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The Funk-Minkowski-Radon transform

Paul Funk (1911), based on a work by Minkowski (1904)

Integrates functions over the intersections of Sn−1 ⊂ Rn and linear k-spaces E ,
1 ≤ k < n fixed:

(F0f )(E) =

∫
Sn−1∩E

f (x) dAk−1(x),

where dAk−1 is the surface area measure on Sk−1 = Sn−1 ∩ E .

Thus, F0 : C(Sn−1)→ C(Gr0(n, k)) (functions on the k-Grassmanian),
Gr0(n, n − 1) ∼= Sn−1.
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Background

I Kernel = odd functions

I Injective on even functions

Inversion formula is written explicitly. E.g., S.Helgason, n = 3, k = 2: ).

(F−1
+ g)(x) =

1

2π

[ d

ds

∞∫
0

(F∗g)(arccos v , x)v(s2 − v2)−
1
2 dv

]
|s=1,

where

(F∗g)(p, x) =
1

2πcosp

∫
|u|=1,〈x,u〉=sin p

g(u) du.

It provides the right inverse operator:

F0F−1
0 f = f , f ∈ C(Gr0(n, k)).

Action from the left:
F−1

0 F0f = f +, f ∈ C(Sn−1),

where f +(x) = 1
2

(
f (x) + f (−x)

)
- the even part of f .
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Applications

I Diffusion MRI (Q-ball method, Tuch (2004)).

I Convex geometry, intersection bodies problems:

Volume of a k-dim linear cross-section is the Funk transform of the radial
function:

V (K ∩ Pk ) =

∫
Sn−1∩P

ρk−1
K (θ)dθ,

ρK (θ) = max{t : tθ ∈ K}.
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Shifted Funk Transform: definition

Recent years: study Funk-type transform centered not at 0, which integrates over
non-central cross-sections.

Definition

Let a ∈ Rn. The (shifted) Funk transform centered at a is defined on f ∈ C(Sn−1) by

(Faf )(E) =

∫
E∩Sn−1

f (x) dAk (x),

E ∈ Gra(n, k) = a + Gr0(n, k)− affine Grassmanian through a.
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Main questions

I Kernel

I Range

I Subspaces of injectivity

I Inversion formula / procedure

I Multiple Funk transform f → (Fa1 , ...,FaN ) - injectivity ?
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Review

|a| = 1 - A. Aboulaz and R. Daher (1993), S. Helgason (2011)

|a| < 1 - Salman: n = 3, k = 2, stereographic projection; link to the plane Radon
transform (cumbersome computations).

|a| < 1, k = n − 1, - M. Quellmalz, B. Rubin: constructing a special transformation

of the ball; link between Fa and F0, deriving F−1
a from F−1

0 .

Eluded from attention:

Group action on Bn is behind the problem

Group-theoretical view; link with with the structure of hyperbolic space Hn.
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An universal approach: action of the hyperbolic group

Caley model of hyperbolic space

Lorentz group S0(n, 1) : linear transf’s of Rn+1 preserving Q(x) = x2
0 − x2

1 − ...− x2
n .

Identify Bn = {Q > 0} ∩ {x0 = 1}.

SO(n, 1) transitively acts on complexes of lines through 0 inside/outside the light
cone, and therefore induces an automorphism group Aut(Bn).

Important: Aut(Bn) preserves affine sections of Bn ! Elements of Aut(Bn) are
fractional-linear mappings.
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The strategy:

I Interior center : Fa, |a| < 1. Moving a→ 0 by ϕa ∈ Aut(Bn), ϕa(a) = 0,
delivers a link between Fa and F0 ( Central Funk transform ).

I Exterior center: Fb, |b| > 1, Moving b to ∞, via sending the inverse point
b∗ = b

|b|2 → 0 by ϕb∗ ∈ Aut(Bn), ϕb∗ (b∗) = 0. Provides a bridge between Fb

and Πb (Parallel Slice Transform).

I A key calculation: transformation of the integration measures on the k-sections
of Sn−1, computing Jacobians.
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Intertwining relations

Thm (B. Rubin, M.A; the case |a| < 1, k = n − 1- M. Quellmalz)

Fa = ΦaF0Ma, |a| < 1.

Fb = Φb∗ΠbMb∗ , |b| > 1,

where the intertwining operator is

(Maf )(x) =

(√
1− |a|2

1− x · a

)k−1

f
(
ϕa(x)

)
,

and the involutive automorphism ϕa ∈ Aut(Bn) is

ϕa(x) =
a− x·a

|a|2 +
√

1− |a|2(x − x·a
|a|2 )

1− x · a
,

(ΦaG)(E) = G
(
ϕa(E)

)
,E ∈ Gra(n, k).
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Kernels and inversion of the standard transforms

Well studied.

I ker F0 = { odd functions }.
I F−1

0 written.

