{j+1}} - \int_{I_j} f(x) u_h w \, dx = 0. \end{cases}$$

Numerical traces:

Interior nodes:
$$\hat{u}_{h} = u_{h}^{-} - i\beta(q_{h}^{-} - q_{h}^{+}),$$
$$\hat{q}_{h} = q_{h}^{+} + i\alpha(u_{h}^{-} - u_{h}^{+}).$$
Boundary nodes:
$$\begin{bmatrix} \hat{u}_{h}(a) = (1 - \gamma)u_{h}(a) + i\frac{\gamma}{\sqrt{f_{a}}}q_{h}(a) + 2\gamma,$$
$$\hat{q}_{h}(a) = \gamma q_{h}(a) - i(1 - \gamma)\sqrt{f_{a}}u_{h}(a) + 2i(1 - \gamma)\sqrt{f_{a}},$$
$$\begin{bmatrix} \hat{u}_{h}(b) = (1 - \gamma)u_{h}(b) - i\frac{\gamma}{\sqrt{f_{b}}}q_{h}(b),\\\hat{q}_{h}(b) = \gamma q_{h}(b) + i(1 - \gamma)\sqrt{f_{b}}u_{h}(b), \end{bmatrix}$$

which satisfy that

$$\widehat{q}_h(a) + i\sqrt{f_a}\widehat{u}_h(a) = 2i\sqrt{f_a}, \quad \widehat{q}_h(b) - i\sqrt{f_b}\widehat{u}_h(b) = 0.$$

Error Estimate

In our analysis, we assume that $f \in W^{1,\infty}(\Omega)$ and

 $f(x) \ge \tau > 0$ for any $x \in \Omega_h$.

Theorem: (Dong, Shu, Wang 2016)

Assume that $\alpha > 0, \beta > 0$, and $0 < \gamma < 1$. For any mesh size

h > 0, we have

$$\|u - u_h\| \le C \|f\|_{1,\infty} \left(\frac{h^2}{\varepsilon} + \frac{h^3}{\varepsilon^2}\right) \|u\|$$

where C is a constant independent of ε and h.

Lemma: (Dong, Shu, Wang 2016)

If a function φ is the solution to the equation

$$-\varepsilon^2\varphi^{\prime\prime}-f(x)\varphi=\theta,$$

where $\theta \in L^2(\Omega_h)$, Π is the L^2 -projection onto E^1 , and $\psi = \varepsilon \varphi'$, then on each $I_j \in \Omega_h$, for any h > 0, we have

$$\|\varphi - \Pi\varphi\|_{I_{j}} + \|\psi - \Pi\psi\|_{I_{j}} \le C\frac{h}{\varepsilon}(\|\theta\|_{I_{j}} + h|f|_{W^{1,\infty}(I_{j})}\|\phi\|_{I_{j}})$$

and

$$\|\varphi - \Pi\varphi\|_{\partial I_j} + \|\psi - \Pi\psi\|_{\partial I_j} \le C \frac{h^{1/2}}{\varepsilon} (\|\theta\|_{I_j} + h|f|_{W^{1,\infty}(I_j)} \|\phi\|_{I_j}),$$

where *C* is a constant independent of ε and *h*.

High-order multiscale DG

DG formulation: the same

Numerical traces: the same

Two high-order multiscale approximation spaces:

•
$$E^{p+2}|_{I_j} = span\left\{e^{\pm ik_j(x-x_j)}, \mathbf{1}, x, \cdots, x^p\right\}$$
 for any $p \ge 0$.
• $T^{2p+1}|_{I_j} = span\left\{e^{\pm ik_j(x-x_j)}, e^{\pm 2ik_j(x-x_j)}, \cdots, e^{\pm (p+1)ik_j(x-x_j)}\right\}$ for any $p \ge 0$.

Remark:

- E^{p+2}|_{Ij} = E¹|_{Ij}⊕P^p, where P^p is the space of polynomials up to degree p on I_j. On each element I_j, E^{p+2} has the same number basis functions as P^{p+2}.
 When p = 0, T^{2p+1} = T¹ = E¹.
 - On each element I_i , T^{2p+1} has the same number of basis functions as P^{2p+1} .

Theorem: (Dong, Wang, submitted)

Suppose u_h and \tilde{u}_h are the solutions of the multiscale DG methods using E^{p+2} and T^{2p+1} , respectively. Assume that $\alpha, \beta > 0$ and $0 < \gamma < 1$. When h is small enough, for any $p \ge 0$, we have $\|u - u_h\| \le Ch^{\min\{s+1,p+3\}}(\|u\|_{s+1} + \|q\|_{s+1}),$ $\|u - \tilde{u}_h\| \le Ch^{\min\{s+1,2p+2\}}(\|u\|_{s+1} + \|q\|_{s+1}),$

where C is independent of h.

outline

Model problem

Multiscale discontinuous Galerkin (DG) methods; error estimates

- a second-order multiscale DG
- two classes of higher order multiscale DG

Concluding Remarks

Numerical Experiment 1: (Constant *f*)

We take
$$\alpha = \beta = 1, \gamma = 0.5$$
, and $f(x) = 10$.

Table 1. L^2 -errors of multiscale DG methods when $\varepsilon = 0.01$.

N	E^1	E^2	E^3	T^3	T^5
10	6.93E-13	7.05E-13	6.38E-13	6.82E-13	6.69E-13
100	5.92E-13	5.67 E- 13	5.62E-13	5.74E-13	5.63E-13

Remark: For other values of ε , the results are similar.

Numerical Experiment 2: (Accuracy test)

- \blacktriangleright Take $f(x) = 2 + \sin x$.
- > The reference solution is computed by *MD-LDG* P^3 with N = 500,000.

