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The medical problem

I Mechanical ventilation of intensive care patients
leads to Ventilator induced diaphragmatic
dysfunction (VIDD).

I In normal breathing the diaphragm contracts, but
ventilation stretches the muscle.

I Significant loss off function in short time, O(24h).

I Goal: Understand effect, reduce effect, plan
rehabilitation.
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The numerical problem for the diaphragm

I Non-trivial patient-specific geometry. Thin domain
with aspect ratio 1:100. Resolution?

I Mix of pressure boundary conditions and attachment
conditions. Good normals needed!

I Non-linear constitutive relations and large
deformation.

I Coupled to rib rotation, abdomen and lungs.
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The input data

Manually segmented medical images

Low contrast leads to noisy segmentation. The image
normals are not useful for computational purposes.

Conversion to point cloud/tetrahedral mesh

Noise both in surface representation and normals. Very
few nodes inside the volume. Mesh artifacts.
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Localized radial basis function methods

I Meshfree methods working
on scattered nodes.

I Approximations
ũ(x) =

∑N
j=1 λjφ(‖x − xj‖).

I RBF-PUM: Approximations on patches are combined
using weight functions ũ(x) =

∑M
k=1 wk(x)ũk(x).

I RBF-FD: Stencil weights are computed for each
node using the local RBF approximation.
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Geometry representation—Patches

Assumptions and needs

I The initial point cloud is quasi uniform.

I There is some kind of surface representation.

I Patches are convex objects.

I There is only one layer of patches.

I Each part of the domain is covered.

Method

1. Use kmeans for patch centers and
PCA for patch orientation.

2. Extend radius to cover each surface
element and to ensure overlap.
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Smoothing surface approximation

No obvious way
to add surfaces.

I In the local coordinate system of each patch, we
construct the functions zin(x , y) and zout(x , y).

I The same node template is used for all patches.

I A least squares approximation of the initial surface
points is computed.

I We use a polyharmonic spline basis φ(r) = |r |3
augmented with a linear polynomial basis.

I The Woodbury formula is used to exclude nodes
outside the data support.

E. Larsson, May 14, 2019 (7 : 14)



Thin PDEs
Motivation

RBF methods

Geometry

Approximation

Summary

Global distance function

I The two surface approximations provide non-noisy
3-D distance data. Opposite directions.

I We again use least squares spline approximation on
template nodes, now within the 3-D cylinder patch.

I The local function value in patch Ωj is given by
uj = max(uin, uout).

I The global function is constructed as
U =

∑M
j=1 wjuj , where wj and uj are C 2 at the

surface.

I We can use U to compute normals and to place
node points.

Piret (2012) Orthogonal gradients
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Evaluating the geometry representation

Mesh intersection (black),
smooth contours.

Locally non-smooth mesh
(black), smooth contours.

Inner surface, trouble spots.

Diff [mm] Inner Outer

Max 2.6 2.4
Min -3.3 -2.4
Mean 0.002 0.011
RMS 0.40 0.47
Relative ∼ 4%
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Anisotropic PDE approximation

hx = 10hy With scale
invariant basis,
this is the same.

Why do we need it?

I There are relevant changes in the thickness direction.

I ’Long’ dimensions are expensive to (over)resolve.

How do we do it?

I RBF-FD: Adjust nodes and stencils.

I RBF-PUM: ’Blow up’ local thickness.
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Approximation analysis + experiment

I Polyharmonic splines + poly = scale invariant.
I PHS + poly of degree k ⇒ Exact for polynomials of

degree ≤ k.
I For ’well distributed’ nodes, only the number of

nodes in the local approximation are important.
I By splitting the function into a polynomial part and

a remainder, we get ‖e‖L2(Ω) ≤ Chk+1|f |W k+1
2 (Ω).

I Scaling arguments: Best stencil makes f ’round’.
Anisotropicity of function s and coordinate transformation β.

Interpolation experiment
with anisotropic function and
anisotropic stencil scaling.
(k = 6 is the best picture.)
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Preliminary results linear elasticity

Displacement Stresses

Poly degree k = 3 (red), Poly degree k = 3 (all)
k = 4 (green), k = 5 (blue).

I Dashed lines, no refinment in the thickness direction.

I Done before the geometry part was finished.

I Stress convergence too good in comparison.
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New experiment linear elasticity

Displacement Stresses

Poly degree k = 3 (red), Poly degree k = 3 (all)
k = 4 (green), k = 5 (blue)

Trendline p = −2 Trendline p = −1

I More points in thickness needed for higher k .

I New geometry used, results are more consistent.

I For degree k and PDE of degree 2, order k + 1− 2 is
expected.
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Summary

I Framework for smoothing the geometry in place.

I RBF-PUM framework also in place.

ToDo

I Try out least squares RBF-PUM with local inflation
for the PDE problem.

I Generating better node sets for RBF-FD.

I Some remaining geometrical details to handle.

I See if we can make convergence experiments and
convergence analysis meet.
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