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Hyperbolic Conservation Laws

We consider hyperbolic conservation laws in two and three
spatial dimentions

∂

∂t
u +∇ · F (u) = 0,

where

u = (u1, u2, ..., uM )ᵀ conserved variables
F = (F1,F2) problem dependent flux function

Examples: Euler, MHD, Maxwell,...
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Oscillatory solutions

Solutions of nonlinear hyperbolic conservation laws can develop
discontinuities

Near discontinuities, numerical solution produces oscillations and
may become unstable

Oscillations are characterized by steep slopes that we reduce, i.e.
limit

Propagation of a pulse. Left: no limiting, Right: with a limiter.
Blue: averages, Red: linear solutions 3 / 37



Oscillatory solution to Noh problem

The exact solution is constant in the center of the domain,
the numerical solution is highly oscillatory due to poor
limiting.
Left: side view, Right: tilted view.
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Limiters in 1D

In one dimension, we have a fully developed theory for stability
and second order accuracy using total variation

TV (U) =
∑
i

|Ui − Ui−1|

Limiters enforce total variation diminishing property (TVD)

TV (Un+1) ≤ TV (Un)

The standard DG limiter for

Ui = ci,0 + ci,1ξ

compares the solution slope ci,1 to the backward ci,0 − ci−1,0 and
forward ci+1,0 − ci,0 differences in averages

c̃i,1 = minmod(ci,1, ci,0 − ci−1,0, ci+1,0 − ci,0)
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Limiters in 2D and 3D

A lot of limiters have been proposed

Many are too complicated to be practical

Most are ad-hoc

Goal: limiters for DG that are

easy to implement

fast to execute

with some theoretical backing: conditions on second order
accuracy and stability

robust
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Total variation in 2D

Total variation in 1D

TV (U) =
∑
i

|Ūi − Ūi−1|

Total variation on Cartesian grids, where TVD schemes are at
most 1st order accurate

TV (U) =
∑
i

|Ūi,k − Ūi−1,k|+
∑
k

|Ūi,k − Ūi,k−1|

Total variation on triangular grids: difficult to define

Original mesh Refined mesh.
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Local Maximum Principle (LMP)

The numerical solution satisfies the local maximum principle (LMP) if

Umin = min
j∈Ni

U
n

j ≤ U
n+1

i ≤ max
j∈Ni

U
n

j = Umax

where Ni is a set containing the indices of elements in the
neighborhood of Ωi and U

n

i is the cell average.

LMP guarantees that the solution will not grow in amplitude

LMP (below, right) is weaker than TVD (below, left)

Ωi−1 ΩiΩi−2 Ωi−1 ΩiΩi−2
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Scalar limiters

Numerical solution on Ωi in terms of orthonormal basis functions
ϕj and degrees of freedom ci,j

Ũi = ci,0 + ci,1ϕ1 + ci,2ϕ2

Simple idea: require values of Ui at some limit points (ξl, ηl) to
be within a range defined by averages its neighbors

Umin ≤ Ui(ξl, ηl) ≤ Umax

where Umin = minj Ūj and Umax = maxj Ūj .

If the condition is failed, scale the slope of Ui by 0 ≤ α ≤ 1

Ũi = ci,0 + α(ci,1ϕ1 + ci,2ϕ2)

until it is satisfied.

9 / 37



Limiting neighborhoods

Who are the neighbors?

Elements sharing edges with Ωi (edge neighborhood)

Elements sharing vertices with Ωi (vertex neighborhood)

Other choices

Ωi

Edge-neighborhood
Ne

i : Ωi and all
elements that share an
edge with Ωi.

Ωi

Vertex-neighborhood
Nv

i : Ωi and all
elements that share a
vertex with Ωi.

Ωi

Reduced
neighborhood Nr

i : Ωi

and three vertex
neighbors.
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Limiting points

Would should limiting points be?

Edge midpoints (as in FVM)

Quadrature points (as input values in propagation of Ui)

Vertices (as local min and max values)

xi

Edge midpoints rule.

xi

Two-point Gauss-Legendre
quadrature rule.
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Local maximum principle

Result: Solution will satisfy local maximum principle when we limit
at quadrature points (or closer to vertices than quadrature points) and

∆t ≤ 1

6
min
i

hi
||a||

ei,J

Hi,J

hi

a

ni,J

θ

θ

Cell size in the
direction of flow hi.

