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The Funk-Minkowski-Radon transform

Paul Funk (1911), based on a work by Minkowski (1904)

Integrates functions over the intersections of S"~1 C R” and linear k-spaces E,
1 < k < n fixed:

(Fof)(E) = / F(x) dA1 (),
sn—1lng

where dA,_1 is the surface area measure on Sk=1 = §"=1n E.

o

Thus, Fo: C(S"1) — C(Gro(n, k)) (functions on the k-Grassmanian),
Gro(n,n—1) = §n—1,
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Background

» Kernel = odd functions

> Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, n =3,k = 2: ).

8

d

(F;lg)(x) = i [d (F*g)(arccos v,x)v(s2 — v2)7%dv} |s=1,

o\

where 1
(F g)(p,x) =

= g(u) du.
2mcosp

|u|=1,(x,u)=sin p
It provides the right inverse operator:
FoFy 'f = f, f € C(Gro(n, k)).

Action from the left:
Fo 'Fof =, fe C(s" 1),

where fT(x) = %(f(x) + f(—x))- the even part of f.
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Applications

» Diffusion MRI (Q-ball method, Tuch (2004)).

» Convex geometry, intersection bodies problems:

Volume of a k-dim linear cross-section is the Funk transform of the radial
function:

Viknp) = [ Ao,

sn=1np

pk(0) = max{t: t0 € K}.
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Main questions

Kernel

Range

Subspaces of injectivity
Inversion formula / procedure

Multiple Funk transform f — (Fa,, ..., Fay) - injectivity ?



Review

la| =1 - A. Aboulaz and R. Daher (1993), S. Helgason (2011)

|a] <1 - Salman: n =3, k = 2, stereographic projection; link to the plane Radon
transform (cumbersome computations).

la| <1, k=n—1,- M. Quellmalz, B. Rubin: constructing a special transformation
of the ball; link between F, and Fy, deriving F;l from Fofl.

Eluded from attention:
Group action on B" is behind the problem

Group-theoretical view; link with with the structure of hyperbolic space H".
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An universal approach: action of the hyperbolic group

Caley model of hyperbolic space
2 2 2

Lorentz group SO(n, 1) : linear transf’s of R™"! preserving Q(x) = x3 — x% — ... — x2.

Identify B" = {Q > 0} N {x = 1}.

50(n, 1) transitively acts on complexes of lines through 0 inside/outside the light
cone, and therefore induces an automorphism group Aut(B").

Important: Aut(B") preserves affine sections of B" | Elements of Aut(B") are
fractional-linear mappings.
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The strategy:

> Interior center : F;, |a| < 1. Moving a — 0 by ¢, € Aut(B"), ya(a) =0,
delivers a link between F; and Fy ( Central Funk transform ).

> Exterior center: F,, |b| > 1, Moving b to oo, via sending the inverse point
b* = ﬁ — 0 by pp« € Aut(B"), ¢p=(b*) = 0. Provides a bridge between Fj,

and M, (Parallel Slice Transform).

k-planes through a => keplanes through b =>
K-planes though 0 K-planes paraliel to the
vector b

> A key calculation: transformation of the integration measures on the k-sections
of §n—1, computing Jacobians.
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Intertwining relations

Thm (B. Rubin, M.A; the case |a| < 1,k = n — 1- M. Quellmalz)

‘ F,= ®,FoMa, |a| < 1. ‘

‘ Fp = ®peMyMps, |b| > 1, ‘

where the intertwining operator is

k—1
(MaF)(x) = <V1"2> Fa() |

l1—x-a

and the involutive automorphism ¢, € Aut(B") is

|a]?

a— 25+ /T-[aP(x — £2)

wa(x) = 1—x.2

(®.G)(E) = G(a(E)), E € Gra(n,k).‘
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Kernels and inversion of the standard transforms

Well studied.

» ker Fo = { odd functions }.
> F(;l written.

> kerly = { functions odd with respect to the hyperplane (x, b) = 0.
> I_I;1 written.

ker F ker b

panW

11/
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Inversion

> (Right) inverse operator for the interior center a:

Fil=M.Fylo,.

It reconstructs the a-even part:

1
FotFaf = S (F+pa(fom)) |

> (Right) inverse operator for the exterior center b:

‘F;l = My, ' by

g

(f + pp(fo Tb))

N | =

FylFuf =

- the b-even part of f € C(S"1).
13 /26
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Multiple Funk transform

Given A = {ay, ..., as} C R" define

Faf = (Fa,f, ..., Fa,f).