For $\varepsilon = 0.01$:		E^1		E^2		E^{3}	
	N	error	order	error	order	error	order
	10	2.56E-02	_	2.54E-02	_	2.22E-02	
	20	7.08E-03	1.85	3.49E-03	1.92	2.56E-03	3.12
	40	2.50E-03	1.50	6.19E-04	3.44	6.28E-04	2.03
	80	4.37E-04	2.52	1.22E-04	2.35	3.71E-05	4.08
	160	7.17E-05	2.61	2.90E-05	2.07	1.45E-06	4.67
	320	1.60E-05	2.17	5.43E-06	2.42		
	640	3.89E-06	2.04	8.35 E-07	2.70		

	T^3		T^5	
N	error	order	error	order
10	2.53E-02	_	2.52E-02	_
20	7.05E-03	1.84	7.14E-03	1.82
40	1.03E-03	2.77	2.95E-04	4.60
60	7.74E-05	6.39	1.36E-05	7.58
80	2.02E-05	4.67	1.86E-06	6.94
100	7.13E-06	4.67		

Comparison of our multiscale DG with the standard DG using polynomial basis for $\varepsilon = 0.01$:

P^1			P^2		P^3	P^3		
N	error	order	error	order	error	order		
10	9.53E-01		9.47E-01		9.48E-01	_		
20	9.60E-01	-0.01	9.55E-01	-0.01	1.63E + 00	-0.78		
40	9.51E-01	0.01	4.46E-01	1.10	7.45E-02	4.45		
80	1.17E-00	-0.29	3.92E-02	3.51	4.23E-03	4.14		
160	7.88E-02	3.89	4.42E-03	3.15	2.67E-04	3.98		

	E^1		E^2		E^3	
N	error	order	error	order	error	order
10	2.56E-02	_	2.54E-02	_	2.22E-02	_
20	7.08E-03	1.85	3.49E-03	1.92	2.56E-03	3.12
40	2.50E-03	1.50	6.19E-04	3.44	6.28E-04	2.03
80	4.37E-04	2.52	1.22E-04	2.35	3.71E-05	4.08
160	7.17E-05	2.61	2.90E-05	2.07	1.45E-06	4.67
320	1.60E-05	2.17	5.43E-06	2.42		
640	3.89E-06	2.04	8.35E-07	2.70		

Comparison of our multiscale DG with the standard DG using polynomial basis for $\varepsilon = 0.01$:

	P^1		P^2		P^3	
N	error	order	error	order	error	order
10	9.53E-01	_	9.47E-01	_	9.48E-01	
20	9.60E-01	-0.01	9.55E-01	-0.01	1.63E + 00	-0.78
40	9.51E-01	0.01	4.46E-01	1.10	7.45E-02	4.45
80	1.17E-00	-0.29	3.92E-02	3.51	4.23E-03	4.14
160	7.88E-02	3.89	4.42E-03	3.15	2.67 E-04	3.98

	E^1		E^2		E^{3}	
N	error	order	error	order	error	order
10	2.56E-02	_	2.54E-02	_	2.22E-02	_
20	7.08E-03	1.85	3.49E-03	1.92	2.56E-03	3.12
40	2.50E-03	1.50	6.19E-04	3.44	6.28E-04	2.03
80	4.37E-04	2.52	1.22E-04	2.35	3.71E-05	4.08
160	7.17E-05	2.61	2.90E-05	2.07	1.45E-06	4.67
320	1.60E-05	2.17	5.43E-06	2.42		
640	3.89E-06	2.04	8.35E-07	2.70		

Numerical Experiment 3: (Application to the RTD model):

• Double barriers of height -0.3v are located at [60, 65] and [70, 75].

- Reference solution is computed using MD-LDG P^3 using 13,500 cells.
- 54 uniform cells are used for multiscale DG with E^1 , E^2 , E^3 , T^3 , T^5 .

Table: *L*²-error by multiscale DG for Schrödinger eq. in RTD model

Fig. Wavefunction modulus by the multiscale DG with E^1 space using 54 uniform cells. Solid line: exact solution; dashed line: numerical solution. The graphs for using E^2 , E^3 , T^3 , T^5 are similar.

Conclusions and Future Work:

- When f is constant, the multiscale DG methods can all resolve the exact solution.
- > We prove that the multiscale DG method using the E^1 space has optimal convergence rate for any h.
- The high-order multiscale DG methods using E^{p+2} or T^{2p+1} spaces have second-order convergence on coarse meshes and optimal highorder convergence on fine meshes.
- The ongoing work is to generalize the multiscale DG methods to twodimensional Schrödinger equations.

Thank you!

N	$\varepsilon = 1$		$\varepsilon = 10^{-2}$		$\varepsilon = 10^{-3}$		$\varepsilon = 10^{-4}$	
	Error	Order	Error	Order	Error	Order	Error	Order
10	4.02E-06	_	2.54E-2	_	2.52E-01	_	1.58E-00	_
20	5.70E-07	2.82	5.70E-02	-1.17	6.58E-02	1.94	6.21E-01	1.35
40	_	_	5.51E-04	6.69	1.58E-02	2.06	1.58E-01	1.97
80	_	_	7.43E-05	2.89	3.89E-03	2.02	3.96E-02	2.00
160	_	_	9.63E-06	2.95	7.56E-03	-0.96	9.90E-03	2.00
320	_	_	1.21E-06	2.99	1.16E-04	6.03	3.68E-03	1.43
640	-	_	1.55E-07	2.97	1.41E-05	3.04	7.13E-04	2.37

*L*²-errors and orders of accuracy by WKB-LDG in [18] where $\alpha = \beta = \gamma = 0$