Hi,3

Hi,2

Hi,1

ei,1

ei,2
ei,3

Cell size for systems
hi =
min(Hi,1, Hi,2, Hi,3).

A. Giuliani and L. Krivodonova. Analysis of slope limiters on unstructured triangular
meshes.JCP’18
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Admissibility region

Result: Solution will be 2nd order accurate when limit points belong
to the admissibility region, which is the convex hull of centroids of
elements involved in limiting (shaded regions)

v2

v1

v0

xi

Edge-
neighborhood,
equilateral
triangles.

v2

v0

v1

xi

Edge-
neighborhood,
deformed
triangles.

x0

xi

v1

v2

x4

v3
v5

v6

v7

x8

v9

v10

v11

Vertex-
neighborhood.

xi

v0

v2

v1

Reduced-
neighborhood.
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Rotating slotted cylinder and cone

Two-point limiting, edge
neighborhood.

Two-point limiting, vertex
neighborhood.
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Moment Limiter / Directional Derivatives

Limit each linear coefficient separately

Ũi = ci,0 + l1ci,1ϕ1 + l2ci,2ϕ2

Consider the directional derivative of Uni (r) in the direction of w, in
the canonical coordinate system r = (r, s)

DwU
n
i (r) = ∇rsUi ·w =

(
cni,1∇rsϕ1 + cni,2∇rsϕ2

)
·w

or
DwU

n
i (r) =

(
cni,1 (6 , 0) + cni,2

(
2
√

3 , 4
√

3
))
·w

In the directions w1 = 2√
5

(
1,− 1

2

)
and w2 = (0, 1), the directional

derivatives decouple cni,1 and cni,2

Dw1
Uni = 6

(
2√
5

)
cni,1 and Dw2

Uni = 4
√

3cni,2

and we can try to use the ideas of 1D limiting along lines w1 and w2.
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Directional Derivatives

We map w1 and w2 from the canonical to the physical space:
w1 → vi,1 and w2 → vi,2 and solve for ci,1 and ci,2.

ci,1 =
hi,1
6
Dvi,1Ui and ci,2 =

hi,2

4
√

3
Dvi,2Ui

ci,1 is a scaled derivative in direction vi,1 and ci,2 is a scaled
derivative in direction vi,2

hi,2

hi,1

xi,1

xi,2

xi,3
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Directional limiting

We limit the solution in the directions vi,1 and vi,2 by
comparing it to forward and backward differences using
reconstructed solution values.

Unlimited coefficients:

ci,1 =
hi,1

6 Dvi,1Ui and ci,2 =
hi,2

4
√

3
Dvi,2Ui

Limited coefficients

c̃i,1 = lfi,1
hi,1

6

Uf
i,1−U i

dfi,1
or c̃i,1 = lbi,1

hi,1
6

U i − U b
i,1

dbi,1
,

c̃i,2 = lfi,2
hi,2

4
√

3

Uf
i,2 − U i

dfi,2
or c̃i,2 = lbi,2

hi,2

4
√

3

U i − U b
i,2

dbi,2
,

where dfi,1 is the distance from xf
i,1 to xi, etc.
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Reconstruction directions, points and values

Ωj

Ωk

Ωm

Ωn

Ωi

−vi,1

vi,1

xb
i,1

xf
i,1

vi,2

−vi,2

xb
i,2

xf
i,2

xi,2

xi,3

xi,1

Uf
i,1 = βfi,1Ūm + (1− βfi,1)Ūn U b

i,1 = βbi,1Ūj + (1− βbi,1)Ūk
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Admissible choices for limiting coefficients li,1, li,2

Derive a set of inequalities li,1 and li,2 should satisfy for solution
to satisfy LMP and be 2nd order accurate (dashed lines
correspond to the equal sign)