Q: For what sets A the multiple Funk transform F, is injective, i.e.,

ker Fp = Ni_ker Fo; = {0}?

Motivation: Single Funk data g, = F; is not enough to recover f € C(S"1), unless
|a| = 1. This gives rise to

Q: What sets g, = Fof, a € A, of Funk data uniquely determine f?
Q: How to reconstruct f from g,,a € A?

We will give answers for two-point sets A = {a, b}.
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The double reflection billiard T

To formulate the injectivity result for the pairs, we need to define a V-mapping

T:81 5511 by

The mapping T:
Start with x € S"~1. Go to the direction a till intersection with S"~1. Proceed to the
direction b. End up with Tx € S"~1L.

15/26
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Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:

Thm Given a, b € R", TFAE
> ker F; N kerF, = {0}.
> The group generated by the reflections T4, Ty is infinite.

» The mapping T is non-periodic, i.e., Vq € N,

T°9=To..oT #id.
—_——

q

16/
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Thm Given a, b € R", define

Then ker F; N ker F, = {0} if and only if one of the conditions is fulfilled:

(i) ©(a,b) € C\ [-1,1].

oabh)=—22"1
(1 —lal?)(1 —b[?)
1
k(a, b) := — arccos O(a, b).
™
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Thm Given a, b € R", define

a-b—1
a—TaP)(a—1bP)’

O(a, b) =

1
k(a, b) := — arccos O(a, b).
™

Then ker F; N ker F, = {0} if and only if one of the conditions is fulfilled:
(i) ©(a,b) € C\ [-1,1].
(ii) ©(a, b) € [-1,1] but k(a, b) (rotation number) is irrational.

In other words, the paired FT F, , = (Fa, Fp) fails to be injective if and only if the
rotation number x(a, b) is real rational.

17 /26
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Geometrical formulation

In analytic-geometric terms:

Thm ker F; N ker Fp, = {0} if and only if the following conditions hold:
(i) a-b#1.
(i) Either Ly, N S"™™1 £ ( or, if not, then k(a, b) (automatically real) is irrational.

18/26
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Reconstruction functions from a pair of Funk transforms

Given
Faf = ga, Fof = gb-

Then one can reconstruct:
1
Flg, = > (f + pa(f 0 72))

- a-even part

(f + pb(f o Ta))

N | =

Fyley =

- b-even part. From here
f=2Ftg,— pa(f o7a) == 2F; Lgs + Wif,
f=2F, gy — pp(f o) 1= 2F, "gp + Wpf.

Substitute:
f=2(F, 'gp+ WpF; 'ga) + WyWaf := h+ WF.

Iterate:

oo
f=h+WFf=h+ Wh+W2h:...:ZW"h.
k=0

(formal series).
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Thm Let k > 1. Suppose L(a, b) N S"~1 # () (stable injectivity). Then

j=0 j=0

%) N
f= Wih, i fix) =S W/ih(x)|PdA(x) =
Sowin fim [ 1)~ 32 WinGPaAR) = o,
5n—1
where

h=2(F, gyt WsF; ' ga), (Wh)(x) = (W Wah)(x) = p(x)f (Tx), p(x) = pp(Tax)pa(rax),

and
1< <n;1
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Thm Let k > 1. Suppose L(a, b) N S"~1 # () (stable injectivity). Then

j=0 j=0

0o N
f=> Wh, im / [f(x) = > Wih(x)[PdA(x) = 0,
sn—1

where
h=2(F; ‘gp+W,F; " ga), (Wh)(x) = (WoWsh)(x) = p(x)(Tx), p(x) = pb(7ax)pa(Tax),

and
1< <n;1
=Py TT
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Moreover, for any nonzero f the series diverges for p > ::1.
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Convergence of the formal Neumann series

Thm Let k > 1. Suppose L(a, b) N S"~1 # () (stable injectivity). Then

f:iwjh, Jim /|fx) ZWJh(x [PdA(x) = 0,

Jj=0 Jj=0
where

h=2(F, gyt WsF; ' ga), (Wh)(x) = (W Wah)(x) = p(x)f (Tx), p(x) = pp(Tax)pa(rax),

and 1
1<p< ==,
P=41

n—1

Moreover, for any nonzero f the series diverges for p > 1—.

In the case of unstable injectivity (L, , N S"~! =0, r(a, b) ¢ Q)- the convergence
holds in Cesaro sense (ergodicity).
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Strategy of the proof

T-automorphic functions

» We know

f € KerFaNkerF, < f(x)=—pa(x)f(1ax), f(y) = —pu(y)f(mpy).