I kerΠb = { functions odd with respect to the hyperplane 〈x , b〉 = 0.
I Π−1

b written.
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Kernel

Invoking known facts about F0, Πb, we obtain by means of the intertwining relations::
Thm(B. Rubin, M. A; 2019)

I Given a ∈ Rn \ Sn−1,

ker Fa = {f ∈ C(Sn−1) : f (x) = −ρa(x)f (τax)}
(a-odd functions).
Here the a-weight function ρa is

ρa(x) =

(
|1− |a|2|
|x − a|2

)k−1

and the a-symmetry τa is

τax = x + 2
1− a · x
|a− x |2

(a− x) :

12 / 26
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Inversion

I (Right) inverse operator for the interior center a:

F−1
a = MaF−1

0 Φa.

It reconstructs the a-even part:

F−1
a Faf =

1

2

(
f + ρa(f ◦ τa)

)
.

I (Right) inverse operator for the exterior center b:

F−1
b = MbΠ−1

b Φb∗ ,

F−1
b Fbf =

1

2

(
f + ρb(f ◦ τb)

)
- the b-even part of f ∈ C(Sn−1).
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Multiple Funk transform

Given A = {a1, ..., as} ⊂ Rn define

FAf = (Fa1 f , ...,Fas f ).

Q: For what sets A the multiple Funk transform FA is injective, i.e.,

ker FA = ∩s
j=1ker Faj = {0}?

Motivation: Single Funk data ga = Fa is not enough to recover f ∈ C(Sn−1), unless
|a| = 1. This gives rise to

Q: What sets ga = Faf , a ∈ A, of Funk data uniquely determine f ?

Q: How to reconstruct f from ga, a ∈ A?

We will give answers for two-point sets A = {a, b}.
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The double reflection billiard T

To formulate the injectivity result for the pairs, we need to define a V -mapping
T : Sn−1 → Sn−1, by

T = τb ◦ τa :

The mapping T :
Start with x ∈ Sn−1. Go to the direction a till intersection with Sn−1. Proceed to the
direction b. End up with Tx ∈ Sn−1.
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Injectivity theorem for paired FT. Group-theoretical formulation

In algebraic terms:

Thm Given a, b ∈ Rn, TFAE

I ker Fa ∩ kerFb = {0}.
I The group generated by the reflections τa, τb is infinite.

I The mapping T is non-periodic, i.e., ∀q ∈ N,

T◦q = T ◦ ... ◦ T︸ ︷︷ ︸
q

6= id.
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Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Analytic formulation

Thm Given a, b ∈ Rn, define

Θ(a, b) =
a · b − 1√

(1− |a|2)(1− |b|2)
,

κ(a, b) :=
1

π
arccos Θ(a, b).

Then ker Fa ∩ ker Fb = {0} if and only if one of the conditions is fulfilled:

(i) Θ(a, b) ∈ C \ [−1, 1].

(ii) Θ(a, b) ∈ [−1, 1] but κ(a, b) (rotation number) is irrational.

In other words, the paired FT Fa,b = (Fa, Fb) fails to be injective if and only if the
rotation number κ(a, b) is real rational.

17 / 26



Geometrical formulation

In analytic-geometric terms:

Thm ker Fa ∩ ker Fb = {0} if and only if the following conditions hold:

(i) a · b 6= 1.

(ii) Either La,b ∩ Sn−1 6= ∅ or, if not, then κ(a, b) (automatically real) is irrational.

18 / 26



Geometrical formulation

In analytic-geometric terms:

Thm ker Fa ∩ ker Fb = {0} if and only if the following conditions hold:

(i) a · b 6= 1.

(ii) Either La,b ∩ Sn−1 6= ∅ or, if not, then κ(a, b) (automatically real) is irrational.

18 / 26



Geometrical formulation

In analytic-geometric terms:

Thm ker Fa ∩ ker Fb = {0} if and only if the following conditions hold:

(i) a · b 6= 1.

(ii) Either La,b ∩ Sn−1 6= ∅ or, if not, then κ(a, b) (automatically real) is irrational.

18 / 26



Geometrical formulation

In analytic-geometric terms:

Thm ker Fa ∩ ker Fb = {0} if and only if the following conditions hold:

(i) a · b 6= 1.

(ii) Either La,b ∩ Sn−1 6= ∅ or, if not, then κ(a, b) (automatically real) is irrational.

18 / 26



Geometrical formulation

In analytic-geometric terms:

Thm ker Fa ∩ ker Fb = {0} if and only if the following conditions hold:

(i) a · b 6= 1.

(ii) Either La,b ∩ Sn−1 6= ∅ or, if not, then κ(a, b) (automatically real) is irrational.

18 / 26



Reconstruction functions from a pair of Funk transforms

Given
Faf = ga, Fbf = gb.

Then one can reconstruct:

F−1
a ga =

1

2

(
f + ρa(f ◦ τa)

)
- a-even part

F−1
b gb =

1

2

(
f + ρb(f ◦ τa)

)
- b-even part. From here

f = 2F−1
a ga − ρa(f ◦ τa) := 2F−1

a ga + Waf ,

f = 2F−1
b gb − ρb(f ◦ τb) := 2F−1

b gb + Wbf .