Any point in the shaded will result in a valid limiter

Points close to the boundaries give less diffusive solutions

Choose the simplest among less restrictive limiters

4γfi,2

li,2

li,1

4γbi,2ri,2

6γfi,1 6γbi,1ri,13γfi,13γ
b
i,1ri,1

2γbi,2ri,2

A. Giuliani and L. Krivodonova. A moment limiter for the discontinuous Galerkin
method on unstructured triangular meshes. SISC’19
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Moment Limiter in 2D

c̃i,1 = minmod

(
Ufi,1 − U

n

i

2
, ci,1,

U
n

i − U bi,1
2

)

c̃i,2 = minmod

(
Ufi,2 − U

n

i

2
√

3
, ci,2,

U
n

i − U bi,2
2
√

3

)

Ufi,1 = βbi,1U
n

j + (1− βbi,1)Uk

U bi,1 = βfi,1U
n

m + (1− βfi,1)U
n

n

Ufi,2 = βbi,2U
n

s + (1− βbi,2)U
n

t

U bi,2 = βfi,2U
n

u + (1− βfi,2)U
n

w

We store for each element Ωi

Pointers to the eight
elements involved in the
stencil:
cj,0,ck,0,cm,0,cn,0,cs,0,ct,0,
cu,0,cw,0

four coefficients
βfi,1, β

b
i,1, β

f
i,2, β

b
i,2
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Moment Limiter in 3D

c̃i,1 = minmod

(
Ufi,1 − U

n

i√
10

, ci,1,
U
n

i − U bi,1√
10

)

c̃i,2 = minmod

(
Ufi,2 − U

n

i

2
√

5
, ci,2,

U
n

i − U bi,2
2
√

5

)

c̃i,3 = minmod

(
Ufi,3 − U

n

i

2
√

15
, ci,3,

U
n

i − U bi,3
2
√

15

)

We store for each element Ωi

Pointers to the 18 elements involved in the stencil

18 weights
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Moment limiter in 3D

Same idea as in 2D: Find three directions in which directional
derivatives of U uncouple the solution coefficients

x1

x2

x3

x4

X

Y

Z

Triangulation of the convex hull
of neighboring centroids.

x1

x2

x3

x4

xf
i,1

xb
i,1

X

Y

Z

Interpolation planes for vi,1.
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Mach 10 shock interracting with a bubble
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Time step restriction in 2D

Bounds of solution are guaranteed under the following CFL condition:

∆t ≤ 1

4
min
i

hi
||a||

where hi is the width in the direction of the flow.

ei,J

Hi,J

hi

a

ni,J

θ

θ

Cell size in the direction of flow
hi.

Hi,3

Hi,2

Hi,1

ei,1

ei,2
ei,3

Cell size for systems
hi = min(Hi,1, Hi,2, Hi,3).
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Time step restrictions in 3D

Bounds of solution are guaranteed under the following CFL condition:

∆t ≤ 1

6

hi
||a||

where hi is the width in the direction of the flow.

Three inflow faces and one
outflow face.

Two inflow faces and two outflow
faces.
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Verification of CFL number in 3D

We solve the linear advection equation with

u0(x, y, z) =

{
1 if

√
x2 + y2 + z2 ≤ 1

4

0 otherwise,

1/CFL Minimum Maximum
3 -0.8727 2.0377
4 -0.3134 1.3169

5.5 -0.001642 1.0004169
6 0 1

(a) Forward Euler.

1/CFL Minimum Maximum
3 -0.01077 1.0122
4 -8.271e-7 1

5.5 0 0.9999
6 0 0.9999

(b) RK2.

Table 1: Minimum and maximum cell averages for various CFL
numbers.
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Adaptive refinement and limiting on nonconforming
meshes

Shaded triangles are
flagged for refinement.

Cell-based refinement.

Cell-based refinement on an unstructured mesh of triangles.

Extend both limiters to noncomforming meshes where
neighboring elements might be of different sizes.
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Double Mach reflection with 7 levels of refinement,
t=0.2

28 / 37



Runtime comparison moment vs scalar limiters

moment scalar
Total run time 1453.59s 1963.3s
Limiting time 51.58s 273.13s

Setting up neighborhood from vertex database 165.8s 81.5s
Average number of elements in the domain 140780.98 160602.9

Number of refinement cycles 24495 30647

Refining every 2 time steps.

Moment scalar
Total run time 1688.56s 1984.4s
Limiting time 68.98s 311.5s

Setting up neighborhood from vertex database 46.92s 18.94s
Average number of elements in the domain 189347.3 190121.87

Number of refinement cycles 5792 5970

Refining every 10 time steps.