Substitute y = 7px :
f(x) = p(x)f(Tx),

where
p(x) = pp(Tax)pa(x), Tx = 7p(Tax).

> Thus,
Ker(Fa, Fp) C C7(S"" 1) = {f € C(S"71) : f(x) = p(x)f(Tx)}

> The "size” of C1(S"~1) depends on the type of dynamics of iterations of
T:5m 1t 5t
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Reduction to T-dynamics on the unit circle

» The orbit Ox = {x, Tx, T?x, ...} entirely belongs to 2-dim plane span(x, a, b).

> After a shift and re-scaling, the problem reduces to study of complex T-dynamics
on the unit circle S C C.

S

22/26



Complex dynamics on St

23 /26



Complex dynamics on St

> T generates a complex Mobius transformation of S, associated with
T € PSL(2,C).

23 /26



Complex dynamics on St

> T generates a complex Mobius transformation of S, associated with
T € PSL(2,C).

» Classification of the types of T-dynamics according to | trace T = Theta(a, b).

23 /26



Complex dynamics on St

> T generates a complex Mobius transformation of S, associated with
T € PSL(2,C).

» Classification of the types of T-dynamics according to ’ trace T = Theta(a, b).

The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different
types of orbits behaviour (convergence to attracting fixed points; dense orbits;

finite orbits).

23 /26



Complex dynamics on St

> T generates a complex Mobius transformation of S, associated with
T € PSL(2,C).

» Classification of the types of T-dynamics according to ’ trace T = Theta(a, b).

The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different
types of orbits behaviour (convergence to attracting fixed points; dense orbits;
finite orbits).

In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: T
is conjugate with a rotation z — ze/?. Splits into: rational or irrational rotation
0

number| — = r(a, b).
2w

23 /26



Complex dynamics on St

> T generates a complex Mobius transformation of S, associated with
T € PSL(2,C).

» Classification of the types of T-dynamics according to ’ trace T = Theta(a, b).

The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different
types of orbits behaviour (convergence to attracting fixed points; dense orbits;
finite orbits).

In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: T
is conjugate with a rotation z — ze/?. Splits into: rational or irrational rotation
0

number| — = r(a, b).
2w

» Thm The space of T-automorphic C7(S') =0 in cases 1), 2), 3). Elliptic case
with irrational x(a, b)- dense orbits.

23 /26



Complex dynamics on St

> T generates a complex Mobius transformation of S, associated with
T € PSL(2,C).
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is conjugate with a rotation z — ze/?. Splits into: rational or irrational rotation
0

number| — = r(a, b).
2w

Thm The space of T-automorphic C7(S!) =0 in cases 1), 2), 3). Elliptic case
with irrational x(a, b)- dense orbits.

Cr(S') # {0} for T for elliptic type with rational rotation number.

Glueing up dynamics on 2D sections into global dynamics on S"~1. (F,, Fp,) can
be non-injective only for periodic T: elliptic case with rational x(a, b).
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> T generates a complex Mobius transformation of S, associated with
T € PSL(2,C).

Classification of the types of T-dynamics according to ’ trace T = Theta(a, b).

The cases: 1)hyperbolic, 2) parabolic, 3) loxodromic, 4) elliptic. Different
types of orbits behaviour (convergence to attracting fixed points; dense orbits;
finite orbits).

In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: T
is conjugate with a rotation z — ze/?. Splits into: rational or irrational rotation
0

number| — = r(a, b).
2w

Thm The space of T-automorphic C7(S!) =0 in cases 1), 2), 3). Elliptic case
with irrational x(a, b)- dense orbits.

Cr(S') # {0} for T for elliptic type with rational rotation number.

Glueing up dynamics on 2D sections into global dynamics on S"~1. (F,, Fp,) can
be non-injective only for periodic T: elliptic case with rational x(a, b).

For periodic T : S"~1 — S"~1 construct a non-zero f € ker(Fa, Fp).
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More than two centers

Q: Describe the common kernel of more than two shifted Funk transforms?
Q: ker Fo = ker F3; N...Nker F5, =7, s > 2.

It follows that if ker Fa # {0} then G(A) := Group('raj,j =1,.., s) is a Coxeter group
(7'3/_ —e, (Ta,.Taj)q"J =e)

Q: Is the converse true?
Does G(A) being Coxeter group imply ker Fp := N:_yker Fa; # {0}?

True: if G(A) is finite then ker Fpa # {0}.
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