Substitute:
f = 2(F−1

b gb + WbF−1
a ga) + WbWaf := h + Wf .

Iterate:

f = h + Wf = h + Wh + W 2h = ... =
∞∑

k=0

W k h.

(formal series).
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Convergence of the formal Neumann series

Thm Let k > 1. Suppose L(a, b) ∩ Sn−1 6= ∅ (stable injectivity). Then

f =
∞∑

j=0

W j h, lim
N→∞

∫
Sn−1

|f (x)−
N∑

j=0

W j h(x)|pdA(x) = 0,

where

h = 2(F−1
b gb+WbF−1

a ga), (Wh)(x) = (WbWah)(x) = ρ(x)f (Tx), ρ(x) = ρb(τax)ρa(τax),

and

1 ≤ p <
n − 1

k − 1
.

Moreover, for any nonzero f the series diverges for p ≥ n−1
k−1

.

In the case of unstable injectivity (La,b ∩ Sn−1 = ∅, κ(a, b) /∈ Q)- the convergence
holds in Cesaro sense (ergodicity).
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Strategy of the proof

T -automorphic functions

I We know

f ∈ KerFa ∩ kerFb ⇔ f (x) = −ρa(x)f (τax), f (y) = −ρb(y)f (τby).

Substitute y = τbx :

f (x) = ρ(x)f (Tx),

where
ρ(x) = ρb(τax)ρa(x), Tx = τb(τax).

I Thus,

Ker(Fa,Fb) ⊂ CT (Sn−1) = {f ∈ C(Sn−1) : f (x) = ρ(x)f (Tx)}
.

I The ”size” of CT (Sn−1) depends on the type of dynamics of iterations of
T : Sn−1 → Sn−1.
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Reduction to T -dynamics on the unit circle

I The orbit Ox = {x ,Tx ,T 2x , ...} entirely belongs to 2-dim plane span(x , a, b).

I After a shift and re-scaling, the problem reduces to study of complex T -dynamics
on the unit circle S1 ⊂ C.
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Complex dynamics on S1

I T generates a complex Möbius transformation of S1, associated with
T ∈ PSL(2,C).

I Classification of the types of T -dynamics according to trace T = Theta(a, b).

The cases: 1)hyperbolic , 2) parabolic, 3) loxodromic, 4) elliptic. Different
types of orbits behaviour (convergence to attracting fixed points; dense orbits;
finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: T
is conjugate with a rotation z → ze iθ. Splits into: rational or irrational rotation

number
θ

2π
= κ(a, b).

I Thm The space of T -automorphic CT (S1) = 0 in cases 1), 2), 3). Elliptic case
with irrational κ(a, b)- dense orbits.

I CT (S1) 6= {0} for T for elliptic type with rational rotation number.

I Glueing up dynamics on 2D sections into global dynamics on Sn−1. (Fa,Fb) can
be non-injective only for periodic T : elliptic case with rational κ(a, b).

I For periodic T : Sn−1 → Sn−1 construct a non-zero f ∈ ker(Fa,Fb).
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be non-injective only for periodic T : elliptic case with rational κ(a, b).

I For periodic T : Sn−1 → Sn−1 construct a non-zero f ∈ ker(Fa,Fb).
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I T generates a complex Möbius transformation of S1, associated with
T ∈ PSL(2,C).

I Classification of the types of T -dynamics according to trace T = Theta(a, b).

The cases: 1)hyperbolic , 2) parabolic, 3) loxodromic, 4) elliptic. Different
types of orbits behaviour (convergence to attracting fixed points; dense orbits;
finite orbits).
In 1), 2), 3): two fixed points- attracting and repelling those. In elliptic case: T
is conjugate with a rotation z → ze iθ. Splits into: rational or irrational rotation

number
θ

2π
= κ(a, b).

I Thm The space of T -automorphic CT (S1) = 0 in cases 1), 2), 3). Elliptic case
with irrational κ(a, b)- dense orbits.

I CT (S1) 6= {0} for T for elliptic type with rational rotation number.

I Glueing up dynamics on 2D sections into global dynamics on Sn−1. (Fa,Fb) can
be non-injective only for periodic T : elliptic case with rational κ(a, b).

I For periodic T : Sn−1 → Sn−1 construct a non-zero f ∈ ker(Fa,Fb).
23 / 26



Complex dynamics on S1
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Illustration of the classification of the types of T - dynamics for
kerFa ∩ kerFb = {0}
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More than two centers

Q: Describe the common kernel of more than two shifted Funk transforms?

Q: ker FA = ker Fa1 ∩ ... ∩ ker Fas =?, s > 2.

It follows that if ker FA 6= {0} then G(A) := Group
(
τaj , j = 1, ..., s

)
is a Coxeter group

(τ2
ai

= e, (τai τaj )qi,j = e.)

Q: Is the converse true?

Does G(A) being Coxeter group imply ker FA := ∩s
j=1ker Faj 6= {0}?

True: if G(A) is finite then ker FA 6= {0}.
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T h a n k y o u!
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