Moment limiter: find new points and weights. More expensive to
set up but cheaper to run.

Scalar limiter: use immediate neighbors (avoid projections).
Easier to set up but more expensive to run.
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Mach paradox

I

MS

TP

MS’

R’

R

S
S’

TP’

Double Mach reflection.

IR

MS

TP

Guderley Mach reflection.

Figure 1: Double Mach and Guderley reflections. The incident (I),
primary and secondary reflected shocks (R, R’), Mach stems (MS,
MS’) and sliplines (S, S’) are indicated. The sonic line in the
Guderley Mach reflection case is indicated by the dashed-dotted line.
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Domain and initial mesh for self-similar computations

ξ = 1.075
θ = 15◦

UI

UQ

Computational domain. The incident
UI and quiescent UQ states are
imposed on the red and blue
boundaries, respectively. The bottom
boundary is reflecting.

ξ = 1.075
θ = 15◦

Initial, conforming mesh.
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Final mesh of about 6.2 million cells

Adaptively refined
mesh.

First zoom of Mach
stem and triple point
region.

Second zoom of Mach
stem and triple point
region.
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Zoom of solution near triple point

1.07440 1.07500

0.41066

1.07460

0.41089

1.07520

0.41111

0.41022

0.41044

0.41133

1.07540

0.41155

0.41178

1.07480

0.41200

x/t

y/t

h ≈ 4.3 · 10−6

1.07440 1.07460 1.07500 1.07520 1.075401.07480
0.41022

0.41044

0.41066

0.41089

0.41111

0.41133

0.41155

0.41178

0.41200

x/t

y/t

h ≈ 5.8 · 10−7

A. Giuliani and L. Krivodonova. Adaptive mesh refinement on graphics processing units
for applications in gas dynamics.JCP’19 33 / 37



Conclusion

We introduced a new approach to second order limiting for
DG in 2D and 3D and analyzed old limiters

We can prove 2nd order accuracy and tight bounds on the
solution

Limiter acts like a TVD-type limiter in two (in 2D) or 3 (in
3D) separate directions
Bounds are proven using local maximum principle
Conditions for 2nd order accuracy derived

Limiter is easy to implement and very efficient

Stencil is small (for 2D and 3D problems)
Stencil is fixed and does not depend on unstructured mesh
configuration
Stencil and weights are computed as a preprosessing step

Limiters (scalar and moment) extended to non-conforming
meshes
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Accuracy

We solve the linear advection equation with the flux
F(u) = [u, u, u] and the initial condition

u0(x, y, z) =

{
cos2

(
π
2 r
)

if r ≤ 1,

0 elsewhere.

where r = 2
√
x2 + y2 + z2 until the final time T = 0.25.

101 102 103
10−4

10−3

10−2

(Number of elements)
1
3

L
1

er
ro

r

Convergence study

Moment limiter
No limiter
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Rotating slotted cylinder and cone

−0.8 −0.6 −0.4 −0.2
0.5
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x
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Edge, 1−point
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Vertex, 1−point
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(h) Profile at the cone.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5
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0.8

0.9

1

x
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Edge, 1−point
Edge, 2−point
Vertex, 1−point
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Reduced, 1−point
Reduced, 2−point
Exact

(i) Profile at the slotted cylinder.
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Full set of limiting inequalities on outflow edges

One condition imposed by Ωi and one by its edge neighbor:

li,1

6γfi,1
+

li,2
4γbi,2ri,2

≤ 1 and
li,1

6γbi,1ri,1
+

li,2

4γfi,2
≤ 1 if k = 1

li,1

6γfi,1
+

li,2

4γfi,2
≤ 1 and

li,1
6γbi,1ri,1

+
li,2

4γbi,1ri,2
≤ 1 if k = 2

li,1
3γbi,1ri,1

≤ 1 and
li,1

3γfi,1
≤ 1 if k = 3

Ωk

Ωj

Ωm

Ωi
a

xi,3

xi,1

xi,2

(0, 0) (1, 0)

(0, 1)

Ω0

r

s

edge 2
edge 3

(0, 0) (1, 0)

(0, 1)

Ω0

r

s

edge 2
edge 3

edge 1
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